Move the closure of the subset of flang/runtime/*.h header files that
are referenced by source files outside flang/runtime (apart from unit tests)
into a new directory (flang/include/flang/Runtime) so that relative
include paths into ../runtime need not be used.
flang/runtime/pgmath.h.inc is moved to flang/include/flang/Evaluate;
it's not used by the runtime.
Differential Revision: https://reviews.llvm.org/D109107
Flang front end function DumpHexadecimal generates a string
representation of a REAL value. When the value is a NaN, the string
contains a blank, as in "NaN 0x7fc00000". This function is used by
lowering to generate a string that is then passed to llvm Support
function convertFromStringSpecials, which does not expect a blank
in the string. Remove the blank to allow correct recognition of a
NaN by this llvm function.
Note that function DumpHexadecimal is not exercised by the front end
itself. This functionality is only exercised by code that is not yet
present in llvm.
The size of common block should be extended to cover any storage
sequence that are storage associated with the common block via
equivalences (8.10.2.2 point 1 (2)).
In symbol size and offset computation, the size of the common block
was not always extended to cover storage association. It was only done
if the "base symbol of an equivalence group"(*) appeared in a common block
statement. Correct this to cover all cases where a symbol appearing in a
common block statement is storage associated.
(*) the base symbol of an equivalence group is the symbol whose storage
starts first in a storage association (if several symbols starts first,
the base symbol is the last one visited by the algorithm going through
the equivalence sets).
Differential Revision: https://reviews.llvm.org/D109156
Don't create new symbols in FORALL, implied DO, or other
construct scopes when an undeclared name appears; use the
innermost enclosing program unit's scope. This clears up
a pending TODO in name resolution, and also exposes (& fixes)
an unnoticed name resolution problem in a module file test.
Differential Revision: https://reviews.llvm.org/D109095
Ticking off a Parser TODO: Preprocessor::Directive()'s Prescanner
argument should be a reference, not a pointer.
Differential Revision: https://reviews.llvm.org/D109094
The evaluation order for the `|` operator is undefined
(in contrast to the short-circuiting `||` operator). The arguments are
stored in variables to force a specific evaluation order.
A test in D107575 relies on this change.
Reviewed By: kiranchandramohan, klausler
Differential Revision: https://reviews.llvm.org/D108623
The combined initializers constructed from DATA statements and explicit
static initialization in declarations needs to include derived type
component default initializations, overriding those default values
without complaint with values from explicit DATA statement or declaration
initializations when they overlap. This also has to work for objects
with storage association due to EQUIVALENCE. When storage association causes
default component initializations to overlap, emit errors if and only
if the values differ (See Fortran 2018 subclause 19.5.3, esp. paragraph
10).
The f18 front-end has a module that analyzes and converts DATA statements
into equivalent static initializers for objects. For storage-associated
objects, compiler-generated objects are created that overlay the entire
association and fill it with a combined initializer. This "data-to-inits"
module already exists, and this patch is essentially extension and
clean-up of its machinery to complete the job.
Also: emit EQUIVALENCE to module files; mark compiler-created symbols
and *don't* emit those to module files; check non-static EQUIVALENCE
sets for conflicting default component initializations, so lowering
doesn't have to check them or emit diagnostics.
Differential Revision: https://reviews.llvm.org/D109022
It may not be great practice to pass a procedure (or procedure pointer)
with an implicit interface as an actual argument to correspond with
a dummy procedure (pointer), but it's not an error. Change to a
warning, and modify tests accordingly.
Differential Revision: https://reviews.llvm.org/D108932
This aligns the printer with the parser contract: the operation isn't part of the user-controllable part of the syntax.
Differential Revision: https://reviews.llvm.org/D108804
The StringAttr version doesn't need a context, so we can just use the
existing `SymbolRefAttr::get` form. The StringRef version isn't preferred
so we want to encourage people to use StringAttr.
There is an additional form of getSymbolRefAttr that takes a (SymbolTrait
implementing) operation. This should also be moved, but I'll do that as
a separate patch.
Differential Revision: https://reviews.llvm.org/D108922
The double precision KindCode was ignored when building the interface
of specific intrinsic procedures leading to bad semantics checks.
Differential Revision: https://reviews.llvm.org/D108828
ApplyElementwise on character operation was always creating a result
ArrayConstructor with the length of the left operand. This is not
correct for concatenation and SetLength operations.
Compute and thread the length to the spot creating the ArrayConstructor
so that the length is correct for those character operations.
Differential Revision: https://reviews.llvm.org/D108711
The index of an implied DO loop in a DATA statement or array
constructor is defined by Fortran 2018 to have scope over its
implied DO loop. This definition is unfortunate, because it
requires the implied DO loop's bounds expressions to be in the
scope of the index variable. Consequently, in code like
integer, parameter :: j = 5
real, save :: a(5) = [(j, j=1, j)]
the upper bound of the loop is a reference to the index variable,
not the parameter in the enclosing scope.
This patch limits the scope of the index variable to the "body"
of the implied DO loop as one would naturally expect, with a warning.
I would have preferred to make this a hard error, but most Fortran
compilers treat this case as f18 now does. If the standard
were to be fixed, the warning could be made optional.
Differential Revision: https://reviews.llvm.org/D108595
This patch cleans-up the file generation code in Flang's frontend
driver. It improves the layering between
`CompilerInstance::CreateDefaultOutputFile`,
`CompilerInstance::CreateOutputFile` and their various clients.
* Rename `CreateOutputFile` as `CreateOutputFileImpl` and make it
private. This method is an implementation detail.
* Instead of passing an `std::error_code` out parameter into
`CreateOutputFileImpl`, have it return Expected<>. This is a bit shorter
and idiomatic LLVM.
* Make `CreateDefaultOutputFile` (which calls `CreateOutputFileImpl`)
issue an error when file creation fails. The error code from
`CreateOutputFileImpl` is used to generate a meaningful diagnostic
message.
* Remove error reporting from `PrintPreprocessedAction::ExecuteAction`.
This is only for cases when output file generation fails. This is
handled in `CreateDefaultOutputFile` instead (see the previous point).
* Inline `AddOutputFile` into its only caller,
`CreateDefaultOutputFile`.
* Switch from `lvm::buffer_ostream` to `llvm::buffer_unique_ostream>`
for non-seekable output streams. This simplifies the logic in the driver
and was introduced for this very reason in [1]
* Moke sure that the diagnostics from the prescanner when running `-E`
(`PrintPreprocessedAction::ExecuteAction`) are printed before the actual
output is generated.
* Update comments, add test.
NOTE: This patch relands [2]. As suggested by Michael Kruse in the
post-commit/post-revert review, I've added the following:
```
config.errc_messages = "@LLVM_LIT_ERRC_MESSAGES@"
```
in Flang's `lit.site.cfg.py.in`. This way, `%errc_ENOENT` in
output-paths.f90 gets the correct value on Windows as well as on Linux.
[1] https://reviews.llvm.org/D93260
[2] fd21d1e198
Reviewed By: ashermancinelli
Differential Revision: https://reviews.llvm.org/D108390
This reverts commit fd21d1e198.
The test added in this patch [1] is failing on Windows and causing the
Windows BuildBot [2] to fail. I don't see any obvious way to fix this,
so reverting in order to investigate.
[1] llvm-project/flang/test/Driver/output-paths.f90
[2] https://lab.llvm.org/buildbot/#/builders/172/builds/2077
This patch refactors the file generation API in Flang's frontend driver.
It improves the layering between `CreateDefaultOutputFile`,
`CreateOutputFile` (`CompilerInstance` methods) and their various
clients.
List of changes:
* Rename `CreateOutputFile` as `CreateOutputFileImpl` and make it
private. This method is an implementation detail.
* Instead of passing an `std::error_code` out parameter into
`CreateOutputFileImpl`, have it return Expected<>. This is a bit shorter
and more idiomatic LLVM.
* Make `CreateDefaultOutputFile` (which calls `CreateOutputFileImpl`)
issue an error when file creation fails. The error code from
`CreateOutputFileImpl` is used to generate a meaningful diagnostic
message.
* Remove error reporting from `PrintPreprocessedAction::ExecuteAction`.
This is only for cases when output file generation fails. This is
handled in `CreateDefaultOutputFile` instead (see the previous point).
* Inline `AddOutputFile` into its only caller,
`CreateDefaultOutputFile`.
* Switch from `lvm::buffer_ostream` to `llvm::buffer_unique_ostream>`
for non-seekable output streams. This simplifies the logic in the driver
and was introduced for this very reason in [1]
* Moke sure that the diagnostics from the prescanner when running `-E`
(`PrintPreprocessedAction::ExecuteAction`) are printed before the actual
output is generated.
* Update comments, add test.
[1] https://reviews.llvm.org/D93260
Differential Revision: https://reviews.llvm.org/D108390
This patch implements the following check for TARGET construct:
```
OpenMP Version 5.0 Target construct restriction: If a target update,
target data, target enter data, or target exit data construct is
encountered during execution of a target region, the behavior is
unspecified.
```
Also add one test case for the check.
Reviewed By: kiranchandramohan, clementval
Differential Revision: https://reviews.llvm.org/D106165
This patch refactors the `FrontendAction` class. It merely moves code
around so that re-using it is easier. No new functionality is
introduced.
1. Three new member methods are introduced: `RunPrescan`, `RunParse`,
`RunSemanticChecks`.
2. The following free functions are re-implemented as member methods:
* `reportFatalSemanticErrors`
* `reportFatalScanningErrors`
* `reportFatalParsingErrors`
* `reportFatalErrors`
`reportFatalSemanticErrors` is updated to resemble the other error
reporting functions and to make the API more consistent.
3. The `BeginSourceFileAction` methods are simplified and the unused
input argument is deleted.
Differential Revision: https://reviews.llvm.org/D108130
`CompilerInstance` is a more appropriate place for a key component of
the frontend like `Semantics`.
This change opens a path for us to introduce new frontend actions that
will also run semantics, but for which inheriting from
`PrescanAndSemaAction` wouldn't make much sense. For example, for
code-gen actions we plan to introduce a dedicate hierarchy of action
classes.
I've also added a doxyment for `CompilerInstance` to add a bit of
context for this change (and also make future refactoring more informed).
As `CompilerInstance` in Flang has been inspired by its counterpart in
Clang, this comment is roughly a verbatim copy of the comment in Clang
(with some adjustments from me). Credits to Daniel Dunbar for the great
design and the original comment.
Differential Revision: https://reviews.llvm.org/D108035
This patch implements the following check for TEAMS construct:
```
OpenMP Version 5.0 Teams construct restriction: A teams region can
only be strictly nested within the implicit parallel region or a target
region. If a teams construct is nested within a target construct, that
target construct must contain no statements, declarations or directives
outside of the teams construct.
```
Also add one test case for the check.
Reviewed By: kiranchandramohan, clementval
Differential Revision: https://reviews.llvm.org/D106335
This patch implements the following semantic checks for cancellation constructs:
```
OpenMP Version 5.0 Section 2.18.1: CANCEL construct restriction:
If construct-type-clause is taskgroup, the cancel construct must be
closely nested inside a task or a taskloop construct and the cancel
region must be closely nested inside a taskgroup region. If
construct-type-clause is sections, the cancel construct must be closely
nested inside a sections or section construct. Otherwise, the cancel
construct must be closely nested inside an OpenMP construct that matches
the type specified in construct-type-clause of the cancel construct.
OpenMP Version 5.0 Section 2.18.2: CANCELLATION POINT restriction:
A cancellation point construct for which construct-type-clause is
taskgroup must be closely nested inside a task or taskloop construct,
and the cancellation point region must be closely nested inside a
taskgroup region. A cancellation point construct for which
construct-type-clause is sections must be closely nested inside a
sections or section construct. A cancellation point construct for which
construct-type-clause is neither sections nor taskgroup must be closely
nested inside an OpenMP construct that matches the type specified in
construct-type-clause.
```
Also add test cases for the check.
Reviewed By: kiranchandramohan
Differential Revision: https://reviews.llvm.org/D106538
Flang uses positional arguments for `messages::say()`, such as "%1$s" which is only supported in MS Compilers with the `_*printf_p` form of the function. This uses a conditional macro to convert the existing `vsnprintf` used to the one needed in MS-World.
7 tests in D107575 rely on this change.
Reviewed By: Meinersbur
Differential Revision: https://reviews.llvm.org/D107654
Recent work in runtime assignments failed an assertion in fir-dev
while running tests (flang/test/Semantics/defined-ops.f90). This
test didn't fail in llvm-project/main because only the "new" Arm
driver is used now, and that only builds runtime derived type information
tables when some debug dumping options are enabled.
So add a reproducing test case to another test that is run with
-fdebug-dump-symbols, and fix the crash by emitting special procedure
binding information only for type-bound generic ASSIGNMENT(=) bindings
that are relevant to the runtime support library for use in intrinsic
assignment of derived types.
Differential Revision: https://reviews.llvm.org/D107918
Introducing a plugin API and a simple HelloWorld Plugin example.
This patch adds the `-load` and `-plugin` flags to frontend driver and
the code around using custom frontend actions from within a plugin
shared library object.
It also adds to the Driver-help test to check the help option with the
updated driver flags.
Additionally, the patch creates a plugin-example test to check the
HelloWorld plugin example runs correctly. As part of this, a new CMake
flag (`FLANG_BUILD_EXAMPLES`) is added to allow the example to be built
and for the test to run.
This Plugin API has only been tested on Linux.
Reviewed By: awarzynski
Differential Revision: https://reviews.llvm.org/D106137
When the upper bound is less than the lower bound, the extent is zero. This is
specified in section 8.5.8.2, paragraph 3.
Note that similar problems exist in the lowering code. This change only fixes
the problem for the front end.
I also added a test.
Differential Revision: https://reviews.llvm.org/D107832
https://reviews.llvm.org/D105464 did not correctly cover the case
where the symbol from the host procedure is use associated. Outside
of the mis-parsed ArrayRef case, flang was also creating a symbol with
HostAssociated details inside the internal procedure (pointing to the
use associated symbol in the host). That is what lowering expects.
This patch ensures the same logic is applied in the mis-parsed array-ref name
resolution (and the pointer target name resolution).
Differential Revision: https://reviews.llvm.org/D107759
Define an API for, and implement, runtime support for arbitrary
assignment of one descriptor's data to another, with full support for
(re)allocation of allocatables with finalization when necessary,
user-defined derived type assignment TBP calls, and intrinsic (default)
componentwise assignment of derived type instances with allocation of
automatic components. Also clean up API and implementation of
finalization/destruction using knowledge gained while studying
edge cases for assignment in the 2018 standard.
The look-up procedure for special procedure bindings in derived
types has been optimized from O(N) to O(1) since it will probably
matter more. This required some analysis in runtime derived type
description table construction in semantics and some changes to the
table schemata.
Executable Fortran tests have been developed; they'll be added
to the test base once they can be lowered and run by f18.
Differential Revision: https://reviews.llvm.org/D107678
This patch removes `f18`, a.k.a. the old driver. It is being replaced
with the new driver, `flang-new`, which has reached feature parity with
`f18` a while ago. This was discussed in [1] and also in [2].
With this change, `FLANG_BUILD_NEW_DRIVER` is no longer needed and is
also deleted. This means that we are making the dependency on Clang permanent
(i.e. it cannot be disabled with a CMake flag).
LIT set-up is updated accordingly. All references to `f18` or `f18.cpp`
are either updated or removed.
The `F18_FC` variable from the `flang` bash script is replaced with
`FLANG_FC`. The former is still supported for backwards compatibility.
[1] https://lists.llvm.org/pipermail/flang-dev/2021-June/000742.html
[2] https://reviews.llvm.org/D103177
Differential Revision: https://reviews.llvm.org/D105811
For boolean options, e.g. `-fxor-operator`/`-fno-xor-operator`, we ought
to be using TableGen multi-classes. This way, we only have to write one
definition to have both forms auto-generated. This patch refactors all
of Flang's boolean options to use two new multi-classes:
`OptInFC1FFOption` and `OptOutFC1FFOption`. These multi-classes are
based on `OptInFFOption`/`OptOutFFOption`, respectively. I've also
simplified the processing of the updated options in
CompilerInvocation.cpp.
With the new approach, "empty" help text (i.e. no `HelpText`) is now
replaced with an empty string (i.e. HelpText<"">). When running
flang-new --help, that's considered as non-empty help messages, which is
then printed (that's controlled by `printHelp` from
llvm/lib/Option/OptTable.cpp). This means that with this patch,
flang-new --help will start printing e.g. -fno-backslash, even though
there is no actual help text to print for this option (apart from the
empty string ""). Tests are updated accordingly.
Note that with this patch, both `-fxor-operator` and `-fno-xor-operator`
(and other boolean options refactored here) remain available in
`flang-new` and `flang-new -fc1`. In this respect, nothing changes. In a
forthcoming patch, I will refine this so that `flang-new -fc1` only
accepts `-ffoo` (`OptInFC1FFOption`) or `-fno-foo` (`OptOutCC1FFOption`).
For clarity, `OptInFFOption`/`OptOutFFOption` are renamed as
`OptInCC1FFOption`/`OptOutCC1FFOption`, respectively. Otherwise, this is
an NFC from Clang's perspective.
Differential Revision: https://reviews.llvm.org/D105881
The algorithm for Fw.d output will drive binary to decimal conversion for
an initial fixed number of digits, then adjust that number based on the
result's exposent. For value close to a power of ten, this adjustment
process wouldn't terminate; e.g., formatting 9.999 as F10.2 would start
with 1e2, boost the digits to 2, get 9.99e1, decrease the digits, and loop.
Solve by refusing to boost the digits a second time.
Differential Revision: https://reviews.llvm.org/D107490
Like the similar legacy extension FLOAT(), DFLOAT() represents a
conversion from default integer to DOUBLE PRECISION. Rewrite
into a conversion operation.
Differential Revision: https://reviews.llvm.org/D107489
Dummy procedures can be defined as subprograms with explicit
interfaces, e.g.
subroutine subr(dummy)
interface
subroutine dummy(x)
real :: x
end subroutine
end interface
! ...
end subroutine
but the symbol table had no means of marking such symbols as dummy
arguments, so predicates like IsDummy(dummy) would fail. Add an
isDummy_ flag to SubprogramNameDetails, analogous to the corresponding
flag in EntityDetails, and set/test it as needed.
Differential Revision: https://reviews.llvm.org/D106697
The result expression for the analysis of a Component is not (longer)
valid in the expression traversal framework used by IsSimplyContiguousHelper
now that it has a tri-state result. Fix so that any result of
analyzing the component symbol is required to be true, not just
present.
Differential Revision: https://reviews.llvm.org/D106693
Rename the current -E option to "-E -Xflang -fno-reformat".
Add a new Parsing::EmitPreprocessedSource() routine to convert the
cooked character stream output of the prescanner back to something
more closely resembling output from a traditional preprocessor;
call this new routine when -E appears.
The new -E output is suitable for use as fixed form Fortran source to
compilation by (one hopes) any Fortran compiler. If the original
top-level source file had been free form source, the output will be
suitable for use as free form source as well; otherwise there may be
diagnostics about missing spaces if they were indeed absent in the
original fixed form source.
Unless the -P option appears, #line directives are interspersed
with the output (but be advised, f18 will ignore these if presented
with them in a later compilation).
An effort has been made to preserve original alphabetic character case
and source indentation.
Add -P and -fno-reformat to the new drivers.
Tweak test options to avoid confusion with prior -E output; use
-fno-reformat where needed, but prefer to keep -E, sometimes
in concert with -P, on most, updating expected results accordingly.
Differential Revision: https://reviews.llvm.org/D106727
Historically the builtin dialect has had an empty namespace. This has unfortunately created a very awkward situation, where many utilities either have to special case the empty namespace, or just don't work at all right now. This revision adds a namespace to the builtin dialect, and starts to cleanup some of the utilities to no longer handle empty namespaces. For now, the assembly form of builtin operations does not require the `builtin.` prefix. (This should likely be re-evaluated though)
Differential Revision: https://reviews.llvm.org/D105149
According to C7109, "A boz-literal-constant shall appear only as a
data-stmt-constant in a DATA statement, or where explicitly allowed in
16.9 as an actual argument of an intrinsic procedure." This change
enforces that constraint for output list items.
I also added a general interface to determine if an expression is a BOZ
literal constant and changed all of the places I could find where it
could be used.
I also added a test.
This change stemmed from the following issue --
https://gitlab-master.nvidia.com/fortran/f18-stage/issues/108
Differential Revision: https://reviews.llvm.org/D106893
Since BOZ literal arguments are typeless, we cannot know how to pass them as
actual arguments to procedures with implicit interfaces. This change avoids
the problem by emitting an error message in such situations.
This change stemmed from the following issue --
https://github.com/flang-compiler/f18-llvm-project/issues/794
Differential Revision: https://reviews.llvm.org/D106831
Use derived type information tables to drive default component
initialization (when needed), component destruction, and calls to
final subroutines. Perform these operations automatically for
ALLOCATE()/DEALLOCATE() APIs for allocatables, automatics, and
pointers. Add APIs for use in lowering to perform these operations
for non-allocatable/automatic non-pointer variables.
Data pointer component initialization supports arbitrary constant
designators, a F'2008 feature, which may be a first for Fortran
implementations.
Differential Revision: https://reviews.llvm.org/D106297
The following semantic check is removed in OpenMP Version 5.0:
```
Taskloop simd construct restrictions: No reduction clause can be specified.
```
Also fix several typos.
Reviewed By: kiranchandramohan
Differential Revision: https://reviews.llvm.org/D105874
Name resolution is always creating symbols with HostAssocDetails
for host variable names inside internal procedures. This helps lowering
identifying and dealing with such variables inside internal procedures.
However, the case where the variable appears in an ArrayRef mis-parsed
as a FunctionRef goes through a different name resolution path that did
not create such HostAssocDetails when needed. Pointer assignment RHS
are also skipping this path.
Add the logic to create HostAssocDetails for host symbols inisde internal
procedures that appear in mis-parsed ArrayRef or in pointer assignment RHS.
Differential Revision: https://reviews.llvm.org/D105464
Until now, `f18` would:
1. Use Flang to unparse the input files
2. Call an external Fortran compiler to compile the unparsed source
files (generated in step 1)
With this patch, `f18` will stop after unparsing the input source files,
i.e. step 1 above. The `flang` bash script will take care of step 2,
i.e. calling an external Fortran compiler driver to compile them. This
way:
* the functionality of `f18` is reduced - it will only drive Flang (as
opposed to delegating code-generation to an external tool on top of
this)
* we will able to switch between `f18` and `flang-new` for unparsing before
an external Fortran compiler is called for code-generation
The updated `flang` bash script needs to specify the output file when
using the `-fdebug-unparse` action. Both `f18` and `flang-new` have been
updated accordingly.
These changes were discussed in [1] as a requirement for replacing `f18`
with `flang-new`.
[1] https://lists.llvm.org/pipermail/flang-dev/2021-April/000677.html
Differential Revision: https://reviews.llvm.org/D103177
With derived type description tables now available to the
runtime library, it is possible to implement the concept
of "child" I/O statements in the runtime and use them to
convert instances of derived type I/O data transfers into
calls to user-defined subroutines when they have been specified
for a type. (See Fortran 2018, subclauses 12.6.4.8 & 13.7.6).
- Support formatted, list-directed, and NAMELIST
transfers to internal parent units; support these, and unformatted
transfers, for external parent units.
- Support nested child defined derived type I/O.
- Parse DT'foo'(v-list) FORMAT data edit descriptors and passes
their strings &/or v-list values as arguments to the defined
formatted I/O routines.
- Fix problems with this feature encountered in semantics and
FORMAT valiation during development and end-to-end testing.
- Convert typeInfo::SpecialBinding from a struct to a class
after adding a member function.
Differential Revision: https://reviews.llvm.org/D104930
There are situations where the arguments of intrinsics must be
conformable, which is defined in section 3.36. This means they must
have "the same shape, or one being an array and the other being scalar".
But the check we were actually making was that their ranks were the same.
This change fixes that and adds a test for the UNPACK intrinsic, where
the FIELD argument "shall be conformable with MASK".
Differential Revision: https://reviews.llvm.org/D104936
A recent change that extended semantic analysis for actual arguments
that associate with procedure dummy arguments exposed some bugs in
regression test suites due to points of confusion in symbol table
handling in situations where a generic interface contains a specific
procedure of the same name. When passing that name as an actual
argument, for example, it's necessary to take this possibility into
account because the symbol for the generic interface shadows the
symbol of the same name for the specific procedure, which is
what needs to be checked. So add a small utility that bypasses
the symbol for a generic interface in this case, and use it
where needed.
Differential Revision: https://reviews.llvm.org/D104929
This patch adds a new option for the new Flang driver:
`-fno-analyzed-objects-for-unparse`. The semantics are similar to
`-funparse-typed-exprs-to-f18-fc` from `f18`. For consistency, the
latter is replaced with `-fno-analyzed-objects-for-unparse`.
The new option controls the behaviour of the unparser (i.e. the action
corresponding to `-fdebug-unparse`). The default behaviour is to use the
analyzed objects when unparsing. The new flag can be used to turn this
off, so that the original parse-tree objects are used. The analyzed
objects are generated during the semantic checks [1].
This patch also updates the semantics of
`-fno-analyzed-objects-for-unparse`/`-funparse-typed-exprs-to-f18-fc`
in `f18`, so that this flag is always taken into account when `Unparse`
is used (this way the semantics in `f18` and `flang-new` are identical).
The added test file is based on example from Peter Steinfeld.
[1]
https://github.com/llvm/llvm-project/blob/main/flang/docs/Semantics.md
Differential Revision: https://reviews.llvm.org/D103612
Work around two problems with GCC 7.3.
One is its inability to implement "constexpr operator=(...) = default;"
in a class with a std::optional<> component; another is a legitimate-
looking warning about an unused variable.
Differential Revision: https://reviews.llvm.org/D104731
Refactor the recently-implemented MAXVAL/MINVAL folding so
that the parts that can be used to implement other reduction
transformational intrinsic function folding are exposed.
Use them to implement folding of IALL, IANY, IPARITY,
SUM. and PRODUCT. Replace the folding of ALL & ANY to
use the new infrastructure and become able to handle DIM=
arguments.
Differential Revision: https://reviews.llvm.org/D104562
This patch adds the following nesting check for `barrier` constructs:
```
A barrier region may not be closely nested inside a worksharing, loop, task, taskloop, critical, ordered, atomic, or master region.
```
Also adds a test case for the check,
Reviewed By: kiranchandramohan
Differential Revision: https://reviews.llvm.org/D99888
This is *not* user-defined derived type I/O, but rather Fortran's
built-in capabilities for using derived type data in I/O lists
and NAMELIST groups.
This feature depends on having the derived type description tables
that are created by Semantics available, passed through compilation
as initialized static objects to which pointers can be targeted
in the descriptors of I/O list items and NAMELIST groups.
NAMELIST processing now handles component references on input
(e.g., "&GROUP x%component = 123 /").
The C++ perspectives of the derived type information records
were transformed into proper classes when it was necessary to add
member functions to them.
The code in Semantics that generates derived type information
was changed to emit derived type components in component order,
not alphabetic order.
Differential Revision: https://reviews.llvm.org/D104485
Do not use ultimate symbols in DescriptorInquiry. Using the ultimate
symbol may lead to issues later for at least two reasons:
- The original symbols may have volatile/asynchronous attributes that
the ultimate may not have. Later phases working on the DescriptorInquiry
would then not apply potential care required by these attributes.
- HostAssociatedDetails symbols are used by OpenMP for symbols with
special OpenMP attributes inside OpenMP region (e.g variables with
private attribute), so it is very important to preserve this
aspect in the DescriptorInquiry, that would otherwise apply on the
symbol outside of the region.
Differential Revision: https://reviews.llvm.org/D104385
When a function is called in a specification expression, it must be
sufficiently defined, and cannot be a recursive call (10.1.11(5)).
The best fix for this is to change the contract for the procedure
characterization infrastructure to catch and report such errors,
and to guarantee that it does emit errors on failed characterizations.
Some call sites were adjusted to avoid cascades.
Differential Revision: https://reviews.llvm.org/D104330
Recent code for folding MINVAL() didn't allow for architectures
whose C/C++ char type is unsigned, so the value of the maximum
Fortran character was incorrect. This was caught by the
folding20.f90 test. The fix is to avoid numeric_limits<> and
use hard values for max signed integers of various character kinds.
Pushing into llvm-project/main to restore ARM/POWER buildbots.
Implement constant folding for the reduction transformational
intrinsic functions MAXVAL and MINVAL.
In anticipation of more folding work to follow, with (I hope)
some common infrastructure, these two have been implemented in a
new header file.
Differential Revision: https://reviews.llvm.org/D104337
When a program attempts to put something like a subprogram
into an array constructor, emit an error rather than crashing.
Differential Revision: https://reviews.llvm.org/D104336
Flang diverges from the llvm coding style in that it requires braces
around the bodies of if/while/etc statements, even when the body is
a single statement.
This commit adds the readability-braces-around-statements check to
flang's clang-tidy config file. Hopefully the premerge bots will pick it
up and report violations in Phabricator.
We also explicitly disable the check in the directories corresponding to
the Lower and Optimizer libraries, which rely heavily on mlir and llvm
and therefore follow their coding style. Likewise for the tools
directory.
We also fix any outstanding violations in the runtime and in
lib/Semantics.
Differential Revision: https://reviews.llvm.org/D104100
The new option will run the semantic checks and then dump the parse tree
and all the symbols. This is equivalent to running the driver twice,
once with `-fdebug-dump-parse-tree` and then with
the `-fdebug-dump-symbols` action flag.
Currently we wouldn't be able to achieve the same by simply running:
```
flang-new -fc1 -fdebug-dump-parse-tree -fdebug-dump-symbols <input-file>
```
That's because the new driver will only run one frontend action per
invocation (both of the flags used here are action flags). Diverging
from this design would lead to costly compromises and it's best avoided.
We may want to consider re-designing our debugging actions (and action
options) in the future so that there's more code re-use. For now, I'm
focusing on making sure that we support all the major cases requested by
our users.
Differential Revision: https://reviews.llvm.org/D104305
I added the only check that wasn't already tested along with tests for
many valid and invalid arguments.
Differential Revision: https://reviews.llvm.org/D104318
This patch adds the 4th Fortran specific semantic check for the OpenMP
allocate directive: "If a list item has the SAVE attribute, is a common
block name, or is declared in the scope of a module, then only predefined
memory allocator parameters can be used in the allocator clause".
Code in this patch was based on code from https://reviews.llvm.org/D93549/new/.
Differential Revision: https://reviews.llvm.org/D102400
It's possible to have several USE statements for the same module that
have different mixes of rename clauses and ONLY clauses. The presence
of a rename cause has the effect of hiding a previously associated name,
and the presence of an ONLY clause forces the name to be visible even in
the presence of a rename.
I fixed this by keeping track of the names that appear on rename and ONLY
clauses. Then, when processing the USE association of a name, I check to see
if it previously appeared in a rename clause and not in a USE clause. If so, I
remove its USE associated symbol. Also, when USE associating all of the names
in a module, I do not USE associate names that have appeared in rename clauses.
I also added a test.
Differential Revision: https://reviews.llvm.org/D104130
Fix Flang build after addition of a new OpenMP clauses for a Clang
patch (D99459). Flang is using TableGen to generation the declaration
of clause checks and the new clause was missing a definiton.
In the interests of disabling misc-no-recursion across LLVM (this seems
like a stylistic choice that is not consistent with LLVM's
style/development approach) this NFC preliminary change adjusts all the
.clang-tidy files to inherit from their parents as much as possible.
This change specifically preserves all the quirks of the current configs
in order to make it easier to review as NFC.
I validatad the change is NFC as follows:
for X in `cat ../files.txt`;
do
mkdir -p ../tmp/$(dirname $X)
touch $(dirname $X)/blaikie.cpp
clang-tidy -dump-config $(dirname $X)/blaikie.cpp > ../tmp/$(dirname $X)/after
rm $(dirname $X)/blaikie.cpp
done
(similarly for the "before" state, without this patch applied)
for X in `cat ../files.txt`;
do
echo $X
diff \
../tmp/$(dirname $X)/before \
<(cat ../tmp/$(dirname $X)/after \
| sed -e "s/,readability-identifier-naming\(.*\),-readability-identifier-naming/\1/" \
| sed -e "s/,-llvm-include-order\(.*\),llvm-include-order/\1/" \
| sed -e "s/,-misc-no-recursion\(.*\),misc-no-recursion/\1/" \
| sed -e "s/,-clang-diagnostic-\*\(.*\),clang-diagnostic-\*/\1/")
done
(using sed to strip some add/remove pairs to reduce the diff and make it easier to read)
The resulting report is:
.clang-tidy
clang/.clang-tidy
2c2
< Checks: 'clang-diagnostic-*,clang-analyzer-*,-*,clang-diagnostic-*,llvm-*,misc-*,-misc-unused-parameters,-misc-non-private-member-variables-in-classes,-readability-identifier-naming,-misc-no-recursion'
---
> Checks: 'clang-diagnostic-*,clang-analyzer-*,-*,clang-diagnostic-*,llvm-*,misc-*,-misc-unused-parameters,-misc-non-private-member-variables-in-classes,-misc-no-recursion'
compiler-rt/.clang-tidy
2c2
< Checks: 'clang-diagnostic-*,clang-analyzer-*,-*,clang-diagnostic-*,llvm-*,-llvm-header-guard,misc-*,-misc-unused-parameters,-misc-non-private-member-variables-in-classes'
---
> Checks: 'clang-diagnostic-*,clang-analyzer-*,-*,clang-diagnostic-*,llvm-*,misc-*,-misc-unused-parameters,-misc-non-private-member-variables-in-classes,-llvm-header-guard'
flang/.clang-tidy
2c2
< Checks: 'clang-diagnostic-*,clang-analyzer-*,-*,llvm-*,-llvm-include-order,misc-*,-misc-no-recursion,-misc-unused-parameters,-misc-non-private-member-variables-in-classes'
---
> Checks: 'clang-diagnostic-*,clang-analyzer-*,-*,llvm-*,misc-*,-misc-unused-parameters,-misc-non-private-member-variables-in-classes,-llvm-include-order,-misc-no-recursion'
flang/include/flang/Lower/.clang-tidy
flang/include/flang/Optimizer/.clang-tidy
flang/lib/Lower/.clang-tidy
flang/lib/Optimizer/.clang-tidy
lld/.clang-tidy
lldb/.clang-tidy
llvm/tools/split-file/.clang-tidy
mlir/.clang-tidy
The `clang/.clang-tidy` change is a no-op, disabling an option that was never enabled.
The compiler-rt and flang changes are no-op reorderings of the same flags.
(side note, the .clang-tidy file in parallel-libs is broken and crashes
clang-tidy because it uses "lowerCase" as the style instead of "lower_case" -
so I'll deal with that separately)
Differential Revision: https://reviews.llvm.org/D103842
Adding the `-init-only` option and corresponding frontend action to
generate a diagnostic.
`-init-only` vs `-test-io`:
`-init-only` ignores the input (it never calls the prescanner)
`-test-io` is similar to `-init-only`, but does read and print the input
without calling the prescanner.
This patch also adds a Driver test to check this action.
Reviewed By: awarzynski, AMDChirag
Differential Revision: https://reviews.llvm.org/D102849
It's possible to specify refer to an undefined derived type as the type of a
component of another derived type and then never define the type of the
component. We were not detecting this situation. To fix this, I
changed the value of isForwardReferenced_ in the symbol's
DerivedTypeDetails and checked for it when performing other derived type
checks.
I also had to record the fact that error messages were previously
emitted for the same problem in some cases so that I could avoid
duplicate messages.
I also added a test.
Differential Revision: https://reviews.llvm.org/D103714
Implement the following semantic check:
"A list item may not appear in a linear clause, unless it is the loop iteration variable."
Reviewed By: kiranchandramohan
Differential Revision: https://reviews.llvm.org/D100224
To ensure that errors are emitted by CheckConformance and
its callers in all situations, it's necessary for the returned result
of that function to distinguish between three possible
outcomes: the arrays are known to conform at compilation time,
the arrays are known to not conform (and a message has been
produced), and an indeterminate result in which is not possible
to determine conformance. So convert CheckConformance's
result into an optional<bool>, and convert its confusing
Boolean flag arguments into a bit-set of named flags too.
Differential Revision: https://reviews.llvm.org/D103654
With this patch, the following invocation of the frontend driver will
return an error:
```
flang-new -fc1 input-file.f90 -o
```
Similar logic applies to other options that require arguments.
Similar checks are already available in the compiler driver, flang-new
(that's implemented in clangDriver).
Differential Revision: https://reviews.llvm.org/D103554
This option is supported in `f18`, but not yet available in `flang-new`.
It is required in order to call `flang-new` from the `flang` bash
script.
Differential Revision: https://reviews.llvm.org/D103613
A recent change was made in https://reviews.llvm.org/D101482 to cope
with kind parameters. It had the side effect of generating some type
info symbols inside derived type scopes. Derived type scope symbols
are meant for components, and other/later compilation phases might
choke when finding compiler generated symbols there that are not
components.
This patch preserves the fix from D101482 while still generating the
symbols outside of derived type scopes.
Differential Revision: https://reviews.llvm.org/D103621
When a subroutine or function symbol is defined in an INTERFACE
block, it's okay if a symbol of the same name appears in a
scope between the global scope and the scope of the INTERFACE.
Differential Revision: https://reviews.llvm.org/D103580
Add some missing error messages, and permit the appearance
of EntityDetails symbols in dummy argument type characterization.
Differential Revision: https://reviews.llvm.org/D103576
When a procedure pointer with no interface is called by a
function reference, complain about the lack.
Differential Revision: https://reviews.llvm.org/D103573
In something like "ASSOCIATE(X=>T(1))", the "T(1)" is parsed
as a Variable because it looks like a function reference or
array reference; if it turns out to be a structure constructor,
which is something we can't know until we're able to attempt
generic interface resolution in semantics, the parse tree needs
to be fixed up by replacing the Variable with an Expr.
The compiler could already do this for putative function references
encapsulated as Exprs, so this patch moves some code around and
adds parser::Selector to the overloads of expression analysis.
Differential Revision: https://reviews.llvm.org/D103572
The constexpr-capable class evaluate::DynamicType represented
CHARACTER length only with a nullable pointer into the declared
parameters of types in the symbol table, which works fine for
anything with a declaration but turns out to not suffice to
describe the results of the ACHAR() and CHAR() intrinsic
functions. So extend DynamicType to also accommodate known
constant CHARACTER lengths, too; use them for ACHAR & CHAR;
clean up several use sites and fix regressions found in test.
Differential Revision: https://reviews.llvm.org/D103571
A procedure pointer is allowed to name a specific intrinsic function
from F'2018 table 16.2 as its interface, but not other intrinsic
procedures. Catch this error, and thereby also fix a crash resulting
from a failure later in compilation from failed characteristics;
while here, also catch the similar error with initializers.
Differential Revision: https://reviews.llvm.org/D103570
As a benign extension common to other Fortran compilers,
accept BOZ literals in array constructors w/o explicit
types, treating them as integers.
Differential Revision: https://reviews.llvm.org/D103569
The code for folding calls to the intrinsic function CMPLX was
incorrectly dependent on the number of arguments to distinguish its
two cases (conversion from one kind of complex to another, and
composition of a complex value from real & imaginary parts).
This was wrong since the optional KIND= argument has already been
taken into account by intrinsic processing; instead, the type of
the first argument should decide the issue.
Differential Revision: https://reviews.llvm.org/D103568
In error recovery situations, the mappings from source locations
to scopes were failing in a way that tripped some asserts.
Specifically, FindPureProcedureContaining() wasn't coping well
when starting at the global scope. (And since the global scope
no longer has a source range, clean up the Semantics constructor
to avoid confusion.)
Differential Revision: https://reviews.llvm.org/D103567
It's possible to specify defined input/output procedures either as a
type-bound procedure of a derived type or as a defined-io-generic-spec. This
means that you can specify the same procedure in both mechanisms, which does
not cause problems. Alternatively, you can specify two different procedures to
be the defined input/output procedure for the same derived type. This is an
error. This change catches this error. The situation is slightly complicated
by parameterized derived types. Types with the same value for a KIND parameter
are treated as the same type while types with different KIND parameters are
treated as different types.
I implemented this check by adding a vector to keep track of which defined
input/output procedures had been seen for which derived types along with the
kind of procedure (read vs write and formatted vs unformatted). I also added
tests for non-parameterized types and types parameterized by KIND and LEN type
parameters.
I also removed an erroneous check from the code that creates runtime type
information.
Differential Revision: https://reviews.llvm.org/D103560
Each var argument to an attach or detach clause must be a
Fortran variable or array with the pointer or allocatable attribute.
This patch enforce this restruction.
Reviewed By: kiranchandramohan
Differential Revision: https://reviews.llvm.org/D103279
This patch adds the following Fortran specific semantic checks for the OpenMP
Allocate directive.
1) A type parameter inquiry cannot appear in an ALLOCATE directive.
2) List items specified in the ALLOCATE directive must not have the ALLOCATABLE
attribute unless the directive is associated with an ALLOCATE statement.
Co-authored-by: Irina Dobrescu <irina.dobrescu@arm.com>
Reviewed By: kiranchandramohan
Differential Revision: https://reviews.llvm.org/D102061
Defined input/output procedures are specified in 12.6.4.8. There are different
versions for read versus write and formatted versus unformatted, but they all
share the same basic set of dummy arguments.
I added several checking functions to check-declarations.cpp along with a test.
In the process of implementing this, I noticed and fixed a typo in
.../lib/Evaluate/characteristics.cpp.
Differential Revision: https://reviews.llvm.org/D103045
A recent fix for problems with ENTRY statement handling didn't
get the case of a procedure dummy argument on an ENTRY statement
in an executable part right; the code presumed that those dummy
arguments would be objects, not entities that might be objects or
procedures. Fix.
Differential Revision: https://reviews.llvm.org/D103098
Dummy arguments of ENTRY statements in execution parts were
not being created as objects, nor were they being implicitly
typed.
When the symbol corresponding to an alternate ENTRY point
already exists (by that name) due to having been referenced
in an earlier call, name resolution used to delete the extant
symbol. This isn't the right thing to do -- the extant
symbol will be pointed to by parser::Name nodes in the parse
tree while no longer being part of any Scope.
Differential Review: https://reviews.llvm.org/D102948
This patch implements the following semantic check:
```
A master region may not be closely nested inside a work-sharing, loop, atomic, task, or taskloop region.
```
Adds a test case and also modifies a couple of existing test cases to include the check.
Reviewed By: kiranchandramohan
Differential Revision: https://reviews.llvm.org/D100228
Add overloads to AsGenericExpr() in Evaluate/tools.h to take care
of wrapping an untyped DataRef or bare Symbol in a typed Designator
wrapped up in a generic Expr<SomeType>. Use the new overloads to
replace a few instances of code that was calling TypedWrapper<>()
with a dynamic type.
This new tool will be useful in lowering to drive some code that
works with typed expressions (viz., list-directed I/O list items)
when starting with only a bare Symbol (viz., NAMELIST).
Differential Revision: https://reviews.llvm.org/D102352
We sometimes unroll an ac-implied-do of an array constructor into a flat list
of values. We then re-analyze the array constructor that contains the
resulting list of expressions. Such a list may or may not contain errors.
But when processing an array constructor with an unrolled ac-implied-do, the
compiler was building an expression to represent the extent of the resulting
array constructor containing the list of values. The number of operands
in this extent expression was based on the number of elements in the
unrolled list of values. For very large lists, this created an
expression so large that it could not be evaluated by the compiler
without overflowing the stack.
I fixed this by continuously folding the extent expression as each operand is
added to it. I added the test .../flang/test/Semantics/array-constr-big.f90
that will cause the compiler to seg fault without this change.
Also, when the unrolled ac-implied-do expression contains errors, we were
repeating the same error message referencing the same source line for every
instance of the erroneous expression in the unrolled list. This potentially
resulted in a very long list of messages for a single error in the source code.
I fixed this by comparing the message being emitted to the previously emitted
message. If they are the same, I do not emit the message. This change is also
tested by the new test array-constr-big.f90.
Several of the existing tests had duplicate error messages for the same source
line, and this change caused differences in their output. So I adjusted the
tests to match the new message emitting behavior.
Differential Revision: https://reviews.llvm.org/D102210
Add InputNamelist and OutputNamelist as I/O data transfer APIs
to be used with internal & external list-directed I/O; delete the
needless original namelist-specific Begin... calls.
Implement NAMELIST output and input; add basic tests.
Differential Revision: https://reviews.llvm.org/D101931
When producing the runtime type information for a component of a derived type
that had a LEN type parameter, we were not allowing a KIND parameter of the
derived type. This was causing one of the NAG correctness tests to fail
(.../hibiya/d5.f90).
I added a test to our own test suite to check for this.
Also, I fixed a typo in .../module/__fortran_type_info.f90.
I allowed KIND type parameters to be used for the declarations of components
that use LEN parameters by constant folding the value of the LEN parameter. To
make the constant folding work, I had to put the semantics::DerivedTypeSpec of
the associated derived type into the folding context. To get this
semantics::DerivedTypeSpec, I changed the value of the semantics::Scope object
that was passed to DescribeComponent() to be the derived type scope rather than
the containing non-derived type scope.
This scope change, in turn, caused differences in the symbol table output that
is checked in typeinfo01.f90. Most of these differences were in the order that
the symbols appeared in the dump. But one of them changed one of the values
from "CHARACTER(2_8,1)" to "CHARACTER(1_8,1)". I'm not sure if these changes
are significant. Please verify that the results of this test are still valid.
Also, I wonder if there are other situations in this code where we should be
folding constants. For example, what if the field of a component has a
component whose type is a PDT with a LEN type parameter, and the component's
declaration depends on the KIND type parameter of the current PDT. Here's an
example:
type string(stringkind)
integer,kind :: stringkind
character(stringkind) :: value
end type string
type outer(kindparam)
integer,kind :: kindparam
type(string(kindparam)) :: field
end type outer
I don't understand the code or what it's trying to accomplish well enough to
figure out if such cases are correctly handled by my new code.
Differential Revision: https://reviews.llvm.org/D101482
We were not correctly handling structure constructors that had forward
references to parameterized derived types. I harvested the code that checks
for forward references that was used during analysis of function call
expressions and called it from there and also called it during the
analysis of structure constructors.
I also added a test that will produce an internal error without this change.
Differential Revision: https://reviews.llvm.org/D101330
We were not checking that attributes that are supposed to be specific to
dummy arguments were not being used for local entities. I added the checks
along with tests for them.
After implementing these new checks, I found that one of the tests in
separate-mp02.f90 was erroneous, and I fixed it.
Differential Revision: https://reviews.llvm.org/D101126
When generating output for `-fdebug-dump-symbols`, make sure that
BuildRuntimeDerivedTypeTables is also run. This change is needed in
order to make the implementation of `-fdebug-dump-symbols` in
`flang-new` consistent with `f18`. It also allows us to port more tests
to use the new driver whenever it is enabled.
Differential Revision: https://reviews.llvm.org/D100649
Andrezj W. @ Arm discovered that the runtime derived type table
building code in semantics was detecting fatal errors in the tests
that the f18 driver wasn't printing. This patch fixes f18 so that
these messages are printed; however, the messages were not valid user
errors, and the rest of this patch fixes them up.
There were two sources of the bogus errors. One was that the runtime
derived type information table builder was calculating the shapes of
allocatable and pointer array components in derived types, and then
complaining that they weren't constant or LEN parameter values, which
of course they couldn't be since they have to have deferred shapes
and those bounds were expressions like LBOUND(component,dim=1).
The second was that f18 was forwarding the actual LEN type parameter
expressions of a type instantiation too far into the uses of those
parameters in various expressions in the declarations of components;
when an actual LEN type parameter is not a constant value, it needs
to remain a "bare" type parameter inquiry so that it will be lowered
to a descriptor inquiry and acquire a captured expression value.
Fixing this up properly involved: moving some code into new utility
function templates in Evaluate/tools.h, tweaking the rewriting of
conversions in expression folding to elide needless integer kind
conversions of type parameter inquiries, making type parameter
inquiry folding *not* replace bare LEN type parameters with
non-constant actual parameter values, and cleaning up some
altered test results.
Differential Revision: https://reviews.llvm.org/D101001
This patch adds semantic checks for the General Restrictions of the
Allocate Directive.
Since the requires directive is not yet implemented in Flang, the
restriction:
```
allocate directives that appear in a target region must
specify an allocator clause unless a requires directive with the
dynamic_allocators clause is present in the same compilation unit
```
will need to be updated at a later time.
A different patch will be made with the Fortran specific restrictions of
this directive.
I have used the code from https://reviews.llvm.org/D89395 for the
CheckObjectListStructure function.
Co-authored-by: Isaac Perry <isaac.perry@arm.com>
Reviewed By: clementval, kiranchandramohan
Differential Revision: https://reviews.llvm.org/D91159
We were erroneously not taking into account the constant values of LEN type
parameters of parameterized derived types when checking for argument
compatibility. The required checks are identical to those for assignment
compatibility. Since argument compatibility is checked in .../lib/Evaluate and
assignment compatibility is checked in .../lib/Semantics, I moved the common
code into .../lib/Evaluate/tools.cpp and changed the assignment compatibility
checking code to call it.
After implementing these new checks, tests in resolve53.f90 were failing
because the tests were erroneous. I fixed these tests and added new tests
to call03.f90 to test argument passing of parameterized derived types more
completely.
Differential Revision: https://reviews.llvm.org/D100989
This patch adds `-fget-definition` to `flang-new`. The semantics of this
option are identical in both drivers. The error message in the
"throwaway" driver is updated so that it matches the one from
`flang-new` (which is auto-generated and cannot be changed easily).
Tests are updated accordingly. A dedicated test for error handling was
added: get-definition.f90 (for the sake of simplicity,
getdefinition01.f90 no longer tests for errors).
The `ParseFrontendArgs` function is updated so that it can return
errors. This change is required in order to report invalid values
following `-fget-definition`.
The actual implementation of `GetDefinitionAction::ExecuteAction()` was
extracted from f18.cpp (i.e. the bit that deals with
`-fget-definition`).
Depends on: https://reviews.llvm.org/D100556
Differential Revision: https://reviews.llvm.org/D100558
We were erroneously emitting error messages for assignments of derived types
where the associated objects were instantiated with non-constant LEN type
parameters.
I fixed this by adding the member function MightBeAssignmentCompatibleWith() to
the class DerivedTypeSpec and calling it to determine whether it's possible
that objects of parameterized derived types can be assigned to each other. Its
implementation first compares the uninstantiated values of the types. If they
are equal, it then compares the values of the constant instantiated type
parameters.
I added tests to assign04.f90 to exercise this new code.
Differential Revision: https://reviews.llvm.org/D100868
This is just a small update that makes sure that errors arising from
parsing command-line options are captured more visibly. Also, all
parsing methods will now consistently return either a bool ("may fail")
or void ("never fails").
An instance of `InputKind` coming from `-x` is added to
`FrontendOptions` rather then being returned from `ParseFrontendArgs`.
It's currently not used, but we will require it shortly. In particular,
once code-generation is available we will use it to differentiate
between LLVM IR and Fortran input. `FrontendOptions` is a very suitable
place to keep it.
This changes don't affect the error reporting in the driver. In this
respect these are non-functional-changes. However, it will simplify
things in the forthcoming patches in which we may need a better error
tracking/recovery mechanism.
Differential Revision: https://reviews.llvm.org/D100556
An empty NAME= should mean that there is no C binding, not the
binding that would result from BIND(C) without a NAME=.
See 18.10.2p2.
Differential Revision: https://reviews.llvm.org/D100494
We were not instantiating procedure pointer components. If the instantiation
contained errors, we were not reporting them. This resulted in internal errors
in later processing.
I fixed this by adding code in .../lib/Semantics/type.cpp in
InstantiateComponent() to handle a component with ProcEntityDetails. I also
added several tests for various good and bad instantiations of procedure
pointer components.
Differential Revision: https://reviews.llvm.org/D100341
F18 supports the standard intrinsic function SELECTED_REAL_KIND
but not its synonym in the standard module IEEE_ARITHMETIC
named IEEE_SELECTED_REAL_KIND until this patch.
Differential Revision: https://reviews.llvm.org/D100066
For pernicious test cases with explicit non-constant actual
type parameter expressions in components, e.g.:
type :: t(k)
integer, kind :: k
type(t(k+1)), pointer :: p
end type
we should detect the infinite recursion and complain rather
than looping until the stack overflows.
Differential Revision: https://reviews.llvm.org/D100065
Check for two or more symbols that define a data object or entry point
with the same interoperable BIND(C) name.
Differential Revision: https://reviews.llvm.org/D100067
Call static functions using the class name (fir::NameUniquer).
Add function for mangling derivedTypes.
All the name mangling functions that are ultimately called are
tested in unittests/Optimizer/InternalNamesTest.cpp.
Differential Revision: https://reviews.llvm.org/D99967
This patch adds two debugging options in the new Flang driver
(flang-new):
*fdebug-unparse-no-sema
*fdebug-dump-parse-tree-no-sema
Each of these options combines two options from the "throwaway" driver
(left: f18, right: flang-new):
* `-fdebug-uparse -fdebug-no-semantics` --> `-fdebug-unparse-no-sema`
* `-fdebug-dump-parse-tree -fdebug-no-semantics` -->
`-fdebug-dump-parse-tree-no-sema`
There are no plans to implement `-fdebug-no-semantics` in the new
driver. Such option would be too powerful. Also, it would only make
sense when combined with specific frontend actions (`-fdebug-unparse`
and `-fdebug-dump-parse-tree`). Instead, this patch adds 2 specialised
options listed above. Each of these is implemented through a dedicated
FrontendAction (also added).
The new frontend actions are implemented in terms of a new abstract base
action: `PrescanAndSemaAction`. This new base class was required so that
we can have finer control over what steps within the frontend are
executed:
* `PrescanAction`: run the _prescanner_
* `PrescanAndSemaAction`: run the _prescanner_ and the _parser_ (new
in this patch)
* `PrescanAndSemaAction`: run the _prescanner_, _parser_ and run the
_semantic checks_
This patch introduces `PrescanAndParseAction::BeginSourceFileAction`.
Apart from the semantic checks removed at the end, it is similar to
`PrescanAndSemaAction::BeginSourceFileAction`.
Differential Revision: https://reviews.llvm.org/D99645
The -fdebug-dump-provenance flag is meant to be used with
needProvenanceRangeToCharBlockMappings set to true. This way, extra
mapping is generated that allows e.g. IDEs to retrieve symbol's scope
(offset into cooked character stream) based on symbol's source code
location. This patch makes sure that this option is set when using
-fdebug-dump-provenance.
With this patch, the implementation of -fdebug-dump-provenance in
`flang-new -fc1` becomes consistent with `f18`. The corresponding LIT
test is updated so that it can be shared with `f18`. I refined it a bit
so that:
* it becomes a frontend-only test
* it's stricter about the expected output
Differential Revision: https://reviews.llvm.org/D98847
This patch adds support for the `-cpp` and `-nocpp` flags. The
implemented semantics match f18 (i.e. the "throwaway" driver), but are
different to gfortran. In Flang the preprocessor is always run. Instead,
`-cpp/-nocpp` are used to control whether predefined and command-line
preprocessor macro definitions are enabled or not. In practice this is
sufficient to model gfortran`s `-cpp/-nocpp`.
In the absence of `-cpp/-nocpp`, the driver will use the extension of
the input file to decide whether to include the standard macro
predefinitions. gfortran's documentation [1] was used to decide which
file extension to use for this.
The logic mentioned above was added in FrontendAction::BeginSourceFile.
That's relatively late in the driver set-up, but this roughly where the
name of the input file becomes available. The logic for deciding between
fixed and free form works in a similar way and was also moved to
FrontendAction::BeginSourceFile for consistency (and to reduce
code-duplication).
The `-cpp/-nocpp` flags are respected also when the input is read from
stdin. This is different to:
* gfortran (behaves as if `-cpp` was used)
* f18 (behaves as if `-nocpp` was used)
Starting with this patch, file extensions are significant and some test
files had to be renamed to reflect that. Where possible, preprocessor
tests were updated so that they can be shared between `f18` and
`flang-new`. This was implemented on top of adding new test for
`-cpp/-nocpp`.
[1] https://gcc.gnu.org/onlinedocs/gcc/Overall-Options.html
Reviewed By: kiranchandramohan
Differential Revision: https://reviews.llvm.org/D99292
We were not folding type parameter inquiries for the form 'var%typeParam'
where 'typeParam' was a KIND or LEN type parameter of a derived type and 'var'
was a designator of the derived type. I fixed this by adding code to the
function 'FoldOperation()' for 'TypeParamInquiry's to handle this case. I also
cleaned up the code for the case where there is no designator.
In order to make the error messages correctly refer to both the points of
declaration and instantiation, I needed to add an argument to the function
'InstantiateIntrinsicType()' for the location of the instantiation.
I also changed the formatting of 'TypeParamInquiry' to correctly format this
case. I also added tests for both KIND and LEN type parameter inquiries in
resolve104.f90.
Making these changes revealed an error in resolve89.f90 and caused one of the
error messages in assign04.f90 to be different.
Reviewed By: klausler
Differential Revision: https://reviews.llvm.org/D99892
Problem:
On SystemZ we need to open text files in text mode. On Windows, files opened in text mode adds a CRLF '\r\n' which may not be desirable.
Solution:
This patch adds two new flags
- OF_CRLF which indicates that CRLF translation is used.
- OF_TextWithCRLF = OF_Text | OF_CRLF indicates that the file is text and uses CRLF translation.
Developers should now use either the OF_Text or OF_TextWithCRLF for text files and OF_None for binary files. If the developer doesn't want carriage returns on Windows, they should use OF_Text, if they do want carriage returns on Windows, they should use OF_TextWithCRLF.
So this is the behaviour per platform with my patch:
z/OS:
OF_None: open in binary mode
OF_Text : open in text mode
OF_TextWithCRLF: open in text mode
Windows:
OF_None: open file with no carriage return
OF_Text: open file with no carriage return
OF_TextWithCRLF: open file with carriage return
The Major change is in llvm/lib/Support/Windows/Path.inc to only set text mode if the OF_CRLF is set.
```
if (Flags & OF_CRLF)
CrtOpenFlags |= _O_TEXT;
```
These following files are the ones that still use OF_Text which I left unchanged. I modified all these except raw_ostream.cpp in recent patches so I know these were previously in Binary mode on Windows.
./llvm/lib/Support/raw_ostream.cpp
./llvm/lib/TableGen/Main.cpp
./llvm/tools/dsymutil/DwarfLinkerForBinary.cpp
./llvm/unittests/Support/Path.cpp
./clang/lib/StaticAnalyzer/Core/HTMLDiagnostics.cpp
./clang/lib/Frontend/CompilerInstance.cpp
./clang/lib/Driver/Driver.cpp
./clang/lib/Driver/ToolChains/Clang.cpp
Reviewed By: MaskRay
Differential Revision: https://reviews.llvm.org/D99426
We were not folding type parameter inquiries for the form 'var%typeParam'
where 'typeParam' was a KIND or LEN type parameter of a derived type and 'var'
was a designator of the derived type. I fixed this by adding code to the
function 'FoldOperation()' for 'TypeParamInquiry's to handle this case. I also
cleaned up the code for the case where there is no designator.
In order to make the error messages correctly refer to both the points of
declaration and instantiation, I needed to add an argument to the function
'InstantiateIntrinsicType()' for the location of the instantiation.
I also changed the formatting of 'TypeParamInquiry' to correctly format this
case. I also added tests for both KIND and LEN type parameter inquiries in
resolve104.f90.
Making these changes revealed an error in resolve89.f90 and caused one of the
error messages in assign04.f90 to be different.
Differential Revision: https://reviews.llvm.org/D99892
A recent patch exposed an assumption that "long double" is (at least)
an 80-bit floating-point type, which of course it is not in MSVC.
Also get it right for non-x87 floating-point.
Add runtime APIs, implementations, and tests for ALL, ANY, COUNT,
MAXLOC, MAXVAL, MINLOC, MINVAL, PRODUCT, and SUM reduction
transformantional intrinsic functions for all relevant argument
and result types and kinds, both without DIM= arguments
(total reductions) and with (partial reductions).
Complex-valued reductions have their APIs in C so that
C's _Complex types can be used for their results.
Some infrastructure work was also necessary or noticed:
* Usage of "long double" in the compiler was cleaned up a
bit, and host dependences on x86 / MSVC have been isolated
in a new Common/long-double header.
* Character comparison has been exposed via an extern template
so that reductions could use it.
* Mappings from Fortran type category/kind to host C++ types
and vice versa have been isolated into runtime/cpp-type.h and
then used throughout the runtime as appropriate.
* The portable 128-bit integer package in Common/uint128.h
was generalized to support signed comparisons.
* Bugs in descriptor indexing code were fixed.
Differential Revision: https://reviews.llvm.org/D99666
f18 was emitting a bogus error message about the lack of a TARGET
attribute when a pointer was initialized with a component of a
variable that was a legitimate TARGET.
Differential Revision: https://reviews.llvm.org/D99665
When writing tests for a previous problem, I ran across situations where the
compiler was failing calls to CHECK(). In these situations, the compiler had
inconsistent semantic information because the programs were erroneous. This
inconsistent information was causing the calls to CHECK().
I fixed this by avoiding the code that ended up making the failed calls to
CHECK() and making sure that we were only avoiding these situations when the
associated symbols were erroneous.
I also added tests that would cause the calls to CHECK() without these changes.
Differential Revision: https://reviews.llvm.org/D99342
Folding of LOGICAL intrinsic procedure was missing in the front-end causing
crash when using it in parameter expressions.
Simply fold LOGICAL calls to evaluate::Convert<T>.
Differential Revision: https://reviews.llvm.org/D99346
Before the conversion to LLVM-IR dialect and ultimately LLVM IR, FIR is
partially rewritten into a codegen form. This patch adds that pass, the
fircg dialect, and the small set of Ops in the fircg (sub) dialect.
Fircg is not part of the FIR dialect and should never be used outside of
the (closed) conversion to LLVM IR.
Authors: Eric Schweitz, Jean Perier, Rajan Walia, et.al.
Differential Revision: https://reviews.llvm.org/D98063
Binding labels start as expressions but they have to evaluate to
constant character of default kind, so they can be represented as an
std::string. Leading and trailing blanks have to be removed, so the
folded expression isn't exactly right anyway.
So all BIND(C) symbols now have a string binding label, either the
default or user-supplied one. This is recorded in the .mod file.
Add WithBindName mix-in for details classes that can have a binding
label so that they are all consistent. Add GetBindName() and
SetBindName() member functions to Symbol.
Add tests that verifies that leading and trailing blanks are ignored
in binding labels and that the default label is folded to lower case.
Differential Revision: https://reviews.llvm.org/D99208
Binding labels start as expressions but they have to evaluate to
constant character of default kind, so they can be represented as an
std::string. Leading and trailing blanks have to be removed, so the
folded expression isn't exactly right anyway.
So all BIND(C) symbols now have a string binding label, either the
default or user-supplied one. This is recorded in the .mod file.
Add WithBindName mix-in for details classes that can have a binding
label so that they are all consistent. Add GetBindName() and
SetBindName() member functions to Symbol.
Add tests that verifies that leading and trailing blanks are ignored
in binding labels and that the default label is folded to lower case.
Differential Revision: https://reviews.llvm.org/D99208
To match an interface or trait, users currently have to use the `MatchAny` tag. This tag can be quite problematic for compile time for things like the canonicalizer, as the `MatchAny` patterns may get applied to *every* operation. This revision adds better support by bucketing interface/trait patterns based on which registered operations have them registered. This means that moving forward we will only attempt to match these patterns to operations that have this interface registered. Two simplify defining patterns that match traits and interfaces, two new utility classes have been added: OpTraitRewritePattern and OpInterfaceRewritePattern.
Differential Revision: https://reviews.llvm.org/D98986
When writing tests for a previous problem, I ran across situations where we
were not producing error messages for declarations of specific procedures of
generic interfaces where every other compiler I tested (except nvfotran) did.
I added a check to CheckExtantExternal() and renamed it since it now checks for
erroneous extant symbols generally.
I also removed a call to this function from processing for ENTRY statements,
since it seemed unnecessary and its presence caused bogus error messages.
I also added some tests for erroneous declarations where we were not producing
error messages.
Differential Revision: https://reviews.llvm.org/D99111
If you specify a specific procedure of a generic interface that has the same
name as both the generic interface and a preceding derived type, the compiler
would fail an internal call to CHECK(). I fixed this by testing for this
situation when processing specific procedures. I also added a test that will
cause the call to CHECK() to fail without this new code.
Differential Revision: https://reviews.llvm.org/D99085
This patch fixes a bug to allow ordered construct within a non-worksharing loop, also adds more sema checks.
Reviewed By: kiranchandramohan
Differential Revision: https://reviews.llvm.org/D98733
Replace semantics::SymbolSet with alternatives that clarify
whether the set should order its contents by source position
or not. This matters because positionally-ordered sets must
not be used for Symbols that might be subjected to name
replacement during name resolution, and address-ordered
sets must not be used (without sorting) in circumstances
where the order of their contents affects the output of the
compiler.
All set<> and map<> instances in the compiler that are keyed
by Symbols now have explicit Compare types in their template
instantiations. Symbol::operator< is no more.
Differential Revision: https://reviews.llvm.org/D98878
Adds support for `-fget-symbols-sources` in the new Flang driver. All
relevant tests are updated to use the new driver when
`FLANG_BUILD_NEW_DRIVER` is set.
`RUN` lines in tests are updated so `-fsyntax-only`
comes before `-fget-symbols-sources`. That's because:
* both `-fsyntax-only` and `-fget-symbols-sources` are
action flags, and
* the new driver, flang-new, will only consider the right-most
action flag.
In other words, this change is needed so that the tests work with both
`f18` (requires both flags) and `flang-new` (only considers the last
action flag).
Differential Revision: https://reviews.llvm.org/D98191
Added basic parsing/sema/serialization support for interop directive.
Support for the 'init' clause.
Differential Revision: https://reviews.llvm.org/D98558
1. Generate the mapping for clauses between the parser class and the
corresponding clause kind for OpenMP and OpenACC using tablegen.
2. Add a common function to get the OmpObjectList from the OpenMP
clauses to avoid repetition of code.
Reviewed by: Kiranchandramohan @kiranchandramohan , Valentin Clement @clementval
Differential Revision: https://reviews.llvm.org/D98603
In parser::AllCookedSources, implement a map from CharBlocks to
the CookedSource instances that they cover. This permits a fast
Find() operation based on std::map::equal_range to map a CharBlock
to its enclosing CookedSource instance.
Add a creation order number to each CookedSource. This allows
AllCookedSources to provide a Precedes(x,y) predicate that is a
true source stream ordering between two CharBlocks -- x is less
than y if it is in an earlier CookedSource, or in the same
CookedSource at an earlier position.
Add a reference to the singleton SemanticsContext to each Scope.
All of this allows operator< to be implemented on Symbols by
means of a true source ordering. From a Symbol, we get to
its Scope, then to the SemanticsContext, and then use its
AllCookedSources reference to call Precedes().
Differential Revision: https://reviews.llvm.org/D98743
`parser::AllocateObject` and `parser::PointerObject` can be represented
as typed expressions once analyzed. This simplifies the work for parse-tree
consumers that work with typed expressions to deal with allocatable and
pointer objects such as lowering.
This change also makes it easier to add typedExpr in the future by
automatically handling nodes that have this member when possible.
Changes:
- Add a `mutable TypedExpr typedExpr` field to `parser::PointerObject` and `parser::AllocateObject`.
- Add a `parser::HasTypedExpr<T>` helper to better share code relating to typedExpr in the parse tree.
- Add hooks in `semantics::ExprChecker` for AllocateObject and PointerObject nodes, and use
ExprOrVariable on it to analyze and set the tyedExpr field during
expression analysis. This required adding overloads for `AssumedTypeDummy`.
- Update check-nullify.cpp and check-deallocate.cpp to not re-analyze the StructureComponent but to
use the typedExpr field instead.
- Update dump/unparse to use HasTypedExpr and use the typedExpr when there is one.
Differential Revision: https://reviews.llvm.org/D98256
An older version of a function (Fortran::semantics::FindFunctionResult) was
left in flang/lib/Semantics/tools.cpp, and this breaks the static library
build due to a conflict with the intended final version in another
file and library. Remove the old code.
Differential Revision: https://reviews.llvm.org/D98568
Fortran permits a reference to a function whose result is a pointer
to be used as a definable variable in any context where a
designator could appear. This patch wrings out remaining bugs
with such usage and adds more testing.
The utility predicate IsProcedurePointer(expr) had a misleading
name which has been corrected to IsProcedurePointerTarget(expr).
Differential Revision: https://reviews.llvm.org/D98555
This allows for storage instances to store data that isn't uniqued in the context, or contain otherwise non-trivial logic, in the rare situations that they occur. Storage instances with trivial destructors will still have their destructor skipped. A consequence of this is that the storage instance definition must be visible from the place that registers the type.
Differential Revision: https://reviews.llvm.org/D98311
If you specify a type-bound procedure with an alternate return, there
will be no symbol associated with that dummy argument. In such cases,
the compiler's list of dummy arguments will contain a nullptr. In our
analysis of the PASS arguments of type-bound procedures, we were
assuming that all dummy arguments had non-null symbols associated with
them and were using that assumption to get the name of the dummy
argument. This caused the compiler to try to dereference a nullptr.
I fixed this by explicitly checking for a nullptr and, in such cases, emitting
an error message. I also added tests that contain type-bound procedures with
alternate returns in both legal and illegal constructs to ensure that semantic
analysis is working for them.
Differential Revision: https://reviews.llvm.org/D98430
You can define a base type with a type-bound procedure which is erroneously
missing a NOPASS attribute and then define another type that extends the base
type and overrides the erroneous procedure. In this case, when we perform
semantic checking on the overriding procedure, we verify the "pass index" of
the overriding procedure. The attempt to get the procedure's pass index fails
a call to CHECK().
I fixed this by calling SetError() on the symbol of the overridden procedure in
the base type. Then, I check HasError() before executing the code that invokes
the failing call to CHECK(). I also added a test that will cause the compiler
to fail the call to CHECK() without this change.
Differential Revision: https://reviews.llvm.org/D98355
The PFT has been updated to support Fortran 77.
clang-tidy cleanup.
Authors: Val Donaldson, Jean Perier, Eric Schweitz, et.al.
Differential Revision: https://reviews.llvm.org/D98283
This patch adds `-fdebug-dump-parsing-log` in the new driver. This option is
semantically identical to `-fdebug-instrumented-parse` in `f18` (the
former is added as an alias in `f18`).
As dumping the parsing log makes only sense for instrumented parses, we
set Fortran::parser::Options::instrumentedParse to `True` when
`-fdebug-dump-parsing-log` is used. This is consistent with `f18`.
To facilitate tweaking the configuration of the frontend based on the
action being requested, `setUpFrontendBasedOnAction` is introduced in
CompilerInvocation.cpp.
Differential Revision: https://reviews.llvm.org/D97457
When we have a subprogram that has been determined to contain errors, we do not
perform name resolution on its execution part. In this case, if the subprogram
contains a NULLIFY statement, the parser::Name of a pointer object in a NULLIFY
statement will not have had name resolution performed on it. Thus, its symbol
will not have been set. Later, however, we do semantic checking on the NULLIFY
statement. The code that did this assumed that the parser::Name of the
pointer object was non-null.
I fixed this by just removing the null pointer check for the "symbol" member of
the "parser::Name" of the pointer object when doing semantic checking for
NULLIFY statements. I also added a test that will make the compiler crash
without this change.
Differential Revision: https://reviews.llvm.org/D98184
Add diagnostic tests with fir-opt for the diagnostics emitted by the ops verifier
Reviewed By: jeanPerier
Differential Revision: https://reviews.llvm.org/D97996
Add support for the following Fortran dialect options:
- -default*
- -flarge-sizes
It also adds two test cases:
# For checking whether `flang-new` is passing options correctly to `flang-new -fc1`.
# For checking if `fdefault-` arguments are processed properly.
Also moves the Dialect related option parsing to a dedicated function
and adds a member `defaultKinds()` to `CompilerInvocation`
Depends on: D96032
Differential Revision: https://reviews.llvm.org/D96344
There is no need for the interface implementations to be exposed, opaque
registration functions are sufficient for all users, similarly to passes.
Reviewed By: mehdi_amini
Differential Revision: https://reviews.llvm.org/D97852
We were allowing procedures with the MODULE prefix to be declared at the global
scope. This is prohibited by C1547 and was causing an internal check of the
compiler to fail.
I fixed this by adding a check. I also added a test that would trigger a crash
without this change.
Differential Revision: https://reviews.llvm.org/D97875
It's possible to define a procedure whose interface depends on a procedure
which has an interface that depends on the original procedure. Such a circular
definition was causing the compiler to fall into an infinite loop when
resolving the name of the second procedure. It's also possible to create
circular dependency chains of more than two procedures.
I fixed this by adding the function HasCycle() to the class DeclarationVisitor
and calling it from DeclareProcEntity() to detect procedures with such
circularly defined interfaces. I marked the associated symbols of such
procedures by calling SetError() on them. When processing subsequent
procedures, I called HasError() before attempting to analyze their interfaces.
Unfortunately, this did not work.
With help from Tim, we determined that the SymbolSet used to track the
erroneous symbols was instantiated using a "<" operator which was defined using
the location of the name of the procedure. But the location of the procedure
name was being changed by a call to ReplaceName() between the times that the
calls to SetError() and HasError() were made. This caused HasError() to
incorrectly report that a symbol was not in the set of erroneous symbols.
I fixed this by changing SymbolSet to be an unordered set that uses the
contents of the name of the symbol as the basis for its hash function. This
works because the contents of the name of the symbol is preserved by
ReplaceName() even though its location changes.
I also fixed the error message used when reporting recursively defined
dummy procedure arguments by removing extra apostrophes and sorting the
list of symbols.
I also added tests that will crash the compiler without this change.
Note that the "<" operator is used in other contexts, for example, in the map
of characterized procedures, maps of items in equivalence sets, maps of
structure constructor values, ... All of these situations happen after name
resolution has been completed and all calls to ReplaceName() have already
happened and thus are not subject to the problem I ran into when ReplaceName()
was called when processing procedure entities.
Note also that the implementation of the "<" operator uses the relative
location in the cooked character stream as the basis of its implementation.
This is potentially problematic when symbols from diffent compilation units
(for example symbols originating in .mod files) are put into the same map since
their names will appear in two different source streams which may not be
allocated in the same relative positions in memory. But I was unable to create
a test that caused a problem. Using a direct comparison of the content of the
name of the symbol in the "<" operator has problems. Symbols in enclosing or
parallel scopes can have the same name. Also using the location of the symbol
in the cooked character stream has the advantage that it preserves the the
order of the symbols in a structure constructor constant, which makes matching
the values with the symbols relatively easy.
This patch supersedes D97749.
Differential Revision: https://reviews.llvm.org/D97774
It's possible to define a procedure whose interface depends on a procedure
which has an interface that depends on the original procedure. Such a circular
definition was causing the compiler to fall into an infinite loop when
resolving the name of the second procedure. It's also possible to create
circular dependency chains of more than two procedures.
I fixed this by adding the function HasCycle() to the class DeclarationVisitor
and calling it from DeclareProcEntity() to detect procedures with such
circularly defined interfaces. I marked the associated symbols of such
procedures by calling SetError() on them. When processing subsequent
procedures, I called HasError() before attempting to analyze their interfaces.
Unfortunately, this did not work.
With help from Tim, we determined that the SymbolSet used to track the
erroneous symbols was instantiated using a "<" operator which was defined using
the location of the name of the procedure. But the location of the procedure
name was being changed by a call to ReplaceName() between the times that the
calls to SetError() and HasError() were made. This caused HasError() to
incorrectly report that a symbol was not in the set of erroneous symbols.
I fixed this by changing SymbolSet to be an unordered set that uses the
contents of the name of the symbol as the basis for its hash function. This
works because the contents of the name of the symbol is preserved by
ReplaceName() even though its location changes.
I also fixed the error message used when reporting recursively defined
dummy procedure arguments by removing extra apostrophes and sorting the
list of symbols.
I also added tests that will crash the compiler without this change.
Note that the "<" operator is used in other contexts, for example, in the map
of characterized procedures, maps of items in equivalence sets, maps of
structure constructor values, ... All of these situations happen after name
resolution has been completed and all calls to ReplaceName() have already
happened and thus are not subject to the problem I ran into when ReplaceName()
was called when processing procedure entities.
Note also that the implementation of the "<" operator uses the relative
location in the cooked character stream as the basis of its implementation.
This is potentially problematic when symbols from diffent compilation units
(for example symbols originating in .mod files) are put into the same map since
their names will appear in two different source streams which may not be
allocated in the same relative positions in memory. But I was unable to create
a test that caused a problem. Using a direct comparison of the content of the
name of the symbol in the "<" operator has problems. Symbols in enclosing or
parallel scopes can have the same name. Also using the location of the symbol
in the cooked character stream has the advantage that it preserves the the
order of the symbols in a structure constructor constant, which makes matching
the values with the symbols relatively easy.
This patch supersedes D97749.
Differential Revision: https://reviews.llvm.org/D97774
It's possible to define a procedure whose interface depends on a procedure
which has an interface that depends on the original procedure. Such a circular
definition was causing the compiler to fall into an infinite loop when
resolving the name of the second procedure. It's also possible to create
circular dependency chains of more than two procedures.
I fixed this by adding the function HasCycle() to the class DeclarationVisitor
and calling it from DeclareProcEntity() to detect procedures with such
circularly defined interfaces. I marked the associated symbols of such
procedures by calling SetError() on them. When processing subsequent
procedures, I called HasError() before attempting to analyze their interfaces.
Unfortunately, this did not work.
With help from Tim, we determined that the SymbolSet used to track the
erroneous symbols was instantiated using a "<" operator which was defined using
the location of the name of the procedure. But the location of the procedure
name was being changed by a call to ReplaceName() between the times that the
calls to SetError() and HasError() were made. This caused HasError() to
incorrectly report that a symbol was not in the set of erroneous symbols.
I fixed this by changing SymbolSet to be an unordered set that uses the
contents of the name of the symbol as the basis for its hash function. This
works because the contents of the name of the symbol is preserved by
ReplaceName() even though its location changes.
I also fixed the error message used when reporting recursively defined dummy
procedure arguments.
I also added tests that will crash the compiler without this change.
Note that the "<" operator is used in other contexts, for example, in the map
of characterized procedures, maps of items in equivalence sets, maps of
structure constructor values, ... All of these situations happen after name
resolution has been completed and all calls to ReplaceName() have already
happened and thus are not subject to the problem I ran into when ReplaceName()
was called when processing procedure entities.
Note also that the implementation of the "<" operator uses the relative
location in the cooked character stream as the basis of its implementation.
This is potentially problematic when symbols from diffent compilation units
(for example symbols originating in .mod files) are put into the same map since
their names will appear in two different source streams which may not be
allocated in the same relative positions in memory. But I was unable to create
a test that caused a problem. Using a direct comparison of the content of the
name of the symbol in the "<" operator has problems. Symbols in enclosing or
parallel scopes can have the same name. Also using the location of the symbol
in the cooked character stream has the advantage that it preserves the the
order of the symbols in a structure constructor constant, which makes matching
the values with the symbols relatively easy.
This change supersedes D97201.
Differential Revision: https://reviews.llvm.org/D97749
Semantic checks for the following OpenMP 4.5 clauses.
1. 2.15.4.2 - Copyprivate clause
2. 2.15.3.4 - Firstprivate clause
3. 2.15.3.5 - Lastprivate clause
Add related test cases and resolve test cases marked as XFAIL.
Reviewed By: kiranchandramohan
Differential Revision: https://reviews.llvm.org/D91920
This reverts commit 07de0846a5.
The original patch has caused 6 out 8 of Flang's public buildbots to
fail. As I'm not sure what the fix should be, I'm reverting this for
now. Please see https://reviews.llvm.org/D97201 for more context and
discussion.
- add ops: rebox, insert_on_range, absent, is_present
- embox, coordinate_of: replace old hand-written parser/pretty-printer with assembly format
- remove dead floating point ops, since buitlins work for all types
- update call op
- update documentation
- misc. NFC to formatting
- add op round trip tests
Authors: Eric Schweitz, Jean Perier, Zachary Selk, Kiran Chandramohan, et.al.
Differential Revision: https://reviews.llvm.org/D97500