Patch by: Igor Laevsky <igor@azulsystems.com>
"Currently SplitBlockPredecessors generates incorrect code in case if basic block we are going to split has a landingpad. Also seems like it is fairly common case among it's users to conditionally call either SplitBlockPredecessors or SplitLandingPadPredecessors. Because of this I think it is reasonable to add this condition directly into SplitBlockPredecessors."
Differential Revision: http://reviews.llvm.org/D7157
llvm-svn: 227390
Summary: Add test targets and the lit-style runner.
Test Plan: Run the tests on bot.
Reviewers: samsonov
Reviewed By: samsonov
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D7217
llvm-svn: 227389
Sadly, this precludes optimizing it down to initial-exec or local-exec
when statically linking, and in general makes the code slower on PPC 64,
but there's nothing else for it until we can arrange to produce the
correct bits for the linker.
Lots of thanks to Ulirch for tracking this down and Bill for working on
the long-term fix to LLVM so that we can relegate this to old host
clang versions.
I'll be watching the PPC build bots to make sure this effectively
revives them.
llvm-svn: 227352
This is a refactoring to restructure the single user of performCustomLowering as a specific lowering pass and remove the custom lowering hook entirely.
Before this change, the LowerIntrinsics pass (note to self: rename!) was essentially acting as a pass manager, but without being structured in terms of passes. Instead, it proxied calls to a set of GCStrategies internally. This adds a lot of conceptual complexity (i.e. GCStrategies are stateful!) for very little benefit. Since there's been interest in keeping the ShadowStackGC working, I extracting it's custom lowering pass into a dedicated pass and just added that to the pass order. It will only run for functions which opt-in to that gc.
I wasn't able to find an easy way to preserve the runtime registration of custom lowering functionality. Given that no user of this exists that I'm aware of, I made the choice to just remove that. If someone really cares, we can look at restoring it via dynamic pass registration in the future.
Note that despite the large diff, none of the lowering code actual changes. I added the framing needed to make it a pass and rename the class, but that's it.
Differential Revision: http://reviews.llvm.org/D7218
llvm-svn: 227351
Summary:
The primary goal of this patch is to remove the need for MarkOptionsChanged(). That goal is accomplished by having addOption and removeOption properly sort the options.
This patch puts the new add and remove functionality on a CommandLineParser class that is a placeholder. Some of the functionality in this class will need to be merged into the OptionRegistry, and other bits can hopefully be in a better abstraction.
This patch also removes the RegisteredOptionList global, and the need for cl::Option objects to be linked list nodes.
The changes in CommandLineTest.cpp are required because these changes shift when we validate that options are not duplicated. Before this change duplicate options were only found during certain cl API calls (like cl::ParseCommandLine). With this change duplicate options are found during option construction.
Reviewers: dexonsmith, chandlerc, pete
Reviewed By: pete
Subscribers: pete, majnemer, llvm-commits
Differential Revision: http://reviews.llvm.org/D7132
llvm-svn: 227345
Summary:
MetadataAsValue uses a canonical format that strips the MDNode if it
contains only a single constant value. This triggers an assertion when
trying to cast the value to a MDNode.
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D7165
llvm-svn: 227319
Reduce integer multiplication by a constant of the form k*2^c, where k is in {3,5,9} into a lea + shl. Previously it was only done for imulq on 64-bit platforms, but it makes sense for imull and 32-bit as well.
Differential Revision: http://reviews.llvm.org/D7196
llvm-svn: 227308
This includes two things:
1) Fix TCRETURNdi and TCRETURN64di patterns to check the right thing (LP64 as opposed to target bitness).
2) Allow LEA64_32 in MatchingStackOffset.
llvm-svn: 227307
By Asaf Badouh and Elena Demikhovsky
Added special nodes for rounding: FMADD_RND, FMSUB_RND..
It will prevent merge between nodes with rounding and other standard nodes.
llvm-svn: 227303
tracing code.
Managed static was just insane overhead for this. We took memory fences
and external function calls in every path that pushed a pretty stack
frame. This includes a multitude of layers setting up and tearing down
passes, the parser in Clang, everywhere. For the regression test suite
or low-overhead JITs, this was contributing to really significant
overhead.
Even the LLVM ThreadLocal is really overkill here because it uses
pthread_{set,get}_specific logic, and has careful code to both allocate
and delete the thread local data. We don't actually want any of that,
and this code in particular has problems coping with deallocation. What
we want is a single TLS pointer that is valid to use during global
construction and during global destruction, any time we want. That is
exactly what every host compiler and OS we use has implemented for
a long time, and what was standardized in C++11. Even though not all of
our host compilers support the thread_local keyword, we can directly use
the platform-specific keywords to get the minimal functionality needed.
Provided this limited trial survives the build bots, I will move this to
Compiler.h so it is more widely available as a light weight if limited
alternative to the ThreadLocal class. Many thanks to David Majnemer for
helping me think through the implications across platforms and craft the
MSVC-compatible syntax.
The end result is *substantially* faster. When running llc in a tight
loop over a small IR file targeting the aarch64 backend, this improves
its performance by over 10% for me. It also seems likely to fix the
remaining regressions seen by JIT users with threading enabled.
This may actually have more impact on real-world compile times due to
the use of the pretty stack tracing utility throughout the rest of Clang
or LLVM, but I've not collected any detailed measurements.
llvm-svn: 227300
querying of the pass registry.
The pass manager relies on the static registry of PassInfo objects to
perform all manner of its functionality. I don't understand why it does
much of this. My very vague understanding is that this registry is
touched both during static initialization *and* while each pass is being
constructed. As a consequence it is hard to make accessing it not
require a acquiring some lock. This lock ends up in the hot path of
setting up, tearing down, and invaliditing analyses in the legacy pass
manager.
On most systems you can observe this as a non-trivial % of the time
spent in 'ninja check-llvm'. However, I haven't really seen it be more
than 1% in extreme cases of compiling more real-world software,
including LTO.
Unfortunately, some of the GPU JITs are seeing this taking essentially
all of their time because they have very small IR running through
a small pass pipeline very many times (at least, this is the vague
understanding I have of it).
This patch tries to minimize the cost of looking up PassInfo objects by
leveraging the fact that the objects themselves are immutable and they
are allocated separately on the heap and so don't have their address
change. It also requires a change I made the last time I tried to debug
this problem which removed the ability to de-register a pass from the
registry. This patch creates a single access path to these objects
inside the PMTopLevelManager which memoizes the result of querying the
registry. This is somewhat gross as I don't really know if
PMTopLevelManager is the *right* place to put it, and I dislike using
a mutable member to memoize things, but it seems to work.
For long-lived pass managers this should completely eliminate
the cost of acquiring locks to look into the pass registry once the
memoized cache is warm. For 'ninja check' I measured about 1.5%
reduction in CPU time and in total time on a machine with 32 hardware
threads. For normal compilation, I don't know how much this will help,
sadly. We will still pay the cost while we populate the memoized cache.
I don't think it will hurt though, and for LTO or compiles with many
small functions it should still be a win. However, for tight loops
around a pass manager with many passes and small modules, this will help
tremendously. On the AArch64 backend I saw nearly 50% reductions in time
to complete 2000 cycles of spinning up and tearing down the pipeline.
Measurements from Owen of an actual long-lived pass manager show more
along the lines of 10% improvements.
Differential Revision: http://reviews.llvm.org/D7213
llvm-svn: 227299
This patch folds fcmp in some cases of interest in Julia. The patch adds a function CannotBeOrderedLessThanZero that returns true if a value is provably not less than zero. I.e. the function returns true if the value is provably -0, +0, positive, or a NaN. The patch extends InstructionSimplify.cpp to fold instances of fcmp where:
- the predicate is olt or uge
- the first operand is provably not less than zero
- the second operand is zero
The motivation for handling these cases optimizing away domain checks for sqrt in Julia for common idioms such as sqrt(x*x+y*y)..
http://reviews.llvm.org/D6972
llvm-svn: 227298
abomination.
For starters, this API is incredibly slow. In order to lookup the name
of a pass it must take a memory fence to acquire a pointer to the
managed static pass registry, and then potentially acquire locks while
it consults this registry for information about what passes exist by
that name. This stops the world of LLVMs in your process no matter
how little they cared about the result.
To make this more joyful, you'll note that we are preserving many passes
which *do not exist* any more, or are not even analyses which one might
wish to have be preserved. This means we do all the work only to say
"nope" with no error to the user.
String-based APIs are a *bad idea*. String-based APIs that cannot
produce any meaningful error are an even worse idea. =/
I have a patch that simply removes this API completely, but I'm hesitant
to commit it as I don't really want to perniciously break out-of-tree
users of the old pass manager. I'd rather they just have to migrate to
the new one at some point. If others disagree and would like me to kill
it with fire, just say the word. =]
llvm-svn: 227294
This has wider implications than I expected when I reviewed the patch: It can
cause JIT crashes where clients have used the default value for AbortOnFailure
during symbol lookup. I'm currently investigating alternative approaches and I
hope to have this back in tree soon.
llvm-svn: 227287
Summary:
Also add enum types for __C_specific_handler and _CxxFrameHandler3 for
which we know a few things.
Reviewers: majnemer
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D7214
llvm-svn: 227284
This commit creates infinite loop in DAG combine for in the LLVM test-suite
for aarch64 with mcpu=cylcone (just having neon may be enough to expose this).
llvm-svn: 227272
Use __clear_cache builtin instead of cacheflush() in
Unix Memory::InvalidateInstructionCache().
Differential Revision: http://reviews.llvm.org/D7198
llvm-svn: 227269
COMDATs must be identically named to the symbol. When support for COMDATs was
introduced, the symbol rewriter was not updated, resulting in rewriting failing
for symbols which were placed into COMDATs. This corrects the behaviour and
adds test cases for this.
llvm-svn: 227261
Summary:
A simple genetic in-process coverage-guided fuzz testing library.
I've used this fuzzer to test clang-format
(it found 12+ bugs, thanks djasper@ for the fixes!)
and it may also help us test other parts of LLVM.
So why not keep it in the LLVM repository?
I plan to add the cmake build rules later (in a separate patch, if that's ok)
and also add a clang-format-fuzzer target.
See README.txt for details.
Test Plan: Tests will follow separately.
Reviewers: djasper, chandlerc, rnk
Reviewed By: rnk
Subscribers: majnemer, ygribov, dblaikie, llvm-commits
Differential Revision: http://reviews.llvm.org/D7184
llvm-svn: 227252
This was introduced in a faulty refactoring (r225640, mea culpa):
the tests weren't testing the return values, so, for both
__strcpy_chk and __stpcpy_chk, we would return the end of the
buffer (matching stpcpy) instead of the beginning (for strcpy).
The root cause was the prefix "__" being ignored when comparing,
which made us always pick LibFunc::stpcpy_chk.
Pass the LibFunc::Func directly to avoid this kind of error.
Also, make the testcases as explicit as possible to prevent this.
The now-useful testcases expose another, entangled, stpcpy problem,
with the further simplification. This was introduced in a
refactoring (r225640) to match the original behavior.
However, this leads to problems when successive simplifications
generate several similar instructions, none of which are removed
by the custom replaceAllUsesWith.
For instance, InstCombine (the main user) doesn't erase the
instruction in its custom RAUW. When trying to simplify say
__stpcpy_chk:
- first, an stpcpy is created (fortified simplifier),
- second, a memcpy is created (normal simplifier), but the
stpcpy call isn't removed.
- third, InstCombine later revisits the instructions,
and simplifies the first stpcpy to a memcpy. We now have
two memcpys.
llvm-svn: 227250
Splitting a loop to make range checks redundant is profitable only if
the range check "never" fails. Make this fact a part of recognizing a
range check -- a branch is a range check only if it is expected to
pass (via branch_weights metadata).
Differential Revision: http://reviews.llvm.org/D7192
llvm-svn: 227249
This patch resolves part of PR21711 ( http://llvm.org/bugs/show_bug.cgi?id=21711 ).
The 'f3' test case in that report presents a situation where we have two 128-bit
stores extracted from a 256-bit source vector.
Instead of producing this:
vmovaps %xmm0, (%rdi)
vextractf128 $1, %ymm0, 16(%rdi)
This patch merges the 128-bit stores into a single 256-bit store:
vmovups %ymm0, (%rdi)
Differential Revision: http://reviews.llvm.org/D7208
llvm-svn: 227242
If a memory access is unaligned, emit __tsan_unaligned_read/write
callbacks instead of __tsan_read/write.
Required to change semantics of __tsan_unaligned_read/write to not do the user memory.
But since they were unused (other than through __sanitizer_unaligned_load/store) this is fine.
Fixes long standing issue 17:
https://code.google.com/p/thread-sanitizer/issues/detail?id=17
llvm-svn: 227231
Support weak symbols by first looking up if there is an externally visible symbol we can find,
and only if that fails using the one in the object file we're loading.
Reviewed By: lhames
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D6950
llvm-svn: 227228
Summary:
Basically all other methods that look up functions by name skip them if they are mere declarations.
Do the same in FindFunctionNamed.
Reviewers: lhames
Reviewed By: lhames
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D7068
llvm-svn: 227227
Only pseudos have patterns on them.
Also don't set the asm string for VINTRP_Pseudo. All pseudos should have empty
asm.
This matches what all other multiclasses do.
llvm-svn: 227212
This defines the SI versions only, so it shouldn't change anything.
There are no changes other than using the new multiclasses, adding missing
mayLoad/mayStore, and formatting fixes.
llvm-svn: 227208
This patch teaches the Instruction Combiner how to fold a cttz/ctlz followed by
a icmp plus select into a single cttz/ctlz with flag 'is_zero_undef' cleared.
Added test InstCombine/select-cmp-cttz-ctlz.ll.
llvm-svn: 227197
When lowering memcpy, memset or memmove, this assert checks whether the pointer
operands are in an address space < 256 which means "user defined address space"
on X86. However, this notion of "user defined address space" does not exist
for other targets.
llvm-svn: 227191
LoopRotate wanted to avoid live range interference by looking at the
uses of a Value in the loop latch and seeing if any lied outside of the
loop. We would wrongly perform this operation on Constants.
This fixes PR22337.
llvm-svn: 227171
r227148 added test CommandLineTest.HideUnrelatedOptionsMulti which repeatedly
outputs two following lines:
-tool: CommandLine Error: Option 'test-option-1' registered more than once!
-tool: CommandLine Error: Option 'test-option-2' registered more than once!
r227154 depends on changes from r227148
llvm-svn: 227167
object that manages a single run of this pass.
This was already essentially how it worked. Within the run function, it
would point members at *stack local* allocations that were only live for
a single run. Instead, it seems much cleaner to have a utility object
whose lifetime is clearly bounded by the run of the pass over the
function and can use member variables in a more direct way.
This also makes it easy to plumb the analyses used into it from the pass
and will make it re-usable with the new pass manager.
No functionality changed here, its just a refactoring.
llvm-svn: 227162
For ordered, unordered, equal and not-equal tests, packed float and double comparison instructions can be safely commuted without affecting the results. This patch checks the comparison mode of the (v)cmpps + (v)cmppd instructions and commutes the result if it can.
Differential Revision: http://reviews.llvm.org/D7178
llvm-svn: 227145
This is especially useful for the UTF8 -> UTF16 direction, since
there is no equivalent of llvm::SmallString<> for wide characters.
This means that anyone who wants a null terminated string is forced
to manually push and pop their own null terminator.
Reviewed by: Reid Kleckner.
llvm-svn: 227143
Patch to allow (v)pclmulqdq to be commuted - swaps the src registers and inverts the immediate (low/high) src mask.
Differential Revision: http://reviews.llvm.org/D7180
llvm-svn: 227141
Need a new API for clang-modernize that allows specifying a list of option categories to remain visible. This will allow clang-modernize to move off getRegisteredOptions.
llvm-svn: 227140
An unreachable default destination can be exploited by other optimizations and
allows for more efficient lowering. Both the SDag switch lowering and
LowerSwitch can exploit unreachable defaults.
Also make TurnSwitchRangeICmp handle switches with unreachable default.
This is kind of separate change, but it cannot be tested without the change
above, and I don't want to land the change above without this since that would
regress other tests.
Differential Revision: http://reviews.llvm.org/D6471
llvm-svn: 227125
Instead of creating a pattern like "(p && a) || ((!p) && b)",
just expand the i8 operands to i32 and perform the selp on them.
Fixes PR22246
llvm-svn: 227123
This can also be used instead of the WindowsSupport.h ConvertUTF8ToUTF16
helpers, but that will require massaging some character types. The
Windows support routines want wchar_t output, but wchar_t is often 32
bits on non-Windows OSs.
llvm-svn: 227122
derived classes.
Since global data alignment, layout, and mangling is often based on the
DataLayout, move it to the TargetMachine. This ensures that global
data is going to be layed out and mangled consistently if the subtarget
changes on a per function basis. Prior to this all targets(*) have
had subtarget dependent code moved out and onto the TargetMachine.
*One target hasn't been migrated as part of this change: R600. The
R600 port has, as a subtarget feature, the size of pointers and
this affects global data layout. I've currently hacked in a FIXME
to enable progress, but the port needs to be updated to either pass
the 64-bitness to the TargetMachine, or fix the DataLayout to
avoid subtarget dependent features.
llvm-svn: 227113
According to my reading of the LangRef, volatiles are only ordered with respect to other volatiles. It is entirely legal and profitable to forward unrelated loads over the volatile load. This patch implements this for GVN by refining the transition rules MemoryDependenceAnalysis uses when encountering a volatile.
The added test cases show where the extra flexibility is profitable for local dependence optimizations. I have a related change (227110) which will extend this to non-local dependence (i.e. PRE), but that's essentially orthogonal to the semantic change in this patch. I have tested the two together and can confirm that PRE works over a volatile load with both changes. I will be submitting a PRE w/volatiles test case seperately in the near future.
Differential Revision: http://reviews.llvm.org/D6901
llvm-svn: 227112
This patch fixes the following miscompile:
define void @sqrtsd(<2 x double> %a) nounwind uwtable ssp {
%0 = tail call <2 x double> @llvm.x86.sse2.sqrt.sd(<2 x double> %a) nounwind
%a0 = extractelement <2 x double> %0, i32 0
%conv = fptrunc double %a0 to float
%a1 = extractelement <2 x double> %0, i32 1
%conv3 = fptrunc double %a1 to float
tail call void @callee2(float %conv, float %conv3) nounwind
ret void
}
Current codegen:
sqrtsd %xmm0, %xmm1 ## high element of %xmm1 is undef here
xorps %xmm0, %xmm0
cvtsd2ss %xmm1, %xmm0
shufpd $1, %xmm1, %xmm1
cvtsd2ss %xmm1, %xmm1 ## operating on undef value
jmp _callee
This is a continuation of http://llvm.org/viewvc/llvm-project?view=revision&revision=224624 ( http://reviews.llvm.org/D6330 )
which was itself a continuation of r167064 ( http://llvm.org/viewvc/llvm-project?view=revision&revision=167064 ).
All of these patches are partial fixes for PR14221 ( http://llvm.org/bugs/show_bug.cgi?id=14221 );
this should be the final patch needed to resolve that bug.
Differential Revision: http://reviews.llvm.org/D6885
llvm-svn: 227111
This change is mostly motivated by exposing information about the original query instruction to the actual scanning work in getPointerDependencyFrom when used by GVN PRE. In a follow up change, I will use this to be more precise with regards to the semantics of volatile instructions encountered in the scan of a basic block.
Worth noting, is that this change (despite appearing quite simple) is not semantically preserving. By providing more information to the helper routine, we allow some optimizations to kick in that weren't previously able to (when called from this code path.) In particular, we see that treatment of !invariant.load becomes more precise. In theory, we might see a difference with an ordered/atomic instruction as well, but I'm having a hard time actually finding a test case which shows that.
Test wise, I've included new tests for !invariant.load which illustrate this difference. I've also included some updated TBAA tests which highlight that this change isn't needed for that optimization to kick in - it's handled inside alias analysis itself.
Eventually, it would be nice to factor the !invariant.load handling inside alias analysis as well.
Differential Revision: http://reviews.llvm.org/D6895
llvm-svn: 227110
This change reverts the interesting parts of 226311 (and 227046). This change introduced two problems, and I've been convinced that an alternate approach is preferrable anyways.
The bugs were:
- Registery appears to require all users be within the same linkage unit. After this change, asking for "statepoint-example" in Transform/ would sometimes get you nullptr, whereas asking the same question in CodeGen would return the right GCStrategy. The correct long term fix is to get rid of the utter hack which is Registry, but I don't have time for that right now. 227046 appears to have been an attempt to fix this, but I don't believe it does so completely.
- GCMetadataPrinter::finishAssembly was being called more than once per GCStrategy. Each Strategy was being added to the GCModuleInfo multiple times.
Once I get time again, I'm going to split GCModuleInfo into the gc.root specific part and a GCStrategy owning Analysis pass. I'm probably also going to kill off the Registry. Once that's done, I'll move the new GCStrategyAnalysis and all built in GCStrategies into Analysis. (As original suggested by Chandler.) This will accomplish my original goal of being able to access GCStrategy from Transform/ without adding all of the builtin GCs to IR/.
llvm-svn: 227109
Previously using format_hex() would always print a 0x prior to the
hex characters. This allows this to be optional, so that one can
choose to print (e.g.) 255 as either 0xFF or just FF.
Differential Revision: http://reviews.llvm.org/D7151
llvm-svn: 227108
than on MipsSubtargetInfo.
This required a bit of massaging in the MC level to handle this since
MC is a) largely a collection of disparate classes with no hierarchy,
and b) there's no overarching equivalent to the TargetMachine, instead
only the subtarget via MCSubtargetInfo (which is the base class of
TargetSubtargetInfo).
We're now storing the ABI in both the TargetMachine level and in the
MC level because the AsmParser and the TargetStreamer both need to
know what ABI we have to parse assembly and emit objects. The target
streamer has a pointer to the one in the asm parser and is updated
when the asm parser is created. This is fragile as the FIXME comment
notes, but shouldn't be a problem in practice since we always
create an asm parser before attempting to emit object code via the
assembler. The TargetMachine now contains the ABI so that the DataLayout
can be constructed dependent upon ABI.
All testcases have been updated to use the -target-abi command line
flag so that we can set the ABI without using a subtarget feature.
Should be no change visible externally here.
llvm-svn: 227102
Summary:
This puts all the options that CommandLine.cpp implements into a category so that the APIs to hide options can not hide based on the generic category instead of string matching a partial list of argument strings.
This patch is pretty simple and straight forward but it does impact the -help output of all tools using cl::opt. Specifically the options implemented in CommandLine.cpp (help, help-list, help-hidden, help-list-hidden, print-options, print-all-options, version) are all grouped together into an Option category, and these options are never hidden by the cl::HideUnrelatedOptions API.
Reviewers: dexonsmith, chandlerc, majnemer
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D7150
llvm-svn: 227093
Summary:
This patch adds support for some operations that were missing from
128-bit integer types (add/sub/mul/sdiv/udiv... etc.). With these
changes we can support the __int128_t and __uint128_t data types
from C/C++.
Depends on D7125
Reviewers: dsanders
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D7143
llvm-svn: 227089
suffix it seems:
# ./config.guess
earmv7hfeb-unknown-netbsd7.99.4
Extend the triple parsing to support this. Avoid running the ARM parser
multiple times because StringSwitch is not lazy.
Reviewers: Renato Golin, Tim Northover
Differential Revision: http://reviews.llvm.org/D7166
llvm-svn: 227085
This reverts commit r227003. Support for addition/subtraction and
various other operations for the i128 data type will be added in a
future commit based on the review D7143.
llvm-svn: 227082
-no-exec-stack. This was due to it not deriving from the correct
asm info base class and missing the override for the exec
stack section query. Added another line to the noexec test
line to make sure this doesn't regress.
llvm-svn: 227074
physical register that is described in a DBG_VALUE.
In the testcase the DBG_VALUE describing "p5" becomes unavailable
because the register its address is in is clobbered and we (currently)
aren't smart enough to realize that the value is rematerialized immediately
after the DBG_VALUE and/or is actually a stack slot.
llvm-svn: 227056
Test by Nemanja Ivanovic.
Since ppc64le implies POWER8 as a minimum, it makes sense that the
same features are included. Since the pwr8 processor model will likely
be getting new features until the implementation is complete, I
created a new list to add these updates to. This will include them in
both pwr8 and ppc64le.
Furthermore, it seems that it would make sense to compose the feature
lists for other processor models (pwr3 and up). Per discussion in the
review, I will make this change in a subsequent patch.
In order to test the changes, I've added an additional run step to
test cases that specify -march=ppc64le -mcpu=pwr8 to omit the -mcpu
option. Since the feature lists are the same, the behaviour should be
unchanged.
llvm-svn: 227053
MIPS64 ELF file has a very specific relocation record format. Each
record might specify up to three relocation operations. So the `r_info`
field in fact consists of three relocation type sub-fields and optional
code of "special" symbols.
http://techpubs.sgi.com/library/manuals/4000/007-4658-001/pdf/007-4658-001.pdf
page 40
The patch implements support of the MIPS64 relocation record format in
yaml2obj/obj2yaml tools by introducing new optional Relocation fields:
Type2, Type3, and SpecSym. These fields are recognized only if the
object/YAML file relates to the MIPS64 target.
Differential Revision: http://reviews.llvm.org/D7136
llvm-svn: 227044
- Added KSHIFTB/D/Q for skx
- Added KORTESTB/D/Q for skx
- Fixed store operation for v8i1 type for KNL
- Store size of v8i1, v4i1 and v2i1 are changed to 8 bits
llvm-svn: 227043
If two coverage segments cover the same area we need to combine them,
as per r218432. OTOH, just because they start at the same place
doesn't mean they cover the same area. This fixes the check to be more
exact about this.
This is pretty hard to test right now. The frontend doesn't currently
emit regions that start at the same place but don't overlap, but some
upcoming work changes this.
llvm-svn: 227017
Summary:
V8->V9:
- cleanup tests
V7->V8:
- addressed feedback from David:
- switched to range-based 'for' loops
- fixed formatting of tests
V6->V7:
- rebased and adjusted AsmPrinter args
- CamelCased .td, fixed formatting, cleaned up names, removed unused patterns
- diffstat: 3 files changed, 203 insertions(+), 227 deletions(-)
V5->V6:
- addressed feedback from Chandler:
- reinstated full verbose standard banner in all files
- fixed variables that were not in CamelCase
- fixed names of #ifdef in header files
- removed redundant braces in if/else chains with single statements
- fixed comments
- removed trailing empty line
- dropped debug annotations from tests
- diffstat of these changes:
46 files changed, 456 insertions(+), 469 deletions(-)
V4->V5:
- fix setLoadExtAction() interface
- clang-formated all where it made sense
V3->V4:
- added CODE_OWNERS entry for BPF backend
V2->V3:
- fix metadata in tests
V1->V2:
- addressed feedback from Tom and Matt
- removed top level change to configure (now everything via 'experimental-backend')
- reworked error reporting via DiagnosticInfo (similar to R600)
- added few more tests
- added cmake build
- added Triple::bpf
- tested on linux and darwin
V1 cover letter:
---------------------
recently linux gained "universal in-kernel virtual machine" which is called
eBPF or extended BPF. The name comes from "Berkeley Packet Filter", since
new instruction set is based on it.
This patch adds a new backend that emits extended BPF instruction set.
The concept and development are covered by the following articles:
http://lwn.net/Articles/599755/http://lwn.net/Articles/575531/http://lwn.net/Articles/603983/http://lwn.net/Articles/606089/http://lwn.net/Articles/612878/
One of use cases: dtrace/systemtap alternative.
bpf syscall manpage:
https://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/commit/?id=b4fc1a460f3017e958e6a8ea560ea0afd91bf6fe
instruction set description and differences vs classic BPF:
http://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/tree/Documentation/networking/filter.txt
Short summary of instruction set:
- 64-bit registers
R0 - return value from in-kernel function, and exit value for BPF program
R1 - R5 - arguments from BPF program to in-kernel function
R6 - R9 - callee saved registers that in-kernel function will preserve
R10 - read-only frame pointer to access stack
- two-operand instructions like +, -, *, mov, load/store
- implicit prologue/epilogue (invisible stack pointer)
- no floating point, no simd
Short history of extended BPF in kernel:
interpreter in 3.15, x64 JIT in 3.16, arm64 JIT, verifier, bpf syscall in 3.18, more to come in the future.
It's a very small and simple backend.
There is no support for global variables, arbitrary function calls, floating point, varargs,
exceptions, indirect jumps, arbitrary pointer arithmetic, alloca, etc.
From C front-end point of view it's very restricted. It's done on purpose, since kernel
rejects all programs that it cannot prove safe. It rejects programs with loops
and with memory accesses via arbitrary pointers. When kernel accepts the program it is
guaranteed that program will terminate and will not crash the kernel.
This patch implements all 'must have' bits. There are several things on TODO list,
so this is not the end of development.
Most of the code is a boiler plate code, copy-pasted from other backends.
Only odd things are lack or < and <= instructions, specialized load_byte intrinsics
and 'compare and goto' as single instruction.
Current instruction set is fixed, but more instructions can be added in the future.
Signed-off-by: Alexei Starovoitov <alexei.starovoitov@gmail.com>
Subscribers: majnemer, chandlerc, echristo, joerg, pete, rengolin, kristof.beyls, arsenm, t.p.northover, tstellarAMD, aemerson, llvm-commits
Differential Revision: http://reviews.llvm.org/D6494
llvm-svn: 227008
Summary:
At the moment, address calculation is taking the debug line info from the
address node (e.g. TargetGlobalAddress). When a function is called multiple
times, this results in output of the form:
.loc $first_call_location
.. address calculation ..
.. function call ..
.. address calculation ..
.loc $second_call_location
.. function call ..
.loc $first_call_location
.. address calculation ..
.loc $third_call_location
.. function call ..
This patch makes address calculations for function calls take the debug line
info for the call node and results in output of the form:
.loc $first_call_location
.. address calculation ..
.. function call ..
.loc $second_call_location
.. address calculation ..
.. function call ..
.loc $third_call_location
.. address calculation ..
.. function call ..
All other address calculations continue to use the address node.
Test Plan: Fixes test/DebugInfo/multiline.ll on a mips host.
Subscribers: dblaikie, llvm-commits
Differential Revision: http://reviews.llvm.org/D7050
llvm-svn: 227005
Summary:
In addition to the included tests, this fixes
test/CodeGen/Generic/i128-addsub.ll on a mips64 host.
Reviewers: atanasyan, sagar, vmedic
Reviewed By: vmedic
Subscribers: sdkie, llvm-commits
Differential Revision: http://reviews.llvm.org/D6610
llvm-svn: 227003
This fixes a regression introduced by r226816.
When replacing a splat shuffle node with a constant build_vector,
make sure that the new build_vector has a valid number of elements.
Thanks to Patrik Hagglund for reporting this problem and providing a
small reproducible.
llvm-svn: 227002
This just lifts the logic into a static helper function, sinks the
legacy pass to be a trivial wrapper of that helper fuction, and adds
a trivial wrapper for the new PM as well. Not much to see here.
I switched a test case to run in both modes, but we have to strip the
dead prototypes separately as that pass isn't in the new pass manager
(yet).
llvm-svn: 226999
changed the IR. This is particularly easy as we can just look for the
existence of any expect intrinsic at all to know whether we've changed
the IR.
llvm-svn: 226998