For i686 targets (eg. cygwin), I saw "Range must not be empty!" in verifier.
It produces (i32)[0x80000000:0x80000000) from (uint64_t)[0xFFFFFFFF80000000ULL:0x0000000080000000ULL), for signed i32 on MDNode::Range.
llvm-svn: 153382
track whether the referenced declaration comes from an enclosing
local context. I'm amenable to suggestions about the exact meaning
of this bit.
llvm-svn: 152491
we correctly emit loads of BlockDeclRefExprs even when they
don't qualify as ODR-uses. I think I'm adequately convinced
that BlockDeclRefExpr can die.
llvm-svn: 152479
NSNumber, and boolean literals. This includes both Sema and Codegen support.
Included is also support for new Objective-C container subscripting.
My apologies for the large patch. It was very difficult to break apart.
The patch introduces changes to the driver as well to cause clang to link
in additional runtime support when needed to support the new language features.
Docs are forthcoming to document the implementation and behavior of these features.
llvm-svn: 152137
Note that this transformation has a substantial semantic effect outside of ARC: it gives the converted lambda lifetime semantics similar to a block literal. With ARC, the effect is much less obvious because the lifetime of blocks is already managed.
llvm-svn: 151797
We now generate temporary arrays to back std::initializer_list objects
initialized with braces. The initializer_list is then made to point at
the array. We support both ptr+size and start+end forms, although
the latter is untested.
Array lifetime is correct for temporary std::initializer_lists (e.g.
call arguments) and local variables. It is untested for new expressions
and member initializers.
Things left to do:
Massively increase the amount of testing. I need to write tests for
start+end init lists, temporary objects created as a side effect of
initializing init list objects, new expressions, member initialization,
creation of temporary objects (e.g. std::vector) for initializer lists,
and probably more.
Get lifetime "right" for member initializers and new expressions. Not
that either are very useful.
Implement list-initialization of array new expressions.
llvm-svn: 150803
conversion to function pointer. Rather than having IRgen synthesize
the body of this function, we instead introduce a static member
function "__invoke" with the same signature as the lambda's
operator() in the AST. Sema then generates a body for the conversion
to function pointer which simply returns the address of __invoke. This
approach makes it easier to evaluate a call to the conversion function
as a constant, makes the linkage of the __invoke function follow the
normal rules for member functions, and may make life easier down the
road if we ever want to constexpr'ify some of lambdas.
Note that IR generation is responsible for filling in the body of
__invoke (Sema just adds a dummy body), because the body can't
generally be expressed in C++.
Eli, please review!
llvm-svn: 150783
-fno-objc-arc-exceptions. This will allow the optimizer to perform
optimizations which are only safe under that flag.
This is a part of rdar://10803830.
llvm-svn: 150644
constructor, and that constructor is used to initialize an object of static
storage duration such that all members and bases are initialized by constant
expressions, constant initialization is performed. In this case, the object
can still have a non-trivial destructor, and if it does, we must emit a dynamic
initializer which performs no initialization and instead simply registers that
destructor.
llvm-svn: 150419
consume one or more of their arguments. If not done, this will cause a leak
as method will not consume the argument when receiver is null.
// rdar://10444474
llvm-svn: 149184
- Add atomic-to/from-nonatomic cast types
- Emit atomic operations for arithmetic on atomic types
- Emit non-atomic stores for initialisation of atomic types, but atomic stores and loads for every other store / load
- Add a __atomic_init() intrinsic which does a non-atomic store to an _Atomic() type. This is needed for the corresponding C11 stdatomic.h function.
- Enables the relevant __has_feature() checks. The feature isn't 100% complete yet, but it's done enough that we want people testing it.
Still to do:
- Make the arithmetic operations on atomic types (e.g. Atomic(int) foo = 1; foo++;) use the correct LLVM intrinsic if one exists, not a loop with a cmpxchg.
- Add a signal fence builtin
- Properly set the fenv state in atomic operations on floating point values
- Correctly handle things like _Atomic(_Complex double) which are too large for an atomic cmpxchg on some platforms (this requires working out what 'correctly' means in this context)
- Fix the many remaining corner cases
llvm-svn: 148242
The test includes a FIXME for a related case involving calls; it's a bit more complicated to fix because the RValue class doesn't keep track of alignment.
<rdar://problem/10463337>
llvm-svn: 145862
generic pushDestroy function.
This would reduce the number of useful declarations in
CGTemporaries.cpp to one. Since CodeGenFunction::EmitCXXTemporary
does not deserve its own file, move it to CGCleanup.cpp and delete
CGTemporaries.cpp.
llvm-svn: 145202
need to provide a 'dominating IP' which is guaranteed to
dominate the (de)activation point but which cannot be avoided
along any execution path from the (de)activation point to
the push-point of the cleanup. Using the entry block is
bad mojo.
llvm-svn: 144276
full-expression. Naturally they're inactive before we enter
the block literal expression. This restores the intended
behavior that blocks belong to their enclosing scope.
There's a useful -O0 / compile-time optimization that we're
missing here with activating cleanups following straight-line
code from their inactive beginnings.
llvm-svn: 144268
property references to use a new PseudoObjectExpr
expression which pairs a syntactic form of the expression
with a set of semantic expressions implementing it.
This should significantly reduce the complexity required
elsewhere in the compiler to deal with these kinds of
expressions (e.g. IR generation's special l-value kind,
the static analyzer's Message abstraction), at the lower
cost of specifically dealing with the odd AST structure
of these expressions. It should also greatly simplify
efforts to implement similar language features in the
future, most notably Managed C++'s properties and indexed
properties.
Most of the effort here is in dealing with the various
clients of the AST. I've gone ahead and simplified the
ObjC rewriter's use of properties; other clients, like
IR-gen and the static analyzer, have all the old
complexity *and* all the new complexity, at least
temporarily. Many thanks to Ted for writing and advising
on the necessary changes to the static analyzer.
I've xfailed a small diagnostics regression in the static
analyzer at Ted's request.
llvm-svn: 143867
The OpenCL single precision division operation is only required to
be accurate to 2.5ulp. Annotate the fdiv instruction with metadata
which signals to the backend that an imprecise divide instruction
may be used.
llvm-svn: 143136