This augments the STLExtras toolset with a zip iterator and range
adapter. Zip comes in two varieties: `zip`, which will zip to the
shortest of the input ranges, and `zip_first`, which limits its
`begin() == end()` checks to just the first range.
Recommit r284035 after MSVC2013 support has been dropped.
Patch by: Bryant Wong <github.com/bryant>
Differential Revision: https://reviews.llvm.org/D23252
llvm-svn: 284623
This augments the STLExtras toolset with a zip iterator and range
adapter. Zip comes in two varieties: `zip`, which will zip to the
shortest of the input ranges, and `zip_first`, which limits its
`begin() == end()` checks to just the first krange.
Patch by: Bryant Wong <github.com/bryant>
Differential Revision: https://reviews.llvm.org/D23252
llvm-svn: 284035
This re-applies r283798, disabled in r283803, with the static_assert
tests disabled under MSVC. The deleted functions still seem to catch
mistakes in MSVC, so it's not a significant loss.
Part of rdar://problem/16375365
llvm-svn: 283935
This reverts commit r283798, as it causes static asserts on
MSVC 2015 with the following errors:
ArrayRefTest.cpp(38): error C2338: Assigning from single prvalue element
ArrayRefTest.cpp(41): error C2338: Assigning from single xvalue element
ArrayRefTest.cpp(47): error C2338: Assigning from an initializer list
llvm-svn: 283803
llvm::cl already has a function called llvm::apply() so this is
causing an ODR violation. The STLExtras version should win the
vote on which one gets to be called apply() since it is named
after the equivalent STL function, but since renaiming the cl
version is more difficult, let's do this for now to get the
bots green.
llvm-svn: 283800
Without this, the following statements will create ArrayRefs that
refer to temporary storage that goes out of scope by the end of the
line:
someArrayRef = getSingleElement();
someArrayRef = {elem1, elem2};
Note that the constructor still has this problem:
ArrayRef<Element> someArrayRef = getSingleElement();
ArrayRef<Element> someArrayRef = {elem1, elem2};
but that's a little harder to get rid of because we want to be able to
use this in calls:
takesArrayRef(getSingleElement());
takesArrayRef({elem1, elem2});
Part of rdar://problem/16375365. Reviewed by Duncan Exon Smith.
llvm-svn: 283798
This is equivalent to the C++14 std::apply(). Since we are not
using C++14 yet, this allows us to still make use of apply anyway.
Differential revision: https://reviews.llvm.org/D25100
llvm-svn: 283779
Summary: The keys must still be copyable, because we store two copies of them.
Reviewers: timshen
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D25404
llvm-svn: 283764
Summary: This makes a change to the state used to maintain visited information for depth first iterator. We know assume a method "completed(...)" which is called after all children of a node have been visited. In all existing cases, this method does nothing so this patch has no functional changes. It will however allow a client to distinguish back from cross edges in a DFS tree.
Reviewers: nadav, mehdi_amini, dberlin
Subscribers: MatzeB, mzolotukhin, twoh, freik, llvm-commits
Differential Revision: https://reviews.llvm.org/D25191
llvm-svn: 283391
This allows you to enumerate over a range using a range-based
for while the return type contains the index of the enumeration.
Differential revision: https://reviews.llvm.org/D25124
llvm-svn: 283337
This adds support for CaseLower, CasesLower, StartsWithLower, and
EndsWithLower.
Differential revision: https://reviews.llvm.org/D24686
llvm-svn: 283244
The CL was originally failing due to the use of some C++14
specific features, so I've removed those. Hopefully this will
satisfy the bots.
llvm-svn: 282867
enumerate allows you to iterate over a range by pairing the
iterator's value with its index in the enumeration. This gives
you most of the benefits of using a for loop while still allowing
the range syntax.
llvm-svn: 282804
llvm::join_items is similar to llvm::join, which produces a string
by concatenating a sequence of values together separated by a
given separator. But it differs in that the arguments to
llvm::join() are same-type members of a container, whereas the
arguments to llvm::join_items are arbitrary types passed into
a variadic template. The only requirement on parameters to
llvm::join_items (including for the separator themselves) is
that they be implicitly convertible to std::string or have
an overload of std::string::operator+
Differential Revision: https://reviews.llvm.org/D24880
llvm-svn: 282502
This adds 4 new functions to StringRef, which can be used to
take or drop characters while a certain condition is met, or
until a certain condition is met. They are:
take_while - Return characters until a condition is not met.
take_until - Return characters until a condition is met.
drop_while - Remove characters until a condition is not met.
drop_until - Remove characters until a condition is met.
Internally, all of these functions delegate to two additional
helper functions which can be used to search for the position
of a character meeting or not meeting a condition, which are:
find_if - Find the first character matching a predicate.
find_if_not - Find the first character not matching a predicate.
Differential Revision: https://reviews.llvm.org/D24842
llvm-svn: 282346
Summary:
For AMDGPU, we have been using the operating system component of the triple
for specifying the low-level runtime that is being used. The rationale for
this is that the host operating system (e.g. Linux) is irrelevant for GPU code,
since its execution enviroment will be mostly controled by the low-level runtime
being used to execute the code.
In most cases, higher level languages have their own runtime which is
implemented on top of the low-level runtime. The kernel ABIs of each
language mostly depend on the low-level runtime, but there may be some
slight differences between languages. OpenCL for example, may append
additional arguments to the kernel in order to pass values like global
offsets or buffers for printf. OpenMP, HCC, or other languages may want
to add their own values which differ from OpenCL.
The reason for adding a new opencl environment type is to make it possible for the backend
to distinguish between the ABIs of the higher-level languages and handle them correctly.
It seems cleaner to use the enviroment component for this rather than creating a new
OS type for every combination of low-level runtime / high-level language.
Reviewers: Anastasia, chandlerc
Subscribers: whchung, pekka.jaaskelainen, wdng, yaxunl, llvm-commits
Differential Revision: https://reviews.llvm.org/D24735
llvm-svn: 282218
A recent patch added support for consumeInteger() and made
getAsInteger delegate to this function. A few buildbots are
failing as a result with an assertion failure. On a hunch,
I tested what happens if I call getAsInteger() on an empty
string, and sure enough it crashes the same way that the
buildbots are crashing.
I confirmed that getAsInteger() on an empty string did not
crash before my patch, so I suspect this to be the cause.
I also added a unit test for the empty string.
llvm-svn: 282170
StringRef::getInteger() exists and treats the entire string as
an integer of the specified radix, failing if any invalid characters
are encountered or the number overflows.
Sometimes you might have something like "123456foo" and you want
to get the number 123456 and leave the string "foo" remaining.
This is similar to what would be possible by using the standard
runtime library functions strtoul et al and specifying an end
pointer.
This patch adds consumeInteger(), which does exactly that. It
consumes as much as possible until an invalid character is found,
and modifies the StringRef in place so that upon return only
the portion of the StringRef after the number remains.
Differential Revision: https://reviews.llvm.org/D24778
llvm-svn: 282164
Remove createNode() and any API that depending on it, and add
HasCreateNode to the list of checks for HasObsoleteCustomizations. Now
an ilist *never* allocates (this was already true for iplist).
This factors out all the differences between iplist and ilist. I'll aim
to rename both to "owning_ilist" eventually, to call out the interesting
(not exactly intrusive) ownership semantics. In the meantime, I've left
both names around to reduce code churn.
One of the deleted APIs is the ilist copy constructor. I've lifted up
and tested iplist::cloneFrom (ala simple_ilist::cloneFrom) as a
replacement.
Users of ilist<> and iplist<> that want the list to allocate nodes have
a few options:
- use std::list;
- use AllocatorList or BumpPtrList (or build a similarly trivial list);
- use cloneFrom (which is explicit at the call site); or
- allocate at the call site.
See r280573, r281177, r281181, and r281182 for examples of what to do if
you're updating out-of-tree code.
llvm-svn: 281184
- Add AllocatorList, a non-intrusive list that owns an LLVM-style
allocator and provides a std::list-like interface (trivially built on
top of simple_ilist),
- add a typedef (and unit tests) for BumpPtrList, and
- use BumpPtrList for the list of llvm::yaml::Token (i.e., TokenQueueT).
TokenQueueT has no need for the complexity of an intrusive list. The
only reason to inherit from ilist was to customize the allocator.
TokenQueueT was the only example in-tree of using ilist<> in a truly
non-intrusive way.
Moreover, this removes the final use of the non-intrusive
ilist_traits<>::createNode (after r280573, r281177, and r281181). I
have a WIP patch that removes this customization point (and the API that
relies on it) that I plan to commit soon.
Note: AllocatorList owns the allocator, which limits the viable API
(e.g., splicing must be on the same list). For now I've left out
any problematic API. It wouldn't be hard to split AllocatorList into
two layers: an Impl class that calls DerivedT::getAlloc (via CRTP), and
derived classes that handle Allocator ownership/reference/etc semantics;
and then implement splice with appropriate assertions; but TBH we should
probably just customize the std::list allocators at that point.
llvm-svn: 281182
This adds two declarative configuration options for intrusive lists
(available for simple_ilist, iplist, and ilist). Both of these options
affect ilist_node interoperability and need to be passed both to the
node and the list. Instead of adding a new traits class, they're
specified as optional template parameters (in any order).
The two options:
1. Pass ilist_sentinel_tracking<true> or ilist_sentinel_tracking<false>
to control whether there's a bit on ilist_node "prev" pointer
indicating whether it's the sentinel. The default behaviour is to
use a bit if and only if LLVM_ENABLE_ABI_BREAKING_CHECKS.
2. Pass ilist_tag<TagA> and ilist_tag<TagB> to allow insertion of a
single node into two different lists (simultaneously).
I have an immediate use-case for (1) ilist_sentinel_tracking: fixing the
validation semantics of MachineBasicBlock::reverse_iterator to match
ilist::reverse_iterator (ala r280032: see the comments at the end of the
commit message there). I'm adding (2) ilist_tag in the same commit to
validate that the options framework supports expansion. Justin Bogner
mentioned this might enable a possible cleanup in SelectionDAG, but I'll
leave this to others to explore. In the meantime, the unit tests and
the comments for simple_ilist and ilist_node have usage examples.
Note that there's a layer of indirection to support optional,
out-of-order, template paramaters. Internal classes are templated on an
instantiation of the non-variadic ilist_detail::node_options.
User-facing classes use ilist_detail::compute_node_options to compute
the correct instantiation of ilist_detail::node_options.
The comments for ilist_detail::is_valid_option describe how to add new
options (e.g., ilist_packed_int<int NumBits>).
llvm-svn: 281167
... and make a few ilist-internal API changes, in preparation for
changing how ilist_node is templated. The only effect for ilist users
should be changing the friend target from llvm::ilist_node_access to
llvm::ilist_detail::NodeAccess (which is only necessary when they
inherit privately from ilist_node).
- Split out SpecificNodeAccess, which has overloads of getNodePtr and
getValuePtr that are untemplated.
- Use more typedefs to prevent more changes later.
- Force inheritance to use *NodeAccess (to emphasize that ilist *users*
shouldn't be doing this).
There should be no functionality change here.
llvm-svn: 281142
This test was using the wrong type, and so not actually testing much.
ilist_iterator constructors weren't going through ilist_node_access, so
they didn't actually work with private inheritance.
llvm-svn: 280564
Many lists want to override only allocation semantics, or callbacks for
iplist. Split these up to prevent code duplication.
- Specialize ilist_alloc_traits to change the implementations of
deleteNode() and createNode().
- One common desire is to do nothing deleteNode() and disable
createNode(). Specialize ilist_alloc_traits to inherit from
ilist_noalloc_traits for that behaviour.
- Specialize ilist_callback_traits to use the addNodeToList(),
removeNodeFromList(), and transferNodesFromList() callbacks.
As a drive-by, add some coverage to the callback-related unit tests.
llvm-svn: 280128
Split out a new, low-level intrusive list type with clear semantics.
Unlike iplist (and ilist), all operations on simple_ilist are intrusive,
and simple_ilist never takes ownership of its nodes. This enables an
intuitive API that has the right defaults for intrusive lists.
- insert() takes references (not pointers!) to nodes (in iplist/ilist,
passing a reference will cause the node to be copied).
- erase() takes only iterators (like std::list), and does not destroy
the nodes.
- remove() takes only references and has the same behaviour as erase().
- clear() does not destroy the nodes.
- The destructor does not destroy the nodes.
- New API {erase,remove,clear}AndDispose() take an extra Disposer
functor for callsites that want to call some disposal routine (e.g.,
std::default_delete).
This list is not currently configurable, and has no callbacks.
The initial motivation was to fix iplist<>::sort to work correctly (even
with callbacks in ilist_traits<>). iplist<> uses simple_ilist<>::sort
directly. The new test in unittests/IR/ModuleTest.cpp crashes without
this commit.
Fixing sort() via a low-level layer provided a good opportunity to:
- Unit test the low-level functionality thoroughly.
- Modernize the API, largely inspired by other intrusive list
implementations.
Here's a sketch of a longer-term plan:
- Create BumpPtrList<>, a non-intrusive list implemented using
simple_ilist<>, and use it for the Token list in
lib/Support/YAMLParser.cpp. This will factor out the only real use of
createNode().
- Evolve the iplist<> and ilist<> APIs in the direction of
simple_ilist<>, making allocation/deallocation explicit at call sites
(similar to simple_ilist<>::eraseAndDispose()).
- Factor out remaining calls to createNode() and deleteNode() and remove
the customization from ilist_traits<>.
- Transition uses of iplist<>/ilist<> that don't need callbacks over to
simple_ilist<>.
llvm-svn: 280107
I'm working on a lower-level intrusive list that can be used
stand-alone, and splitting the files up a bit will make the code easier
to organize. Explode the ilist headers in advance to improve blame
lists in the future.
- Move ilist_node_base from ilist_node.h to ilist_node_base.h.
- Move ilist_base from ilist.h to ilist_base.h.
- Move ilist_iterator from ilist.h to ilist_iterator.h.
- Move ilist_node_access from ilist.h to ilist_node.h to support
ilist_iterator.
- Update unit tests to #include smaller headers.
- Clang-format the moved things.
I noticed in transit that there is a simplify_type specialization for
ilist_iterator. Since there is no longer an implicit conversion from
ilist<T>::iterator to T*, this doesn't make sense (effectively it's a
form of implicit conversion). For now I've added a FIXME.
llvm-svn: 280047
And rename the tests inside from ilistTest to IListTest. This makes the
file sort properly in the CMakeLists.txt (previously, sorting would
throw it down to the end of the list) and is consistent with the tests
I've added more recently.
Why use IListNodeBaseTest.cpp (and a test name of IListNodeBaseTest)?
- ilist_node_base_test is the obvious thing, since this is testing
ilist_node_base. However, gtest disallows underscores in test names.
- ilist_node_baseTest fails for the same reason.
- ilistNodeBaseTest is weird, because it isn't in our usual
TitleCaseTest form that we use for tests, and it also doesn't have the
name of the tested class in it.
- IlistNodeBaseTest matches TitleCaseTest, but "Ilist" is hard to read,
and really "ilist" is an abbreviation for "IntrusiveList" so the
lowercase "list" is strange.
- That left IListNodeBaseTest.
Note: I made this move in two stages, with a temporary filename of
ilistTestTemp in between in r279524. This was in the hopes of avoiding
problems on Git and SVN clients on case-insensitive filesystems,
particularly on buildbots with incremental checkouts.
llvm-svn: 280033