LLVM generates illegal `rbit r0, #352` instruction for rbit intrinsic.
According to ARM ARM, rbit only takes register as argument, not immediate.
The correct instruction should be rbit <Rd>, <Rm>.
The bug was originally introduced in r211057.
Differential Revision: http://reviews.llvm.org/D4980
llvm-svn: 216064
Note: This was originally reverted to track down a buildbot error. This commit
exposed a latent bug that was fixed in r215753. Therefore it is reapplied
without any modifications.
I run it through SPEC2k and SPEC2k6 for AArch64 and it didn't introduce any new
regeressions.
Original commit message:
This changes the order in which FastISel tries to materialize a constant.
Originally it would try to use a simple target-independent approach, which
can lead to the generation of inefficient code.
On X86 this would result in the use of movabsq to materialize any 64bit
integer constant - even for simple and small values such as 0 and 1. Also
some very funny floating-point materialization could be observed too.
On AArch64 it would materialize the constant 0 in a register even the
architecture has an actual "zero" register.
On ARM it would generate unnecessary mov instructions or not use mvn.
This change simply changes the order and always asks the target first if it
likes to materialize the constant. This doesn't fix all the issues
mentioned above, but it enables the targets to implement such
optimizations.
Related to <rdar://problem/17420988>.
llvm-svn: 216006
Externally-defined functions with weak linkage should not be
tail-called on ARM or AArch64, as the AAELF spec requires normal calls
to undefined weak functions to be replaced with a NOP or jump to the
next instruction. The behaviour of branch instructions in this
situation (as used for tail calls) is implementation-defined, so we
cannot rely on the linker replacing the tail call with a return.
llvm-svn: 215890
The set of functions defined in the RTABI was separated for no real reason.
This brings us closer to proper utilisation of the functions defined by the
RTABI. It also sets the ground for correctly emitting function calls to AEABI
functions on all AEABI conforming platforms.
The previously existing lie on the behaviour of __ldivmod and __uldivmod is
propagated as it is beyond the scope of the change.
The changes to the test are due to the fact that we now use the divmod functions
which return both the quotient and remainder and thus we no longer need to
invoke two functions on Linux (making it closer to EABI's behaviour).
llvm-svn: 215862
FastEmit_i won't always succeed to materialize an i32 constant and just fail.
This would trigger a fall-back to SelectionDAG, which is really not necessary.
This fix will first fall-back to a constant pool load to materialize the constant
before giving up for good.
This fixes <rdar://problem/18022633>.
llvm-svn: 215682
This reverts:
r215595 "[FastISel][X86] Add large code model support for materializing floating-point constants."
r215594 "[FastISel][X86] Use XOR to materialize the "0" value."
r215593 "[FastISel][X86] Emit more efficient instructions for integer constant materialization."
r215591 "[FastISel][AArch64] Make use of the zero register when possible."
r215588 "[FastISel] Let the target decide first if it wants to materialize a constant."
r215582 "[FastISel][AArch64] Cleanup constant materialization code. NFCI."
llvm-svn: 215673
This patch allows a vector fneg of a bitcasted integer value to be optimized in the same way that we already optimize a scalar fneg. If the integer variable is a constant, we can precompute the result and not require any logic ops.
This patch is very similar to a fabs patch committed at r214892.
Differential Revision: http://reviews.llvm.org/D4852
llvm-svn: 215646
This changes the order in which FastISel tries to materialize a constant.
Originally it would try to use a simple target-independent approach, which
can lead to the generation of inefficient code.
On X86 this would result in the use of movabsq to materialize any 64bit
integer constant - even for simple and small values such as 0 and 1. Also
some very funny floating-point materialization could be observed too.
On AArch64 it would materialize the constant 0 in a register even the
architecture has an actual "zero" register.
On ARM it would generate unnecessary mov instructions or not use mvn.
This change simply changes the order and always asks the target first if it
likes to materialize the constant. This doesn't fix all the issues
mentioned above, but it enables the targets to implement such
optimizations.
Related to <rdar://problem/17420988>.
llvm-svn: 215588
This change is also in preparation for a future change to make sure that
the constant materialization uses MOVT/MOVW when available and not a load
from the constant pool.
llvm-svn: 215584
For many Thumb-1 register register instructions, setting the CPSR is not
permitted inside an IT block. We would not correctly flag those instructions.
The previous change to identify this scenario was insufficient as it did not
actually catch all the instances. The current list is formed by manual
inspection of the ARMv6M ARM.
The change to the Thumb2 IT block test is due to the fact that the new more
stringent checking of the MIs results in the If Conversion pass being prevented
from executing (since not all the instructions in the BB are predicable). This
results in code gen changes.
Thanks to Tim Northover for pointing out that the previous patch was
insufficient and hinting that the use of the v6M ARM would be much easier to use
than the v7 or v8!
llvm-svn: 215382
By default, LLVM uses the "C" calling convention for all runtime
library functions. The half-precision FP conversion functions use the
soft-float calling convention, and are needed for some targets which
use the hard-float convention by default, so must have their calling
convention explicitly set.
llvm-svn: 215348
The ARM ARM states that CPSR may not be updated by a MUL in thumb mode. Due to
an ordering of Thumb 2 Size Reduction and If Conversion, we would end up
generating a THUMB MULS inside an IT block.
The If Conversion pass uses the TTI isPredicable method to ensure that it can
transform a Basic Block. However, because we only check for IT handling on
Thumb2 functions, we may miss some cases. Even then, it only validates that the
CPSR is not *live* rather than it is not accessed. This corrects the handling
for that particular case since the same restriction does not hold on the vast
majority of the instructions.
This does prevent the IfConversion optimization from kicking in in certain
cases, but generating correct code is more valuable. Addresses PR20555.
llvm-svn: 215328
BranchFolderPass was not correctly setting the basic block branch weights when
tail-merging created or merged blocks. This patch recomutes the weights of
tail-merged blocks using the following formula:
branch_weight(merged block to successor j) =
sum(block_frequency(bb) * branch_probability(bb -> j))
bb is a block that is in the set of merged blocks.
<rdar://problem/16256423>
llvm-svn: 215135
Particularly on MachO, we were generating "blx _dest" instructions on M-class
CPUs, which don't actually exist. They happen to get fixed up by the linker
into valid "bl _dest" instructions (which is why such a massive issue has
remained largely undetected), but we shouldn't rely on that.
llvm-svn: 214959
This was coming in weird debug info that had variables (and hence
debug_locs) but was in GMLT mode (because it was missing the 13th field
of the compile_unit metadata) so no ranges were constructed. We should
always have at least one range for any CU with a debug_loc in it -
because the range should cover the debug_loc.
The assertion just ensures that the "!= 1" range case inside the
subsequent loop doesn't get entered for the case where there are no
ranges at all, which should never reach here in the first place.
llvm-svn: 214939
Without the 13th field, the "emission kind" field defaults to 0 (which
is not equal to either of the values of the emission kind enum (1 ==
full debug info, 2 == line tables only)).
In this particular instance, the comparison with "FullDebugInfo" was
done when adding elements to the ranges list - so for these test cases
no values were added to the ranges list.
This got weirder when emitting debug_loc entries as the addresses should
be relative to the range of the CU if the CU has only one range (the
reasonable assumption is that if we're emitting debug_loc lists for a CU
that CU has at least one range - but due to the above situation, it has
zero) so the ranges were emitted relative to the start of the section
rather than relative to the start of the CU's singular range.
Fix these tests by accounting for the difference in the description of
debug_loc entries (in some cases making the test ignorant to these
differences, in others adding the extra label difference expression,
etc) or the presence/absence of high/low_pc on the CU, and add the 13th
field to their CUs to enable proper "full debug info" emission here.
In a future commit I'll fix up a bunch of other test cases that are not
so rigorously depending on this behavior, but still doing similarly
weird things due to the missing 13th field.
llvm-svn: 214937
This reverts r214893, re-applying r214881 with the test case relaxed a bit to
satiate the build bots.
POP on armv4t cannot be used to change thumb state (unilke later non-m-class
architectures), therefore we need a different return sequence that uses 'bx'
instead:
POP {r3}
ADD sp, #offset
BX r3
This patch also fixes an issue where the return value in r3 would get clobbered
for functions that return 128 bits of data. In that case, we generate this
sequence instead:
MOV ip, r3
POP {r3}
ADD sp, #offset
MOV lr, r3
MOV r3, ip
BX lr
http://reviews.llvm.org/D4748
llvm-svn: 214928
Allow vector fabs operations on bitcasted constant integer values to be optimized
in the same way that we already optimize scalar fabs.
So for code like this:
%bitcast = bitcast i64 18446744069414584320 to <2 x float> ; 0xFFFF_FFFF_0000_0000
%fabs = call <2 x float> @llvm.fabs.v2f32(<2 x float> %bitcast)
%ret = bitcast <2 x float> %fabs to i64
Instead of generating something like this:
movabsq (constant pool loadi of mask for sign bits)
vmovq (move from integer register to vector/fp register)
vandps (mask off sign bits)
vmovq (move vector/fp register back to integer return register)
We should generate:
mov (put constant value in return register)
I have also removed a redundant clause in the first 'if' statement:
N0.getOperand(0).getValueType().isInteger()
is the same thing as:
IntVT.isInteger()
Testcases for x86 and ARM added to existing files that deal with vector fabs.
One existing testcase for x86 removed because it is no longer ideal.
For more background, please see:
http://reviews.llvm.org/D4770
And:
http://llvm.org/bugs/show_bug.cgi?id=20354
Differential Revision: http://reviews.llvm.org/D4785
llvm-svn: 214892
POP on armv4t cannot be used to change thumb state (unilke later non-m-class
architectures), therefore we need a different return sequence that uses 'bx'
instead:
POP {r3}
ADD sp, #offset
BX r3
This patch also fixes an issue where the return value in r3 would get clobbered
for functions that return 128 bits of data. In that case, we generate this
sequence instead:
MOV ip, r3
POP {r3}
ADD sp, #offset
MOV lr, r3
MOV r3, ip
BX lr
http://reviews.llvm.org/D4748
llvm-svn: 214881
It's a bit of a tradeoff, since llvm-dwarfdump doesn't print the name of
the global symbol being used as an address in the addressing mode, but
this avoids the dependence on hardcoded set labels that keep changing
(5+ commits over the last few years that each update the set label as it
changes due to other, unrelated differences in output). This could've,
instead, been changed to match the set name then match the name in the
string pool but that would present other issues (needing to skip over
the sets that weren't of interest, etc) and checking that the addresses
(granted, without relocations applied - so it's not the whole story)
match in the two variable location descriptions seems sufficient and
fairly stable here.
There are a few similar other tests with similar label dependence that
I'll update soonish.
llvm-svn: 214878
expanding pseudo LOAD_STATCK_GUARD using instructions that are normally used
in pic mode. This patch fixes the bug.
<rdar://problem/17886592>
llvm-svn: 214614
This is a followup patch for r214366, which added the same behavior to the
AArch64 and X86 FastISel code. This fix reproduces the already existing
behavior of SelectionDAG in FastISel.
llvm-svn: 214531
Before this patch we had
@a = weak global ...
but
@b = alias weak ...
The patch changes aliases to look more like global variables.
Looking at some really old code suggests that the reason was that the old
bison based parser had a reduction for alias linkages and another one for
global variable linkages. Putting the alias first avoided the reduce/reduce
conflict.
The days of the old .ll parser are long gone. The new one parses just "linkage"
and a later check is responsible for deciding if a linkage is valid in a
given context.
llvm-svn: 214355
We need to make sure we use the softened version of all appropriate operands in
the libcall, or things go horribly wrong. This may entail actually executing a
1-stage softening.
llvm-svn: 214175
address of the stack guard was being spilled to the stack.
Previously the address of the stack guard would get spilled to the stack if it
was impossible to keep it in a register. This patch introduces a new target
independent node and pseudo instruction which gets expanded post-RA to a
sequence of instructions that load the stack guard value. Register allocator
can now just remat the value when it can't keep it in a register.
<rdar://problem/12475629>
llvm-svn: 213967
* Add CUs to the named CU node
* Add missing DW_TAG_subprogram nodes
* Add llvm::Functions to the DW_TAG_subprogram nodes
This cleans up the tests so that they don't break under a
soon-to-be-made change that is more strict about such things.
llvm-svn: 213951
assembly instructions.
This is necessary to ensure ARM assembler switches to Thumb mode before it
starts assembling the file level inline assembly instructions at the beginning
of a .s file.
<rdar://problem/17757232>
llvm-svn: 213924
which have successfully round-tripped through the combine phase, and use
this to ensure all operands to DAG nodes are visited by the combiner,
even if they are only added during the combine phase.
This is critical to have the combiner reach nodes that are *introduced*
during combining. Previously these would sometimes be visited and
sometimes not be visited based on whether they happened to end up on the
worklist or not. Now we always run them through the combiner.
This fixes quite a few bad codegen test cases lurking in the suite while
also being more principled. Among these, the TLS codegeneration is
particularly exciting for programs that have this in the critical path
like TSan-instrumented binaries (although I think they engineer to use
a different TLS that is faster anyways).
I've tried to check for compile-time regressions here by running llc
over a merged (but not LTO-ed) clang bitcode file and observed at most
a 3% slowdown in llc. Given that this is essentially a worst case (none
of opt or clang are running at this phase) I think this is tolerable.
The actual LTO case should be even less costly, and the cost in normal
compilation should be negligible.
With this combining logic, it is possible to re-legalize as we combine
which is necessary to implement PSHUFB formation on x86 as
a post-legalize DAG combine (my ultimate goal).
Differential Revision: http://reviews.llvm.org/D4638
llvm-svn: 213898
We were assuming all SBFX-like operations would have the shl/asr form, but
often when the field being extracted is an i8 or i16, we end up with a
SIGN_EXTEND_INREG acting on a shift instead. Simple enough to check for though.
llvm-svn: 213754
The post-indexed instructions were missing the constraint, causing unpredictable STRH instructions to be emitted.
The earlyclobber constraint on the pre-indexed STR instructions is not strictly necessary, as the instruction selection for pre-indexed STR instructions goes through an additional layer of pseudo instructions which have the constraint defined, however it doesn't hurt to specify the constraint directly on the pre-indexed instructions as well, since at some point someone might create instances of them programmatically and then the constraint is definitely needed.
llvm-svn: 213729
insertions.
The old behavior could cause arbitrarily bad memory usage in the DAG
combiner if there was heavy traffic of adding nodes already on the
worklist to it. This commit switches the DAG combine worklist to work
the same way as the instcombine worklist where we null-out removed
entries and only add new entries to the worklist. My measurements of
codegen time shows slight improvement. The memory utilization is
unsurprisingly dominated by other factors (the IR and DAG itself
I suspect).
This change results in subtle, frustrating churn in the particular order
in which DAG combines are applied which causes a number of minor
regressions where we fail to match a pattern previously matched by
accident. AFAICT, all of these should be using AddToWorklist to directly
or should be written in a less brittle way. None of the changes seem
drastically bad, and a few of the changes seem distinctly better.
A major change required to make this work is to significantly harden the
way in which the DAG combiner handle nodes which become dead
(zero-uses). Previously, we relied on the ability to "priority-bump"
them on the combine worklist to achieve recursive deletion of these
nodes and ensure that the frontier of remaining live nodes all were
added to the worklist. Instead, I've introduced a routine to just
implement that precise logic with no indirection. It is a significantly
simpler operation than that of the combiner worklist proper. I suspect
this will also fix some other problems with the combiner.
I think the x86 changes are really minor and uninteresting, but the
avx512 change at least is hiding a "regression" (despite the test case
being just noise, not testing some performance invariant) that might be
looked into. Not sure if any of the others impact specific "important"
code paths, but they didn't look terribly interesting to me, or the
changes were really minor. The consensus in review is to fix any
regressions that show up after the fact here.
Thanks to the other reviewers for checking the output on other
architectures. There is a specific regression on ARM that Tim already
has a fix prepped to commit.
Differential Revision: http://reviews.llvm.org/D4616
llvm-svn: 213727
We should update the usages to all of the results;
otherwise, we might get assertion failure or SEGV during
the type legalization of ATOMIC_CMP_SWAP_WITH_SUCCESS
with two or more illegal types.
For example, in the following sequence, both i8 and i1
might be illegal in some target, e.g. armv5, mipsel, mips64el,
%0 = cmpxchg i8* %ptr, i8 %desire, i8 %new monotonic monotonic
%1 = extractvalue { i8, i1 } %0, 1
Since both i8 and i1 should be legalized, the corresponding
ATOMIC_CMP_SWAP_WITH_SUCCESS dag will be checked/replaced/updated
twice.
If we don't update the usage to *ALL* of the results in the
first round, the DAG for extractvalue might be processed earlier.
The GetPromotedInteger() will result in assertion failure,
because its operand (i.e. the success bit of cmpxchg) is not
promoted beforehand.
llvm-svn: 213569
When performing a dynamic stack adjustment without optimisations, we would mark
SP as def and R4 as kill. This occurred as part of the expansion of a
WIN__CHKSTK SDNode which indicated the proper handling of SP and R4. The result
would be that we would double define SP as part of an operation, which is
obviously incorrect.
Furthermore, the VTList for the chain had an incorrect parameter type of i32
instead of Other.
Correct these to permit proper lowering of __builtin_alloca at -O0.
llvm-svn: 213442
Actual support for softening f16 operations is still limited, and can be added
when it's needed. But Soften is much closer to being a useful thing to try
than keeping it Legal when no registers can actually hold such values.
Longer term, we probably want something between Soften and Promote semantics
for most targets, it'll be more efficient to promote the 4 basic operations to
f32 than libcall them.
llvm-svn: 213372
The post-indexed instructions were missing the constraint, causing unpredictable STR instructions to be emitted.
The earlyclobber constraint on the pre-indexed STR instructions is not strictly necessary, as the instruction selection for pre-indexed STR instructions goes through an additional layer of pseudo instructions which have the constraint defined, however it doesn't hurt to specify the constraint directly on the pre-indexed instructions as well, since at some point someone might create instances of them programmatically and then the constraint is definitely needed.
This fixes PR20323.
llvm-svn: 213369