Both ports are required for BitScan ops. Update the uops counts + port usage based off the most recent llvm-exegesis captures (PR36895) and what Intel AoM / Agner reports as well.
This reverts commit 1f16191906.
We're seeing some issues with this internally. It seems that when
the spill is created by register allocation, the GPR doesn't get
allocated and an assertion fires during virtual register rewriting.
The .mir test case contains the spill before register allocation so
register allocation sees it as any other instruction.
I guess this is why we should use unique_ptr as much as possible.
Also fix the InterfaceAttachmentTest.cpp test.
Differential Revision: https://reviews.llvm.org/D110984
PR52040 identified several issues with the HOP(HOP'(X,X),HOP'(Y,Y)) -> HOP(PERMUTE(HOP'(X,Y)),PERMUTE(HOP'(X,Y)) slow-HOP fold.
Not only was there a copy+paste typo when accessing the inner HOP operands, but the (unnecessary) ReplaceAllUsesOfValueWith call was missing one use checks.
Now that we have better shuffle combines of HOPs we can just return a new HOP() sequence and not use ReplaceAllUsesOfValueWith at all - this actually improved pair_sum_v8i32_v4i32 codegen as it kicks off further shuffle combines.
Currently constructor initializer lists sometimes format incorrectly
when there is a preprocessor directive in the middle of the list.
This patch fixes the issue when parsing the initilizer list by
ignoring the preprocessor directive when checking if a block is
part of an initializer list.
rdar://82554274
Reviewed By: MyDeveloperDay, HazardyKnusperkeks
Differential Revision: https://reviews.llvm.org/D109951
Improve the clarity and guidance of the warning when using code modifying option in clang-format see {D69764}
Reviewed By: HazardyKnusperkeks, curdeius
Differential Revision: https://reviews.llvm.org/D110801
X86's decomposeMulByConstant never permits mul decomposition to shift+add/sub if the vector multiply is legal.
Unfortunately this isn't great for SSE41+ targets which have PMULLD for vXi32 multiplies, but is often quite slow. This patch proposes to allow decomposition if the target has the SlowPMULLD flag (i.e. Silvermont). We also always decompose legal vXi64 multiplies - even latest IceLake has really poor latencies for PMULLQ.
Differential Revision: https://reviews.llvm.org/D110588
While we already model this tuple, the load cost is divergent from reality, so fix it.
The only sched models that for cpu's that support avx2
but not avx512 are: haswell, broadwell, skylake, zen1-3
For load we have:
https://godbolt.org/z/zWMhhnPYa - for intels `Block RThroughput: =56.0`; for ryzens, `Block RThroughput: <=24.0`
So pick cost of `56`.
For store we have:
https://godbolt.org/z/vnqqjWx51 - for intels `Block RThroughput: =12.0`; for ryzens, `Block RThroughput: <=4.0`
So pick cost of `12`.
I'm directly using the shuffling asm the llc produced,
without any manual fixups that may be needed
to ensure sequential execution.
Reviewed By: RKSimon
Differential Revision: https://reviews.llvm.org/D110971
While we already model this tuple, the values are divergent from reality, so fix them.
The only sched models that for cpu's that support avx2
but not avx512 are: haswell, broadwell, skylake, zen1-3
For load we have:
https://godbolt.org/z/TrGW7cKsE - for intels `Block RThroughput: =24.0`; for ryzens, `Block RThroughput: <=12.0`
So pick cost of `24`.
For store we have:
https://godbolt.org/z/Mh7qaqEfe - for intels `Block RThroughput: =8.0`; for ryzens, `Block RThroughput: <=4.0`
So pick cost of `8`.
I'm directly using the shuffling asm the llc produced,
without any manual fixups that may be needed
to ensure sequential execution.
Reviewed By: RKSimon
Differential Revision: https://reviews.llvm.org/D110970
While we already model this tuple, the values are divergent from reality, so fix them.
The only sched models that for cpu's that support avx2
but not avx512 are: haswell, broadwell, skylake, zen1-3
For load we have:
https://godbolt.org/z/v7746Wcf7 - for intels `Block RThroughput: =12.0`; for ryzens, `Block RThroughput: <=6.0`
So pick cost of `12`.
For store we have:
https://godbolt.org/z/aEeEohEbP - for intels `Block RThroughput: =4.0`; for ryzens, `Block RThroughput: <=2.0`
So pick cost of `4`.
I'm directly using the shuffling asm the llc produced,
without any manual fixups that may be needed
to ensure sequential execution.
Reviewed By: RKSimon
Differential Revision: https://reviews.llvm.org/D110969
While we already model this tuple, the store cost is divergent from reality, so fix it.
The only sched models that for cpu's that support avx2
but not avx512 are: haswell, broadwell, skylake, zen1-3
For load we have:
https://godbolt.org/z/1n4bPh7Tn - for intels `Block RThroughput: =4.0`; for ryzens, `Block RThroughput: <=2.0`
So pick cost of `4`.
For store we have:
https://godbolt.org/z/r8K9sveqo - for intels `Block RThroughput: =4.0`; for ryzens, `Block RThroughput: <=2.0`
So pick cost of `4`.
I'm directly using the shuffling asm the llc produced,
without any manual fixups that may be needed
to ensure sequential execution.
Reviewed By: RKSimon
Differential Revision: https://reviews.llvm.org/D110968
While we already model this tuple, the values are divergent from reality, so fix them.
The only sched models that for cpu's that support avx2
but not avx512 are: haswell, broadwell, skylake, zen1-3
For load we have:
https://godbolt.org/z/KP6nn36zs - for intels `Block RThroughput: =4.0`; for ryzens, `Block RThroughput: <=2.0`
So pick cost of `4`.
For store we have:
https://godbolt.org/z/ov95zhrq6 - for intels `Block RThroughput: =4.0`; for ryzens, `Block RThroughput: <=2.0`
So pick cost of `4`.
I'm directly using the shuffling asm the llc produced,
without any manual fixups that may be needed
to ensure sequential execution.
Reviewed By: RKSimon
Differential Revision: https://reviews.llvm.org/D110966
For VF=16, costs are correct.
For VF=32, load cost is divergent.
The only sched models that for cpu's that support avx2
but not avx512 are: haswell, broadwell, skylake, zen1-3
For load we have:
https://godbolt.org/z/qKjevqf4W - for intels `Block RThroughput: <=14.0`; for ryzens, `Block RThroughput: <=4.5`
So pick cost of `14`.
For store we have:
https://godbolt.org/z/xTssTq319 - for intels `Block RThroughput: =13.0`; for ryzens, `Block RThroughput: <=5.5`
So pick cost of `13`.
I'm directly using the shuffling asm the llc produced,
without any manual fixups that may be needed
to ensure sequential execution.
Reviewed By: RKSimon
Differential Revision: https://reviews.llvm.org/D110961
While we already model this tuple, the values are divergent from reality, so fix them.
The only sched models that for cpu's that support avx2
but not avx512 are: haswell, broadwell, skylake, zen1-3
For load we have:
https://godbolt.org/z/1jeocxj55 - for intels `Block RThroughput: =6.0`; for ryzens, `Block RThroughput: <=3.0`
So pick cost of `6`.
For store we have:
https://godbolt.org/z/fr7xfa3K5 - for intels `Block RThroughput: =6.0`; for ryzens, `Block RThroughput: <=2.0`
So pick cost of `6`.
I'm directly using the shuffling asm the llc produced,
without any manual fixups that may be needed
to ensure sequential execution.
Reviewed By: RKSimon
Differential Revision: https://reviews.llvm.org/D110960
While we already model this tuple, the values are divergent from reality, so fix them.
The only sched models that for cpu's that support avx2
but not avx512 are: haswell, broadwell, skylake, zen1-3
For load we have:
https://godbolt.org/z/obWz3PrfK - for intels `Block RThroughput: =3.0`; for ryzens, `Block RThroughput: <=1.5`
So pick cost of `3`.
For store we have:
https://godbolt.org/z/orjPshn3h - for intels `Block RThroughput: =4.0`; for ryzens, `Block RThroughput: <=2.0`
So pick cost of `4`.
I'm directly using the shuffling asm the llc produced,
without any manual fixups that may be needed
to ensure sequential execution.
Reviewed By: RKSimon
Differential Revision: https://reviews.llvm.org/D110958
While we already model this tuple, the values are divergent from reality, so fix them.
The only sched models that for cpu's that support avx2
but not avx512 are: haswell, broadwell, skylake, zen1-3
For load we have:
https://godbolt.org/z/WYscYMcW4 - for intels `Block RThroughput: =3.0`; for ryzens, `Block RThroughput: <=1.5`
So pick cost of `3`.
For store we have:
https://godbolt.org/z/e9qvYdbbs - for intels `Block RThroughput: =4.0`; for ryzens, `Block RThroughput: <=2.0`
So pick cost of `4`.
I'm directly using the shuffling asm the llc produced,
without any manual fixups that may be needed
to ensure sequential execution.
Reviewed By: RKSimon
Differential Revision: https://reviews.llvm.org/D110956
This adds the width estimation functions to the std-format-spec.
Implements parts of:
- P0645 Text Formatting
- P1868 width: clarifying units of width and precision in std::format
Reviewed By: #libc, ldionne, vitaut
Differential Revision: https://reviews.llvm.org/D103413
D104366 introduced a new llvm-cxxfilt test with non-ASCII characters,
which caused a failure on llvm-clang-x86_64-expensive-checks-win
builder, with a stack trace suggesting issue in a call to isalnum.
The argument to isalnum should be either EOF or a value that is
representable in the type unsigned char. The llvm-cxxfilt does not
perform a cast from char to unsigned char before the call, so the
value might be out of valid range.
Replace the call to isalnum with isAlnum from StringExtras, which takes
a char as the argument. This also makes the check independent of the
current locale.
Differential Revision: https://reviews.llvm.org/D110986
This patch implements suggestion done while reviewing D102634. It adds two fields:
ParentIdx and SiblingIdx. These fields allow fast navigation to die parent and
die sibling. These fields are set at the moment when dies are loaded.
dsymutil works 2% faster with this patch(run on clang binary).
Differential Revision: https://reviews.llvm.org/D110363
According to OpenMP 5.0 spec document, the following semantic restrictions have been dealt with in this patch.
1. [sections construct] Orphaned section directives are prohibited. That is, the section directives must appear within the sections construct and must not be encountered elsewhere in the sections region.
Semantic checks for the following are not necessary, since use of orphaned section construct (i.e. without an enclosing sections directive) throws parser errors and control flow never reaches the semantic checking phase. Added a test case for the same.
2. [sections construct] Must be a structured block
Added test case and made changes to branching logic
3. [simd construct] Must be a structured block / A program that branches in or out of a function with declare simd is non conforming
4. Fixed !$omp do's handling of unlabeled CYCLEs
Reviewed By: kiranchandramohan
Differential Revision: https://reviews.llvm.org/D108904
Seems this section is not updated since we have transited to llvm-project monorepo.
At the start, we build libcxx under monorepo configuration but later try to make the separate configuration for libcxx build
and running benchmark.
Reviewed By: ldionne, #libc
Differential Revision: https://reviews.llvm.org/D110722
This fixes a violation of the wrap flag rules introduced in c4048d8f. This was also noted in the (very old) PR23527.
The issue being fixed is that we assume the inbound flag on any GEP assumes that all users of *any* gep (or add) which happens to map to that SCEV would also be UB if the (other) gep overflowed. That's simply not true.
In terms of the test diffs, I don't see anything seriously problematic. The lost flags are expected (given the semantic restriction on when its legal to tag the SCEV), and there are several cases where the previously inferred flags are unsound per the new semantics.
The only common trend I noticed when looking at the deltas is that by not considering branch on poison as immediate UB in ValueTracking, we do miss a few cases we could reclaim. We may be able to claw some of these back with the follow ideas mentioned in PR51817.
It's worth noting that most of the changes are analysis result only changes. The two transform changes are pretty minimal. In one case, we miss the opportunity to infer a nuw (correctly). In the other, we fail to fold an exit and produce a loop invariant form instead. This one is probably over-reduced as the program appears to be undefined in practice, and neither before or after exploits that.
Differential Revision: https://reviews.llvm.org/D109789
This code is attempting to prove that I must execute if we enter the defining scope of the SCEV which will be created from I. In the case where it found a defining addrec scope, it had a rather odd restriction that all of the other operands must be loop invariant in that addrec's loop.
As near as I can tell here, we really only need a upper bound on the defining scope. If we can prove the stronger property, then we must also have proven the property on the exact defining scope as well.
In practice, the actual effect of this change is narrow. The compile time restriction at the top of the routine basically limits us to I being an arithmetic in some loop L with both an addrec operand in L, and a unknown operands in L. Possible to demonstrate, but the main value of the change is removing unneeded code.
Differential Revision: https://reviews.llvm.org/D110892
This is a common pattern:
```
%icmp:_(s32) = G_ICMP intpred(eq), ...
%ext:_(s64) = G_ANYEXT %icmp(s32)
%and:_(s64) = G_AND %ext, 1
```
Here's an example: https://godbolt.org/z/T13f6o8zE
This pattern appears because of the following combine in the
LegalizationArtifactCombiner:
```
// zext(trunc x) - > and (aext/copy/trunc x), mask
```
Which kicks in when we widen the result of G_ICMP from 1 bit to 32 bits.
We know that, on AArch64, a scalar G_ICMP will produce 0 or 1. So the result
of `%ext` will always be 0 or 1 as well.
We have some KnownBits combines which eliminate redundant G_ANDs with masks.
These combines don't kick in with G_ANYEXT.
So, if we replace the G_ANYEXT with G_ZEXT in this situation, the KnownBits
based combines can remove the redundant G_AND.
I wasn't sure if it woud be more appropriate to
* Take this route
* Put this in the LegalizationArtifactCombiner.
* Allow 64 bit G_ICMP destinations
I decided on this route because
1) It's simple
2) I'm not sure if philosophically-speaking, we should be handling non-artifact
instructions + target-specific details like TargetBooleanContents in the
LegalizationArtifactCombiner
3) There is a lot of existing code which assumes we only have 32 bit G_ICMP
destinations. So, adding support for 64-bit destinations seems rather invasive
right now. I think that adding support for 64-bit destinations, or modelling
G_ICMP as ADDS/SUBS/etc is probably cleaner long term though.
This gives minor code size savings on all CTMark benchmarks.
Differential Revision: https://reviews.llvm.org/D110959
This assertion should help us catch cases when DT is used in a way that
doesn't make much sense and usually indicates usage errors. In D110752
you can see a test on which this assertion catches a miscompile.
The assertion is added to getNode since all queries seem to be
routed through that function for all non-trivial cases.
Reviewed By: aeubanks, MaskRay
Differential Revision: https://reviews.llvm.org/D110751
Added an additional check for constants after simplification of
"select _, true, false" pattern. We need to prevent attempts to unswitch constant
conditions for two reasons:
a) Doing that doesn't make any sense, in the best case it will just burn
some compile time.
b) SimpleLoopUnswitch isn't designed to unswitch constant conditions
(due to (a)), so attempting that can cause miscompiles. The attached
testcase is an example of such miscompile.
Also added an assertion that'll make sure we aren't trying to replace
constants, so it will help us prevent such bugs in future. The assertion
from D110751 is another layer of protection against such cases.
Reviewed By: aeubanks
Differential Revision: https://reviews.llvm.org/D110752