Support for the QPX vector instruction set, used on the IBM BG/Q supercomputer,
has recently been added to the LLVM PowerPC backend. This vector instruction
set requires some ABI modifications because the ABI on the BG/Q expects
<4 x double> vectors to be provided with 32-byte stack alignment, and to be
handled as native vector types (similar to how Altivec vectors are handled on
mainline PPC systems). I've named this ABI variant elfv1-qpx, have made this
the default ABI when QPX is supported, and have updated the ABI handling code
to provide QPX vectors with the correct stack alignment and associated
register-assignment logic.
llvm-svn: 231960
This patch allows using of ExprWithCleanups expressions and other complex expressions in 'omp atomic' construct
Differential Revision: http://reviews.llvm.org/D8200
llvm-svn: 231905
The task region is emmitted in several steps:
Emit a call to kmp_task_t *__kmpc_omp_task_alloc(ident_t *, kmp_int32 gtid, kmp_int32 flags, size_t sizeof_kmp_task_t, size_t sizeof_shareds, kmp_routine_entry_t *task_entry).
Here task_entry is a pointer to the function:
kmp_int32 .omp_task_entry.(kmp_int32 gtid, kmp_task_t *tt) {
TaskFunction(gtid, tt->part_id, tt->shareds);
return 0;
}
Copy a list of shared variables to field shareds of the resulting structure kmp_task_t returned by the previous call (if any).
Copy a pointer to destructions function to field destructions of the resulting structure kmp_task_t.
Emit a call to kmp_int32 __kmpc_omp_task(ident_t *, kmp_int32 gtid, kmp_task_t *new_task), where new_task is a resulting structure from previous items.
Differential Revision: http://reviews.llvm.org/D7560
llvm-svn: 231762
Patch adds proper generation of debug info for all OpenMP regions. Also, all OpenMP regions are generated in a termination scope, because standard does not allow to throw exceptions out of structured blocks, associated with the OpenMP regions
Differential Revision: http://reviews.llvm.org/D7935
llvm-svn: 231757
This reverts commit r231752.
It was failing to link with cmake:
lib64/libclangCodeGen.a(CGOpenMPRuntime.cpp.o):/home/espindola/llvm/llvm/tools/clang/lib/CodeGen/CGOpenMPRuntime.cpp:function clang::CodeGen::InlinedOpenMPRegionRAII::~InlinedOpenMPRegionRAII(): error: undefined reference to 'clang::CodeGen::EHScopeStack::popTerminate()'
clang-3.7: error: linker command failed with exit code 1 (use -v to see invocation)
llvm-svn: 231754
Patch adds proper generation of debug info for all OpenMP regions. Also, all OpenMP regions are generated in a termination scope, because standard does not allow to throw exceptions out of structured blocks, associated with the OpenMP regions
Differential Revision: http://reviews.llvm.org/D7935
llvm-svn: 231752
For global reg lvalue - use regular store through global register.
For simple lvalue - use simple atomic store.
For bitfields, vector element, extended vector elements - the original value of the whole storage (for vector elements) or of some aligned value (for bitfields) is atomically read, the part of this value for the given lvalue is modified and then use atomic compare-and-exchange operation to try to atomically write modified value (if it was not modified).
Also, changes in this patch fix the bug for '#pragma omp atomic read' applied to extended vector elements.
Differential Revision: http://reviews.llvm.org/D7369
llvm-svn: 230736
This is a necessary prerequisite for debugging with modules.
The .pcm files become containers that hold the serialized AST which allows
us to store debug information in the module file that can be shared by all
object files that were built importing the module.
This reapplies r230044 with a fixed configure+make build and updated
dependencies and testcase requirements. Over the last iteration this
version adds
- missing target requirements for testcases that specify an x86 triple,
- a missing clangCodeGen.a dependency to libClang.a in the make build.
rdar://problem/19104245
llvm-svn: 230423
__kmpc_omp_flush() runtime library now has only one argument and is not a vararg
anymore. This update makes the codegen compatible with these changes.
llvm-svn: 230331
The /volatile:ms semantics turn volatile loads and stores into atomic
acquire and release operations. This distinction is important because
volatile memory operations do not form a happens-before relationship
with non-atomic memory. This means that a volatile store is not
sufficient for implementing a mutex unlock routine.
Differential Revision: http://reviews.llvm.org/D7580
llvm-svn: 229082
This patch emits the following code for the single directive:
#pragma omp single
<body>
<---->
if(__kmpc_single(...)) {
<body>
__kmpc_end_single(...);
}
Differential Revision: http://reviews.llvm.org/D7045
llvm-svn: 228275
For 'taskyield' directive emit call to kmp_int32 __kmpc_omp_taskyield(ident_t *,
kmp_int32 global_tid, int end_part); runtime function call with end_part arg set
to 0 (it is ignored).
Differential Revision: http://reviews.llvm.org/D7047
llvm-svn: 228272
"omp atomic read [seq_cst]" accepts expressions "v=x;". In this patch we perform
an atomic load of "x" (using builtin atomic loading instructions or a call to
"atomic_load()" for simple lvalues and "kmpc_atomic_start();load
<x>;kmpc_atomic_end();" for other lvalues), convert the result of loading to
type of "v" (using EmitScalarConversion() for simple types and
EmitComplexToScalarConversion() for conversions from complex to scalar) and then
store the result in "v".)
Differential Revision: http://reviews.llvm.org/D6431
llvm-svn: 226788
"omp atomic read [seq_cst]" accepts expressions "v=x;". In this patch we perform
an atomic load of "x" (using builtin atomic loading instructions or a call to
"atomic_load()" for simple lvalues and "kmpc_atomic_start();load
<x>;kmpc_atomic_end();" for other lvalues), convert the result of loading to
type of "v" (using EmitScalarConversion() for simple types and
EmitComplexToScalarConversion() for conversions from complex to scalar) and then
store the result in "v".)
Differential Revision: http://reviews.llvm.org/D6431
llvm-svn: 226786
"omp atomic read [seq_cst]" accepts expressions "v=x;". In this patch we perform
an atomic load of "x" (using builtin atomic loading instructions or a call to
"atomic_load()" for simple lvalues and "kmpc_atomic_start();load
<x>;kmpc_atomic_end();" for other lvalues), convert the result of loading to
type of "v" (using EmitScalarConversion() for simple types and
EmitComplexToScalarConversion() for conversions from complex to scalar) and then
store the result in "v".
Differential Revision: http://reviews.llvm.org/D6431
llvm-svn: 226784
The lowering looks a lot like normal EH lowering, with the exception
that the exceptions are caught by executing filter expression code
instead of matching typeinfo globals. The filter expressions are
outlined into functions which are used in landingpad clauses where
typeinfo would normally go.
Major aspects that still need work:
- Non-call exceptions in __try bodies won't work yet. The plan is to
outline the __try block in the frontend to keep things simple.
- Filter expressions cannot use local variables until capturing is
implemented.
- __finally blocks will not run after exceptions. Fixing this requires
work in the LLVM SEH preparation pass.
The IR lowering looks like this:
// C code:
bool safe_div(int n, int d, int *r) {
__try {
*r = normal_div(n, d);
} __except(_exception_code() == EXCEPTION_INT_DIVIDE_BY_ZERO) {
return false;
}
return true;
}
; LLVM IR:
define i32 @filter(i8* %e, i8* %fp) {
%ehptrs = bitcast i8* %e to i32**
%ehrec = load i32** %ehptrs
%code = load i32* %ehrec
%matches = icmp eq i32 %code, i32 u0xC0000094
%matches.i32 = zext i1 %matches to i32
ret i32 %matches.i32
}
define i1 zeroext @safe_div(i32 %n, i32 %d, i32* %r) {
%rr = invoke i32 @normal_div(i32 %n, i32 %d)
to label %normal unwind to label %lpad
normal:
store i32 %rr, i32* %r
ret i1 1
lpad:
%ehvals = landingpad {i8*, i32} personality i32 (...)* @__C_specific_handler
catch i8* bitcast (i32 (i8*, i8*)* @filter to i8*)
%ehptr = extractvalue {i8*, i32} %ehvals, i32 0
%sel = extractvalue {i8*, i32} %ehvals, i32 1
%filter_sel = call i32 @llvm.eh.seh.typeid.for(i8* bitcast (i32 (i8*, i8*)* @filter to i8*))
%matches = icmp eq i32 %sel, %filter_sel
br i1 %matches, label %eh.except, label %eh.resume
eh.except:
ret i1 false
eh.resume:
resume
}
Reviewers: rjmccall, rsmith, majnemer
Differential Revision: http://reviews.llvm.org/D5607
llvm-svn: 226760
storage.
This fix allows to use non-constant global variables, static local variables and static data
members in data-sharing attribute clauses in parallel and task regions.
llvm-svn: 226250
Currently, if global variable is marked as a private OpenMP variable, the compiler crashes in debug version or generates incorrect code in release version. It happens because in the OpenMP region the original global variable is used instead of the generated private copy. It happens because currently globals variables are not captured in the OpenMP region.
This patch adds capturing of global variables iff private copy of the global variable must be used in the OpenMP region.
Differential Revision: http://reviews.llvm.org/D6259
llvm-svn: 224323
Adds generation of call to "i32 kmpc_cancel_barrier(ident_t *, i32)" libcall for explicitly specified barriers (OMP_IDENT_BARRIER_EXPL flag is added to "flags" field of "ident_t" structure).
Also this patch replaces all calls to "kmpc_barrier" function by calls of "__kmpc_cancel_barrier" function which provides additional functionality for OpenMP 4.0.
Also, library specific enum OpenMPLocationFlags moved to private section of CGOpenMPRuntime class to make it more independent from library implementation.
Differential Revision: http://reviews.llvm.org/D6447
llvm-svn: 223444
According to OpenMP standard, Section 2.12.6, atomic Construct, '#pragma omp atomic write' is allowed to be used only for expression statements of form 'x = expr;', where x is a lvalue expression and expr is an expression with scalar type. Patch adds checks for it.
llvm-svn: 222913
The Mips target adds the signext attribute to signed 32-bit integers in order
to support the N32/N64 correctly. Integers must be promoted to 64-bit bit on
these ABI's.
llvm-svn: 222618
For each "omp flush" directive a call to "void kmpc_flush(ident_t *, ...)" function is generated.
Directive "omp flush" may have an associated list of variables to flush, but currently runtime function ignores them. So the patch generates just "call kmpc_flush(ident_t *<loc>, i32 0)".
Differential Revision: http://reviews.llvm.org/D6292
llvm-svn: 222409
According to OpenMP standard, Section 2.12.6, atomic Construct, '#pragma omp atomic read' is allowed to be used only for expression statements of form 'v = x;', where x and v (as applicable) are both l-value expressions with scalar type. Patch adds checks for it.
llvm-svn: 222231
Currently there is a bug in processing of global variables used as loop control variables in 'omp for/simd' constructs: these globals must be captured as private variables, but currently they are nor. This is a temporary bug fix for this problem until the correct solution is prepared. If a global var used as lcv without explicit mark as a private/linear/lastprivate the error message is emitted.
llvm-svn: 221970
For all threadprivate variables which have constructor/destructor emit call to void __kmpc_threadprivate_register(ident_t * <Current Location>, void *<Original Global Addr>, kmpc_ctor <Constructor>, kmpc_cctor NULL, kmpc_dtor <Destructor>);
In expressions all references to such variables are replaced by calls to void *__kmpc_threadprivate_cached(ident_t *<Current Location>, kmp_int32 <Current Thread Id>, void *<Original Global Addr>, size_t <Size of Data>, void ***<Pointer to autogenerated cache – array of private copies of threadprivate variable>);
Test test/OpenMP/threadprivate_codegen.cpp checks that codegen is correct. Also it checks that codegen is correct after serialization/deserialization and one of passes verifies debug info.
Differential Revision: http://reviews.llvm.org/D4002
llvm-svn: 221663
This patch generates some helper variables which used as a private copies of the corresponding original variables inside an OpenMP 'parallel' directive. These generated variables are initialized by default (with the default constructor, if any). In outlined function references to original variables are replaced by the references to these private helper variables. At the end of the initialization of the private variables and implicit barier is set by calling __kmpc_barrier(...) runtime function to be sure that all threads were initialized using original values of the variables.
Differential Revision: http://reviews.llvm.org/D4752
llvm-svn: 220262