These functions allow for defining pattern fragments usable within the `match` and `rewrite` sections of a pattern. The main structure of Constraints and Rewrites functions are the same, and are similar to functions in other languages; they contain a signature (i.e. name, argument list, result list) and a body:
```pdll
// Constraint that takes a value as an input, and produces a value:
Constraint Cst(arg: Value) -> Value { ... }
// Constraint that returns multiple values:
Constraint Cst() -> (result1: Value, result2: ValueRange);
```
When returning multiple results, each result can be optionally be named (the result of a Constraint/Rewrite in the case of multiple results is a tuple).
These body of a Constraint/Rewrite functions can be specified in several ways:
* Externally
In this case we are importing an external function (registered by the user outside of PDLL):
```pdll
Constraint Foo(op: Op);
Rewrite Bar();
```
* In PDLL (using PDLL constructs)
In this case, the body is defined using PDLL constructs:
```pdll
Rewrite BuildFooOp() {
// The result type of the Rewrite is inferred from the return.
return op<my_dialect.foo>;
}
// Constraints/Rewrites can also implement a lambda/expression
// body for simple one line bodies.
Rewrite BuildFooOp() => op<my_dialect.foo>;
```
* In PDLL (using a native/C++ code block)
In this case the body is specified using a C++(or potentially other language at some point) code block. When building PDLL in AOT mode this will generate a native constraint/rewrite and register it with the PDL bytecode.
```pdll
Rewrite BuildFooOp() -> Op<my_dialect.foo> [{
return rewriter.create<my_dialect::FooOp>(...);
}];
```
Differential Revision: https://reviews.llvm.org/D115836
This allows for defining simple patterns in a single line. The lambda
body of a Pattern expects a single operation rewrite statement:
```
Pattern => replace op<my_dialect.foo>(operands: ValueRange) with operands;
```
Differential Revision: https://reviews.llvm.org/D115835
Having clarified that executing the SerializeToHsaco pass can
depend on a ROCm installation, switch from calling lld as a library to
using the copy of lld guaranteed to be included in a ROCm install.
This removes the workaround introduced in D119277
Reviewed By: whchung
Differential Revision: https://reviews.llvm.org/D119463
If the result operand has a unit leading dim it is removed from all operands.
Reviewed By: ThomasRaoux
Differential Revision: https://reviews.llvm.org/D119206
This patch factors out space information from IntegerPolyhedron, PresburgerSet
and PWMAFunction to PresburgerSpace and its extension with local variables,
PresburgerLocalSpace.
Generally any new data structure additions in Presburger library will require
space information. This patch removes the need to duplicate the space
information.
Reviewed By: arjunp
Differential Revision: https://reviews.llvm.org/D119280
Fix fold-memref-subview-ops for affine.load/store. We need to expand out
the affine apply on its operands.
Differential Revision: https://reviews.llvm.org/D119402
Move expandAffineMap and expandAffineApplyExpr out to AffineUtils. This
is a useful method. The child revision uses it. NFC.
Reviewed By: rriddle
Differential Revision: https://reviews.llvm.org/D119401
removed obsoleted TODO
removed strange Fp precision for coordinates
lined up meta data testing code for readability
Reviewed By: bixia
Differential Revision: https://reviews.llvm.org/D119377
TypeIDAllocator enables the allocation of new TypeIDs at runtime,
that are unique during the lifetime of the allocator.
NonMovableTypeIDOwner is a class used to define a new TypeID for each instance
of a class, using the instance address. This class cannot be copied or moved.
Reviewed By: rriddle
Differential Revision: https://reviews.llvm.org/D104534
While testing LLVM 14.0.0 rc1 on Solaris, I ran into a compile failure:
from /var/llvm/llvm-14.0.0-rc1/rc1/llvm-project/mlir/lib/ExecutionEngine/SparseTensorUtils.cpp:22:
/usr/include/sys/types.h:103:16: error: conflicting declaration ‘typedef short int index_t’
103 | typedef short index_t;
| ^~~~~~~
In file included from
/var/llvm/llvm-14.0.0-rc1/rc1/llvm-project/mlir/lib/ExecutionEngine/SparseTensorUtils.cpp:17:
/var/llvm/llvm-14.0.0-rc1/rc1/llvm-project/mlir/include/mlir/ExecutionEngine/SparseTensorUtils.h:26:7:
note: previous declaration as ‘using index_t = uint64_t’
26 | using index_t = uint64_t;
| ^~~~~~~
The same issue had already occured in the past and fixed in D72619
<https://reviews.llvm.org/D72619>. More detailed explanation can also be
found there.
Tested on `amd64-pc-solaris2.11` and `sparcv9-solaris2.11`.
Differential Revision: https://reviews.llvm.org/D119323
This makes getAliasingOpResult symmetric to getAliasingOpOperand. The previous implementation was confusing for users and implemented in such a way only because there are currently no bufferizable ops that have multiple aliasing OpResults.
Differential Revision: https://reviews.llvm.org/D119259
They used to be classes with a virtual `run` function. This was inconvenient because post analysis steps are stored in BufferizationOptions. Because of this design choice, BufferizationOptions were not copyable.
Differential Revision: https://reviews.llvm.org/D119258
Supports whitespace elements: ` ` and `\\n` as well as the "empty" whitespace `` that removes an otherwise printed space.
Depends on D118208
Reviewed By: rriddle
Differential Revision: https://reviews.llvm.org/D118210
Reuse the higher precision F32 approximation for the F16 one (by expanding and
truncating). This is partly RFC as I'm not sure what the expectations are here
(e.g., these are only for F32 and should not be expanded, that reusing
higher-precision ones for lower precision is undesirable due to increased
compute cost and only approximations per exact type is preferred, or this is
appropriate [at least as fallback] but we need to see how to make it more
generic across all the patterns here).
Differential Revision: https://reviews.llvm.org/D118968
Implements optional attribute or type parameters, including support for such parameters in the assembly format `struct` directive. Also implements optional groups.
Depends on D117971
Reviewed By: rriddle
Differential Revision: https://reviews.llvm.org/D118208
For 0-D as well as 1-D vectors, both these patterns should
return a failure as there is no need to collapse the shape
of the source. Currently, only 1-D vectors were handled. This
patch handles the 0-D case as well.
Reviewed By: Benoit, ThomasRaoux
Differential Revision: https://reviews.llvm.org/D119202
There are a few different test passes that check elementwise fusion in
Linalg. Consolidate them to a single pass controlled by different pass
options (in keeping with how `TestLinalgTransforms` exists).
Add a Python method, output_sparse_tensor, to use sparse_tensor.out to write
a sparse tensor value to a file.
Modify the method that evaluates a tensor expression to return a pointer of the
MLIR sparse tensor for the result to delay the extraction of the coordinates and
non-zero values.
Implement the Tensor to_file method to evaluate the tensor assignment and write
the result to a file.
Add unit tests. Modify test golden files to reflect the change that TNS outputs
now have a comment line and two meta data lines.
Reviewed By: aartbik
Differential Revision: https://reviews.llvm.org/D118956
The conversion to the new ControlFlow dialect didn't change the
GPUToROCDL pass - this commit fixes this issue.
Reviewed By: rriddle
Differential Revision: https://reviews.llvm.org/D119188
Add support for computing an overapproximation of the number of integer points
in a polyhedron. The returned result is actually the number of integer points
one gets by computing the "rational shadow" obtained by projecting out the
local IDs, finding the minimal axis-parallel hyperrectangular approximation
of the shadow, and returning the number of integer points in that. This does
not currently support symbols.
Reviewed By: Groverkss
Differential Revision: https://reviews.llvm.org/D119228
This makes it applicable to both ArrayAttr and its typed subclasses instead of
only the latter. There is no good reason why ArrayAttr shouldn't be
const-buildable while its typed subclasses are, this was likely just an
omission.
Depends On D119113
Reviewed By: rriddle, nicolasvasilache
Differential Revision: https://reviews.llvm.org/D119114
ODS provides a mechanism for defalut-valued attributes based on a wrapper
TableGen class that is recognized by mlir-tblgen. Such attributes, if not set
on the operaiton, can be construted on-the-fly in their getter given a constant
value. In order for this construction to work, the attribute specificaiton in
ODS must set the constBuilderCall field correctly. This has not been verified,
which could lead to invalid C++ code being generated by mlir-tblgen.
Closes#53588.
Reviewed By: rriddle, mehdi_amini
Differential Revision: https://reviews.llvm.org/D119113
FunctionPass has been deprecated in favor of OperationPass<FuncOp>
for a few weeks, and this commit finished the deprecation with deletion.
The only difference between the two is that FunctionPass filters out function
declarations. When updating references to FunctionPass, ensure that
the pass either can handle declarations or explicitly add in filtering.
See https://llvm.discourse.group/t/functionpass-deprecated-in-favor-of-operationpass-funcop
Differential Revision: https://reviews.llvm.org/D118735
These have generally been replaced by better ODS functionality, and do not
need to be explicitly provided anymore.
Differential Revision: https://reviews.llvm.org/D119065
Currently if an operation wants a C++ implemented parser/printer, it specifies inline
code blocks. This is quite problematic for various reasons, e.g. it requires defining
C++ inside of Tablegen which is discouraged when possible, but mainly because
nearly all usages simply forward to static functions (e.g. `static void parseSomeOp(...)`)
with users devising their own standards for how these are defined.
This commit adds support for a `hasCustomAssemblyFormat` bit field that specifies if
a C++ parser/printer is needed, and when set to 1 declares the parse/print methods for
operations to override. For migration purposes, the existing behavior is untouched. Upstream
usages will be replaced in a followup to keep this patch focused on the new implementation.
Differential Revision: https://reviews.llvm.org/D119054
There are a few different test passes that check elementwise fusion in
Linalg. Consolidate them to a single pass controlled by different pass
options (in keeping with how `TestLinalgTransforms` exists).
Fix the verification function of spirv::ConstantOp to allow nesting
array attributes.
Reviewed By: antiagainst
Differential Revision: https://reviews.llvm.org/D118939
Add the class MultiAffineFunction which represents functions whose domain is an
IntegerPolyhedron and which produce an output given by a tuple of affine
expressions in the IntegerPolyhedron's ids.
Also add support for piece-wise MultiAffineFunctions, which are defined on a
union of IntegerPolyhedrons, and may have different output affine expressions
on each IntegerPolyhedron. Thus the function is affine on each individual
IntegerPolyhedron piece in the domain.
This is part of a series of patches leading up to parametric integer programming.
Depends on D118778.
Reviewed By: Groverkss
Differential Revision: https://reviews.llvm.org/D118779
* Implement `FlatAffineConstraints::getConstantBound(EQ)`.
* Inject a simpler constraint for loops that have at most 1 iteration.
* Taking into account constant EQ bounds of FlatAffineConstraint dims/symbols during canonicalization of the resulting affine map in `canonicalizeMinMaxOp`.
Differential Revision: https://reviews.llvm.org/D119153
This is both more efficient and more ergonomic to use, as inverting a
bit vector is trivial while inverting a set is annoying.
Sadly this leaks into a bunch of APIs downstream, so adapt them as well.
This would be NFC, but there is an ordering dependency in MemRefOps's
computeMemRefRankReductionMask. This is now deterministic, previously it
was dependent on SmallDenseSet's unspecified iteration order.
Differential Revision: https://reviews.llvm.org/D119076
This patch makes IntegerPolyhedron and derived classes use of getters to access
IntegerPolyhedron space information (`numIds, numDims, numSymbols`) instead of
directly accessing them.
This patch makes it easier to change the underlying implementation of the way
identifiers are stored, making it easier to extend/modify existing implementation.
Reviewed By: arjunp
Differential Revision: https://reviews.llvm.org/D118888
Adapt `tileConsumerAndFuseProducers` to return failure if the generated tile loop nest is empty since all tile sizes are zero. Additionally, fix `LinalgTileAndFuseTensorOpsPattern` to return success if the pattern applied successfully.
Reviewed By: mravishankar
Differential Revision: https://reviews.llvm.org/D118878
This header is very large (3M Lines once expended) and was included in location
where dwarf-specific information were not needed.
More specifically, this commit suppresses the dependencies on
llvm/BinaryFormat/Dwarf.h in two headers: llvm/IR/IRBuilder.h and
llvm/IR/DebugInfoMetadata.h. As these headers (esp. the former) are widely used,
this has a decent impact on number of preprocessed lines generated during
compilation of LLVM, as showcased below.
This is achieved by moving some definitions back to the .cpp file, no
performance impact implied[0].
As a consequence of that patch, downstream user may need to manually some extra
files:
llvm/IR/IRBuilder.h no longer includes llvm/BinaryFormat/Dwarf.h
llvm/IR/DebugInfoMetadata.h no longer includes llvm/BinaryFormat/Dwarf.h
In some situations, codes maybe relying on the fact that
llvm/BinaryFormat/Dwarf.h was including llvm/ADT/Triple.h, this hidden
dependency now needs to be explicit.
$ clang++ -E -Iinclude -I../llvm/include ../llvm/lib/Transforms/Scalar/*.cpp -std=c++14 -fno-rtti -fno-exceptions | wc -l
after: 10978519
before: 11245451
Related Discourse thread: https://llvm.discourse.group/t/include-what-you-use-include-cleanup
[0] https://llvm-compile-time-tracker.com/compare.php?from=fa7145dfbf94cb93b1c3e610582c495cb806569b&to=995d3e326ee1d9489145e20762c65465a9caeab4&stat=instructions
Differential Revision: https://reviews.llvm.org/D118781
Simple pass that changes all symbols to private unless symbol is excluded (and
in which case there is no change to symbol's visibility).
Differential Revision: https://reviews.llvm.org/D118752
I see a lot of array sorting in stack traces of our compiler, canonicalizer traverses this list every time it builds a pattern set, and it gets expensive very quickly.
Reviewed By: rriddle, mehdi_amini
Differential Revision: https://reviews.llvm.org/D118937
Induction variable calculation was ignoring scf.for step value. Fix it to get
the correct induction variable value in the prologue.
Differential Revision: https://reviews.llvm.org/D118932
Reorder the methods and patterns to move related patterns/methods
closer (textually).
Reviewed By: gysit
Differential Revision: https://reviews.llvm.org/D118870
Some translations do work with unregistered dialects, this allows one
to write testcases against them. It works the same way as it does for
mlir-opt.
Differential Revision: https://reviews.llvm.org/D118872
Replace the Python implementation for reading tensor input data from files with
create_sparse_tensor that uses sparse_tensor.new.
The MLIR TNS format has two extra meta data lines. Add the extra meta data to a
test data file.
Implement TACO tensor methods evaluate and unpack.
Add unit tests.
Reviewed By: aartbik
Differential Revision: https://reviews.llvm.org/D118803
-- This commit adds a canonicalization pattern on scf.while to remove
the loop invariant arguments.
-- An argument is considered loop invariant if the iteration argument value is
the same as the corresponding one being yielded (at the same position) in both
the before/after block of scf.while.
-- For the arguments removed, their use within scf.while and their corresponding
scf.while's result are replaced with their corresponding initial value.
Signed-off-by: Abhishek Varma <abhishek.varma@polymagelabs.com>
Reviewed By: ftynse
Differential Revision: https://reviews.llvm.org/D116923
Prior to this patch, using an operation without any results as the location would result in the generation of invalid C++ code. It'd try to format using the result values, which would would end up being an empty string for an operation without any.
This patch fixes that issue by instead using getValueAndRangeUse which handles both ranges as well as the case for an op without any results.
Differential Revision: https://reviews.llvm.org/D118885
The code assumes that a TypeConstraint in the additional constraints list specifies precisely one argument.
If the user were to not specify any, it'd result in a crash. If given more than one, the additional ones were ignored.
This patch fixes the crash and disallows user errors by adding a check that a single argument is supplied to the TypeConstraint
Differential Revision: https://reviews.llvm.org/D118763
This is completely unused upstream, and does not really have well defined semantics
on what this is supposed to do/how this fits into the ecosystem. Given that, as part of
splitting up the standard dialect it's best to just remove this behavior, instead of try
to awkwardly fit it somewhere upstream. Downstream users are encouraged to
define their own operations that clearly can define the semantics of this.
This also uncovered several lingering uses of ConstantOp that weren't
updated to use arith::ConstantOp, and worked during conversions because
the constant was removed/converted into something else before
verification.
See https://llvm.discourse.group/t/standard-dialect-the-final-chapter/ for more discussion.
Differential Revision: https://reviews.llvm.org/D118654
The Utils.cpp file in StandardOps essentially just contains utilities for interacting with arithmetic
operations, and at this point makes more sense as a utility file for the arithemtic dialect.
Differential Revision: https://reviews.llvm.org/D118280
This is part of the larger effort to split the standard dialect. This will also allow for pruning some
additional dependencies on Standard (done in a followup).
Differential Revision: https://reviews.llvm.org/D118202