This is a fix for disassembling unusual instruction sequences in 64-bit
mode w.r.t the CALL rel16 instruction. It might be desirable to move the
check somewhere else, but it essentially mimics the special case
handling with JCXZ in 16-bit mode.
The current behavior accepts the opcode size prefix and causes the
call's immediate to stop disassembling after 2 bytes. When debugging
sequences of instructions with this pattern, the disassembler output
becomes extremely unreliable and essentially useless (if you jump midway
into what lldb thinks is a unified instruction, you'll lose %rip). So we
ignore the prefix and consume all 4 bytes when disassembling a 64-bit
mode binary.
Note: in Vol. 2A 3-99 the Intel spec states that CALL rel16 is N.S. N.S.
is defined as:
Indicates an instruction syntax that requires an address override
prefix in 64-bit mode and is not supported. Using an address
override prefix in 64-bit mode may result in model-specific
execution behavior. (Vol. 2A 3-7)
Since 0x66 is an operand override prefix we should be OK (although we
may want to warn about 0x67 prefixes to 0xe8). On the CPUs I tested
with, they all ignore the 0x66 prefix in 64-bit mode.
Patch by Matthew Barney!
Differential Revision: http://reviews.llvm.org/D9573
llvm-svn: 246038
Added intrinsics for the instructions. CC parameter of the intrinsics was changed from i8 to i32 according to the spec.
By Igor Breger (igor.breger@intel.com)
llvm-svn: 236714
Requires new AsmParserOperand types that detect 16-bit and 32/64-bit mode so that we choose the right instruction based on default sizing without predicates. This is necessary since predicates mess up the disassembler table building.
llvm-svn: 225256
This is necessary to allow the disassembler to be able to handle AdSize32 instructions in 64-bit mode when address size prefix is used.
Eventually we should probably also support 'addr32' and 'addr16' in the assembler to override the address size on some of these instructions. But for now we'll just use special operand types that will lookup the current mode size to select the right instruction.
llvm-svn: 225075
Unfortunately, this isn't easy to fix since there's no simple way to figure out from the disassembler tables whether the W-bit is being used to select a 64-bit GPR or if its a required part of the opcode. The fix implemented here just looks for "64" in the instruction name and ignores the W-bit in 32-bit mode if its present.
Fixes PR21169.
llvm-svn: 219194
There are two parts here. First is to modify tablegen to adjust the encoding
type ENCODING_RM with the scaling factor.
The second is to use the new encoding types to compute the correct
displacement in the decoder.
Fixes <rdar://problem/17608489>
llvm-svn: 213281
V' bit in the P2 byte of the EVEX prefix provides the top bit of the NDD and
NDS register fields. This was simply not used in the decoder until now.
Fixes <rdar://problem/17402661>
llvm-svn: 211565
Previously there was a separate mode entirely (--hdis vs.
--disassemble). It makes a bit more sense for the immediate printing
style to be a flag for --disassmeble rather than an entirely different
thing.
llvm-svn: 210700
The addition of IC_OPSIZE_ADSIZE in r198759 wasn't quite complete. It
also turns out to have been unnecessary. The disassembler handles the
AdSize prefix for itself, and doesn't care about the difference between
(e.g.) MOV8ao8 and MOB8ao8_16 definitions. So just let them coexist and
don't worry about it.
llvm-svn: 199654
The disassembler has a special case for 'L' vs. 'W' in its heuristic for
checking for 32-bit and 16-bit equivalents. We could expand the heuristic,
but better just to be consistent in using the 'L' suffix.
llvm-svn: 199652
When disassembling in 16-bit mode the meaning of the OpSize bit is
inverted. Instructions found in the IC_OPSIZE context will actually
*not* have the 0x66 prefix, and instructions in the IC context will
have the 0x66 prefix. Make use of the existing special-case handling
for the 0x66 prefix being in the wrong place, to cope with this.
llvm-svn: 199650