CodeView requires us to accurately describe the extent of the inlined
code. We did this by grabbing the next debug location in source order
and using *that* to denote where we stopped inlining. However, this is
not sufficient or correct in instances where there is no next debug
location or the next debug location belongs to the start of another
function.
To get this correct, use the end symbol of the function to denote the
last possible place the inlining could have stopped at.
llvm-svn: 259548
This directive emits the binary annotations that describe line and code
deltas in inlined call sites. Single-stepping through inlined frames in
windbg now works.
llvm-svn: 259535
This support is _very_ rudimentary, just enough to get some basic data
into the CodeView debug section.
Left to do is:
- Use the combined opcodes to save space.
- Do something about code offsets.
llvm-svn: 259230
This reverts commit r259117.
The LineInfo constructor is defined in the codeview library and we have
to link against it now. Doing that isn't trivial, so reverting for now.
llvm-svn: 259126
Adds a new family of .cv_* directives to LLVM's variant of GAS syntax:
- .cv_file: Similar to DWARF .file directives
- .cv_loc: Similar to the DWARF .loc directive, but starts with a
function id. CodeView line tables are emitted by function instead of
by compilation unit, so we needed an extra field to communicate this.
Rather than overloading the .loc direction further, we decided it was
better to have our own directive.
- .cv_stringtable: Emits the codeview string table at the current
position. Currently this just contains the filenames as
null-terminated strings.
- .cv_filechecksums: Emits the file checksum table for all files used
with .cv_file so far. There is currently no support for emitting
actual checksums, just filenames.
This moves the line table emission code down into the assembler. This
is in preparation for implementing the inlined call site line table
format. The inline line table format encoding algorithm requires knowing
the absolute code offsets, so it must run after the assembler has laid
out the code.
David Majnemer collaborated on this patch.
llvm-svn: 259117
LLVM_ENABLE_TIMESTAMPS controls if timestamps are embedded into llvm's
binaries. Turning it off is useful for deterministic builds.
r246905 made it so that the define suddenly also controls if the binaries that
the llvm binaries _create_ embed timestamps or not – but this shouldn't be a
configure-time option. r256203/r256204 added a driver option to toggle this on
and off, so this patch now passes this driver option in LLVM_ENABLE_TIMESTAMPS
builds so that if LLVM_ENABLE_TIMESTAMPS is set, the build of LLVM is
deterministic – but the built clang can still write timestamps into other
executables when requested.
This also allows removing some of the test machinery added in r292012 to work
around this problem.
See PR24740 for background.
http://reviews.llvm.org/D15783
llvm-svn: 256958
InitMCObjectFileInfo was trying to override the triple in awkward ways.
For example, a triple specifying COFF but not Windows was forced as ELF.
This makes it easy for internal invariants to get violated, such as
those which triggered PR25912.
This fixes PR25912.
llvm-svn: 256226
Today, we always take into account the possibility that object files
produced by MC may be consumed by an incremental linker. This results
in us initialing fields which vary with time (TimeDateStamp) which harms
hermetic builds (e.g. verifying a self-host went well) and produces
sub-optimal code because we cannot assume anything about the relative
position of functions within a section (call sites can get redirected
through incremental linker thunks).
Let's provide an MCTargetOption which controls this behavior so that we
can disable this functionality if we know a-priori that the build will
not rely on /incremental.
llvm-svn: 256203
Support for COFF timestamps was unintentionally broken in r246905 when
it was conditionally available depending on whether or not LLVM was
configured with LLVM_ENABLE_TIMESTAMPS. However, Config/config.h was
never included which essentially broke the feature. Due to lax testing,
the breakage was never identified until we observed strange failures
during incremental links of Chromium.
This issue is resolved by simply including Config/config.h in
WinCOFFObjectWriter and teaching lit that the MC/COFF/timestamp.s test
is conditionally supported depending on LLVM_ENABLE_TIMESTAMPS. With
this in place, we can strengthen the test to ensure that it will not
accidentally get broken in the future.
This fixes PR25891.
llvm-svn: 256137
The COFF object writer was previously adding unnecessary symbols to its
temporary data structures and cleaning them up later. This made the code
harder to understand and caused a bug (aliases classed as temporary symbols
would cause an assertion failure). A much simpler way of handling such
symbols is to ask the layout for their section-relative position when needed.
Tested with a bootstrap on Windows and by building Chrome.
Differential Revision: http://reviews.llvm.org/D14975
llvm-svn: 254183
Starting on an input stream that is not at offset 0 would trigger the
assert in WinCOFFObjectWriter.cpp:1065:
assert(getStream().tell() <= (*i)->Header.PointerToRawData &&
"Section::PointerToRawData is insane!");
llvm-svn: 253464
Currently, if the assembler encounters an error after parsing (such as an
out-of-range fixup), it reports this as a fatal error, and so stops after the
first error. However, for most of these there is an obvious way to recover
after emitting the error, such as emitting the fixup with a value of zero. This
means that we can report on all of the errors in a file, not just the first
one. MCContext::reportError records the fact that an error was encountered, so
we won't actually emit an object file with the incorrect contents.
Differential Revision: http://reviews.llvm.org/D14717
llvm-svn: 253328
This extends the work done in r233995 so that now getFragment (in addition to
getSection) also works for variable symbols.
With that the existing logic to decide if a-b can be computed works even if
a or b are variables. Given that, the expression evaluation can avoid expanding
variables as aggressively and that in turn lets the relocation code see the
original variable.
In order for this to work with the asm streamer, there is now a dummy fragment
per section. It is used to assign a section to a symbol when no other fragment
exists.
This patch is a joint work by Maxim Ostapenko andy myself.
llvm-svn: 249303
The MS incremental linker seems to inspect the timestamp written into
the object file to determine whether or not it's contents need to be
considered. Failing to set the timestamp to a date newer than the
executable will result in the object file not participating in
subsequent links. To ameliorate this, write the current time into the
object file's TimeDateStamp field.
llvm-svn: 246607
COFF sections are accompanied with an auxiliary symbol which includes a
checksum. This checksum used to be filled with just zero but this seems
to upset LINK.exe when it is processing a /INCREMENTAL link job.
Instead, fill the CheckSum field with the JamCRC of the section
contents. This matches MSVC's behavior.
This fixes PR19666.
N.B. A rather simple implementation of JamCRC is given. It implements
a byte-wise calculation using the method given by Sarwate. There are
implementations with higher throughput like slice-by-eight and making
use of PCLMULQDQ. We can switch to one of those techniques if it turns
out to be a significant use of time.
llvm-svn: 246590
This reverts commit r245047.
It was failing on the darwin bots. The problem was that when running
./bin/llc -march=msp430
llc gets to
if (TheTriple.getTriple().empty())
TheTriple.setTriple(sys::getDefaultTargetTriple());
Which means that we go with an arch of msp430 but a triple of
x86_64-apple-darwin14.4.0 which fails badly.
That code has to be updated to select a triple based on the value of
march, but that is not a trivial fix.
llvm-svn: 245062
Other than some places that were handling unknown as ELF, this should
have no change. The test updates are because we were detecting
arm-coff or x86_64-win64-coff as ELF targets before.
It is not clear if the enum should live on the Triple. At least now it lives
in a single location and should be easier to move somewhere else.
llvm-svn: 245047
The test part of r241149 has been reverted in r241451, due to misplaced test cases.
This patch splits those test cases among the appropriate targets.
Differential Revision: http://reviews.llvm.org/D10897
llvm-svn: 241283
Similar to gep (r230786) and load (r230794) changes.
Similar migration script can be used to update test cases, which
successfully migrated all of LLVM and Polly, but about 4 test cases
needed manually changes in Clang.
(this script will read the contents of stdin and massage it into stdout
- wrap it in the 'apply.sh' script shown in previous commits + xargs to
apply it over a large set of test cases)
import fileinput
import sys
import re
rep = re.compile(r"(getelementptr(?:\s+inbounds)?\s*\()((<\d*\s+x\s+)?([^@]*?)(|\s*addrspace\(\d+\))\s*\*(?(3)>)\s*)(?=$|%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|zeroinitializer|<|\[\[[a-zA-Z]|\{\{)", re.MULTILINE | re.DOTALL)
def conv(match):
line = match.group(1)
line += match.group(4)
line += ", "
line += match.group(2)
return line
line = sys.stdin.read()
off = 0
for match in re.finditer(rep, line):
sys.stdout.write(line[off:match.start()])
sys.stdout.write(conv(match))
off = match.end()
sys.stdout.write(line[off:])
llvm-svn: 232184
We supported forming IMGREL relocations from ConstantExprs involving
__ImageBase if the minuend was a GlobalVariable. Extend this
functionality to all GlobalObjects.
llvm-svn: 231456
Essentially the same as the GEP change in r230786.
A similar migration script can be used to update test cases, though a few more
test case improvements/changes were required this time around: (r229269-r229278)
import fileinput
import sys
import re
pat = re.compile(r"((?:=|:|^)\s*load (?:atomic )?(?:volatile )?(.*?))(| addrspace\(\d+\) *)\*($| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$)")
for line in sys.stdin:
sys.stdout.write(re.sub(pat, r"\1, \2\3*\4", line))
Reviewers: rafael, dexonsmith, grosser
Differential Revision: http://reviews.llvm.org/D7649
llvm-svn: 230794
One of several parallel first steps to remove the target type of pointers,
replacing them with a single opaque pointer type.
This adds an explicit type parameter to the gep instruction so that when the
first parameter becomes an opaque pointer type, the type to gep through is
still available to the instructions.
* This doesn't modify gep operators, only instructions (operators will be
handled separately)
* Textual IR changes only. Bitcode (including upgrade) and changing the
in-memory representation will be in separate changes.
* geps of vectors are transformed as:
getelementptr <4 x float*> %x, ...
->getelementptr float, <4 x float*> %x, ...
Then, once the opaque pointer type is introduced, this will ultimately look
like:
getelementptr float, <4 x ptr> %x
with the unambiguous interpretation that it is a vector of pointers to float.
* address spaces remain on the pointer, not the type:
getelementptr float addrspace(1)* %x
->getelementptr float, float addrspace(1)* %x
Then, eventually:
getelementptr float, ptr addrspace(1) %x
Importantly, the massive amount of test case churn has been automated by
same crappy python code. I had to manually update a few test cases that
wouldn't fit the script's model (r228970,r229196,r229197,r229198). The
python script just massages stdin and writes the result to stdout, I
then wrapped that in a shell script to handle replacing files, then
using the usual find+xargs to migrate all the files.
update.py:
import fileinput
import sys
import re
ibrep = re.compile(r"(^.*?[^%\w]getelementptr inbounds )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))")
normrep = re.compile( r"(^.*?[^%\w]getelementptr )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))")
def conv(match, line):
if not match:
return line
line = match.groups()[0]
if len(match.groups()[5]) == 0:
line += match.groups()[2]
line += match.groups()[3]
line += ", "
line += match.groups()[1]
line += "\n"
return line
for line in sys.stdin:
if line.find("getelementptr ") == line.find("getelementptr inbounds"):
if line.find("getelementptr inbounds") != line.find("getelementptr inbounds ("):
line = conv(re.match(ibrep, line), line)
elif line.find("getelementptr ") != line.find("getelementptr ("):
line = conv(re.match(normrep, line), line)
sys.stdout.write(line)
apply.sh:
for name in "$@"
do
python3 `dirname "$0"`/update.py < "$name" > "$name.tmp" && mv "$name.tmp" "$name"
rm -f "$name.tmp"
done
The actual commands:
From llvm/src:
find test/ -name *.ll | xargs ./apply.sh
From llvm/src/tools/clang:
find test/ -name *.mm -o -name *.m -o -name *.cpp -o -name *.c | xargs -I '{}' ../../apply.sh "{}"
From llvm/src/tools/polly:
find test/ -name *.ll | xargs ./apply.sh
After that, check-all (with llvm, clang, clang-tools-extra, lld,
compiler-rt, and polly all checked out).
The extra 'rm' in the apply.sh script is due to a few files in clang's test
suite using interesting unicode stuff that my python script was throwing
exceptions on. None of those files needed to be migrated, so it seemed
sufficient to ignore those cases.
Reviewers: rafael, dexonsmith, grosser
Differential Revision: http://reviews.llvm.org/D7636
llvm-svn: 230786
For #pragma comment(linker, ...) MSVC expects the comment string to be quoted, but for #pragma comment(lib, ...) the compiler itself quotes the library name.
Since this distinction disappears by the time the directive reaches the backend, move quoting for the "lib" version to the frontend.
Differential Revision: http://reviews.llvm.org/D7652
llvm-svn: 229375
COFF section flags are not idempotent:
'rd' will make a read-write section because 'd' implies write
'dr' will make a read-only section because 'r' disables write
llvm-svn: 228490
No change in this commit, but clang was changed to also produce trivial comdats when
needed.
Original message:
Don't create new comdats in CodeGen.
This patch stops the implicit creation of comdats during codegen.
Clang now sets the comdat explicitly when it is required. With this patch clang and gcc
now produce the same result in pr19848.
llvm-svn: 226467
This reverts commit r226173, adding r226038 back.
No change in this commit, but clang was changed to also produce trivial comdats for
costructors, destructors and vtables when needed.
Original message:
Don't create new comdats in CodeGen.
This patch stops the implicit creation of comdats during codegen.
Clang now sets the comdat explicitly when it is required. With this patch clang and gcc
now produce the same result in pr19848.
llvm-svn: 226242
This patch stops the implicit creation of comdats during codegen.
Clang now sets the comdat explicitly when it is required. With this patch clang and gcc
now produce the same result in pr19848.
llvm-svn: 226038
If a linker directive is already quoted, don't try to quote it again, otherwise it creates a mess.
This pops up in places like:
#pragma comment(linker,"\"/foo bar'\"")
Differential Revision: http://reviews.llvm.org/D6792
llvm-svn: 224998
Previously we assumed the section name had the form .text$foo, which is
what we used to do for inline functions. If the dollar wasn't present,
we'd put unwind data in the .pdata and .xdata sections for the main
.text section, which is incorrect.
Fixes PR22001.
llvm-svn: 224738
Now that `Metadata` is typeless, reflect that in the assembly. These
are the matching assembly changes for the metadata/value split in
r223802.
- Only use the `metadata` type when referencing metadata from a call
intrinsic -- i.e., only when it's used as a `Value`.
- Stop pretending that `ValueAsMetadata` is wrapped in an `MDNode`
when referencing it from call intrinsics.
So, assembly like this:
define @foo(i32 %v) {
call void @llvm.foo(metadata !{i32 %v}, metadata !0)
call void @llvm.foo(metadata !{i32 7}, metadata !0)
call void @llvm.foo(metadata !1, metadata !0)
call void @llvm.foo(metadata !3, metadata !0)
call void @llvm.foo(metadata !{metadata !3}, metadata !0)
ret void, !bar !2
}
!0 = metadata !{metadata !2}
!1 = metadata !{i32* @global}
!2 = metadata !{metadata !3}
!3 = metadata !{}
turns into this:
define @foo(i32 %v) {
call void @llvm.foo(metadata i32 %v, metadata !0)
call void @llvm.foo(metadata i32 7, metadata !0)
call void @llvm.foo(metadata i32* @global, metadata !0)
call void @llvm.foo(metadata !3, metadata !0)
call void @llvm.foo(metadata !{!3}, metadata !0)
ret void, !bar !2
}
!0 = !{!2}
!1 = !{i32* @global}
!2 = !{!3}
!3 = !{}
I wrote an upgrade script that handled almost all of the tests in llvm
and many of the tests in cfe (even handling many `CHECK` lines). I've
attached it (or will attach it in a moment if you're speedy) to PR21532
to help everyone update their out-of-tree testcases.
This is part of PR21532.
llvm-svn: 224257
Canonicalize formatting of metadata to make it easier to upgrade via
scripts -- in particular, one line per metadata definition makes it more
`sed`-able.
This is preparation for changing the assembly syntax for metadata [1].
[1]: http://lists.cs.uiuc.edu/pipermail/llvm-commits/Week-of-Mon-20141208/248449.html
llvm-svn: 224002
Referencing one symbol from another in the same section does not
generally require a relocation. However, the MS linker has a feature
called /INCREMENTAL which enables incremental links. It achieves this
by creating thunks to the actual function and redirecting all
relocations to point to the thunk.
This breaks down with the old scheme if you have a function which
references, say, itself. On x86_64, we would use %rip relative
addressing to reference the start of the function from out current
position. This would lead to miscompiles because other references might
reference the thunk instead, breaking function pointer equality.
This fixes PR21520.
llvm-svn: 221678