Main reason is preparation to transform AliasResult to class that contains
offset for PartialAlias case.
Reviewed By: asbirlea
Differential Revision: https://reviews.llvm.org/D98027
These cases were failing before, but with cryptic asserts.
Add asserts in the RegScavenger that fail earlier with better
messages. NFC
Differential Revision: https://reviews.llvm.org/D100109
During SelectionDAG, we must track the SDNodes that each SDDbgValue depends on
to compute its value. These are ultimately derived from the location operands to
the SDDbgValue, but were stored in a separate vector prior to this patch. This
resulted in cases where one of the lists was updated incorrectly, resulting in
crashes during compilation. This patch fixes the issue by directly recomputing
the dependency list from the SDDbgOperands in getDependencies().
Differential Revision: https://reviews.llvm.org/D99423
Combine all collected stats into separate struct RAGreedyStats
with add and report methods.
The motivation is to extend the number of statistics to capture and instead of
adding new parameters, just combine all of them into one structure.
Additionally I plan to use report from different places in future to report data
for function as well.
Reviewers: reames, MatzeB, anemet, thegameg
Reviewed By: thegameg
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D100012
To save compile time, avoid computation of stats if ORE will not emit it.
The motivation is to add more stats and compute it only if it will dumped.
Reviewers: reames, MatzeB, anemet, thegameg
Reviewed By: reames
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D100010
Summary: Set the default DwarfInlinedStrings as inlined strings for DBX, due to DBX does not support .dwstr section for now.
Reviewed By: dblaikie
Differential Revision: https://reviews.llvm.org/D99933
Pseudo probes, when scattered in a block, can be chained dependencies of other regular DAG nodes and block DAG combine optimizations. To fix this, scattered probes in a block are grouped and placed at the beginning of the block. This shouldn't affect the profile quality.
Test Plan:
Reviewed By: wenlei, wmi
Differential Revision: https://reviews.llvm.org/D100002
This allows FoldConstantArithmetic to handle SPLAT_VECTOR in
addition to BUILD_VECTOR. This allows it to support scalable
vectors. I'm also allowing fixed length SPLAT_VECTOR which is
used by some targets, but I'm not familiar enough to write tests
for those targets.
I had to block this function from running on CONCAT_VECTORS to
avoid calling getNode for a CONCAT_VECTORS of 2 scalars.
This can happen because the 2 operand getNode calls this
function for any opcode. Previously we were protected because
CONCAT_VECTORs of BUILD_VECTOR is folded to a larger BUILD_VECTOR
before that call. But it's not always possible to fold a CONCAT_VECTORS
of SPLAT_VECTORs, and we don't even try.
This fixes PR49781 where DAG combine thought constant folding
should be possible, but FoldConstantArithmetic couldn't do it.
Reviewed By: david-arm
Differential Revision: https://reviews.llvm.org/D99682
I do not see any bit-width restriction from the point of the
LLVM Lang Ref - Operand Bundles on the types of the deopt bundle
operands. Statepoint Lowering seems to be able to work with any
types.
This patch relaxes the two related assertions and adds a new test
for this change.
Reviewed By: reames
Differential Revision: https://reviews.llvm.org/D100006
Looking at the Doxygen-generated documentation for the llvm namespace
currently shows all sorts of random comments from different parts of the
codebase. These are mostly caused by:
- File doc comments that aren't marked with \file, so they're attached to
the next declaration, which is usually "namespace llvm {".
- Class doc comments placed before the namespace rather than before the
class.
- Code comments before the namespace that (in my opinion) shouldn't be
extracted by doxygen at all.
This commit fixes these comments. The generated doxygen documentation now
has proper docs for several classes and files, and the docs for the llvm
and llvm::detail namespaces are now empty.
Reviewed By: thakis, mizvekov
Differential Revision: https://reviews.llvm.org/D96736
Follow up to a6d2a8d6f5. These were found by simply grepping for "::assume", and are the subset of that result which looked cleaner to me using the isa/dyn_cast patterns.
Problem:
On SystemZ we need to open text files in text mode. On Windows, files opened in text mode adds a CRLF '\r\n' which may not be desirable.
Solution:
This patch adds two new flags
- OF_CRLF which indicates that CRLF translation is used.
- OF_TextWithCRLF = OF_Text | OF_CRLF indicates that the file is text and uses CRLF translation.
Developers should now use either the OF_Text or OF_TextWithCRLF for text files and OF_None for binary files. If the developer doesn't want carriage returns on Windows, they should use OF_Text, if they do want carriage returns on Windows, they should use OF_TextWithCRLF.
So this is the behaviour per platform with my patch:
z/OS:
OF_None: open in binary mode
OF_Text : open in text mode
OF_TextWithCRLF: open in text mode
Windows:
OF_None: open file with no carriage return
OF_Text: open file with no carriage return
OF_TextWithCRLF: open file with carriage return
The Major change is in llvm/lib/Support/Windows/Path.inc to only set text mode if the OF_CRLF is set.
```
if (Flags & OF_CRLF)
CrtOpenFlags |= _O_TEXT;
```
These following files are the ones that still use OF_Text which I left unchanged. I modified all these except raw_ostream.cpp in recent patches so I know these were previously in Binary mode on Windows.
./llvm/lib/Support/raw_ostream.cpp
./llvm/lib/TableGen/Main.cpp
./llvm/tools/dsymutil/DwarfLinkerForBinary.cpp
./llvm/unittests/Support/Path.cpp
./clang/lib/StaticAnalyzer/Core/HTMLDiagnostics.cpp
./clang/lib/Frontend/CompilerInstance.cpp
./clang/lib/Driver/Driver.cpp
./clang/lib/Driver/ToolChains/Clang.cpp
Reviewed By: MaskRay
Differential Revision: https://reviews.llvm.org/D99426
This is a followup to D98145: As far as I know, tracking of kill
flags in FastISel is just a compile-time optimization. However,
I'm not actually seeing any compile-time regression when removing
the tracking. This probably used to be more important in the past,
before FastRA was switched to allocate instructions in reverse
order, which means that it discovers kills as a matter of course.
As such, the kill tracking doesn't really seem to serve a purpose
anymore, and just adds additional complexity and potential for
errors. This patch removes it entirely. The primary changes are
dropping the hasTrivialKill() method and removing the kill
arguments from the emitFast methods. The rest is mechanical fixup.
Differential Revision: https://reviews.llvm.org/D98294
In order to bring up scalable vector support in LLVM incrementally,
we introduced behaviour to emit a warning, instead of an error, when
asking the wrong question of a scalable vector, like asking for the
fixed number of elements.
This patch puts that behaviour under a flag. The default behaviour is
that the compiler will always error, which means that all LLVM unit
tests and regression tests will now fail when a code-path is taken that
still uses the wrong interface.
The behaviour to demote an error to a warning can be individually enabled
for tools that want to support experimental use of scalable vectors.
This patch enables that behaviour when driving compilation from Clang.
This means that for users who want to try out scalable-vector support,
fixed-width codegen support, or build user-code with scalable vector
intrinsics, Clang will not crash and burn when the compiler encounters
such a case.
This allows us to do away with the following pattern in many of the SVE tests:
RUN: .... 2>%t
RUN: cat %t | FileCheck --check-prefix=WARN
WARN-NOT: warning: ...
The behaviour to emit warnings is only temporary and we expect this flag
to be removed in the future when scalable vector support is more stable.
This patch also has fixes the following tests:
unittests:
ScalableVectorMVTsTest.SizeQueries
SelectionDAGAddressAnalysisTest.unknownSizeFrameObjects
AArch64SelectionDAGTest.computeKnownBitsSVE_ZERO_EXTEND_VECTOR_INREG
regression tests:
Transforms/InstCombine/vscale_gep.ll
Reviewed By: paulwalker-arm, ctetreau
Differential Revision: https://reviews.llvm.org/D98856
The main part of the patch is the change in RegAllocGreedy.cpp: Q.collectInterferringVregs()
needs to be called before iterating the interfering live ranges.
The rest of the patch offers support that is the case: instead of clearing the query's
InterferingVRegs field, we invalidate it. The clearing happens when the live reg matrix
is invalidated (existing triggering mechanism).
Without the change in RegAllocGreedy.cpp, the compiler ices.
This patch should make it more easily discoverable by developers that
collectInterferringVregs needs to be called before iterating.
I will follow up with a subsequent patch to improve the usability and maintainability of Query.
Differential Revision: https://reviews.llvm.org/D98232
If the inner shuffle already contains undef elements, then accept them in the merged shuffle as well.
This helps some X86 HADD/SUB patterns where slow targets were ending up with HADD/SUB because the (un)merged shuffles were stuck either side of the ADD/SUB - meaning we ended up with a total cost much higher than the "2*shuffle+add" that a slow target usually expands a HADD/SUB to.
This allows these optimisations to apply to e.g. `urem i16` directly
before `urem` is promoted to i32 on architectures where i16 operations
are not intrinsically legal (such as on Aarch64). The legalization then
later can happen more directly and generated code gets a chance to avoid
wasting time on computing results in types wider than necessary, in the end.
Seems like mostly an improvement in terms of results at least as far as x86_64 and aarch64 are concerned, with a few regressions here and there. It also helps in preventing regressions in changes like {D87976}.
Reviewed By: lebedev.ri
Differential Revision: https://reviews.llvm.org/D88785
GCC warning:
```
/llvm-project/llvm/lib/CodeGen/GlobalISel/CombinerHelper.cpp: In member function ‘bool llvm::CombinerHelper::matchFunnelShiftToRotate(llvm::MachineInstr&)’:
/llvm-project/llvm/lib/CodeGen/GlobalISel/CombinerHelper.cpp:3882:35: warning: ?: using integer constants in boolean context, the expression will always evaluate to ‘true’ [-Wint-in-bool-context]
3882 | Opc == TargetOpcode::G_FSHL ? TargetOpcode::G_ROTL : TargetOpcode::G_ROTR;
| ~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
```
This patch adds 3 methods, one for power-of-2 vectors which use tree
reductions using vector ops, before a final reduction op. For non-pow-2
types it generates multiple narrow reductions and combines the values with
scalar ops.
Differential Revision: https://reviews.llvm.org/D97163
Negative numbers are represented using DW_OP_consts along with signed representation
of the number as the argument.
Test case IR is generated using Fortran front-end.
Reviewed By: aprantl
Differential Revision: https://reviews.llvm.org/D99273
Basically a port of isBitfieldExtractOpFromSExtInReg in AArch64ISelDAGToDAG.
This is only done post-legalization for now. Once the legalizer knows how to
decompose these back into shifts, this requirement can probably be removed.
Differential Revision: https://reviews.llvm.org/D99230
Currently needsStackRealignment returns false if canRealignStack returns false.
This means that the behavior of needsStackRealignment does not correspond to
it's name and description; a function might need stack realignment, but if it
is not possible then this function returns false. Furthermore,
needsStackRealignment is not virtual and therefore some backends have made use
of canRealignStack to indicate whether a function needs stack realignment.
This patch attempts to clarify the situation by separating them and introducing
new names:
- shouldRealignStack - true if there is any reason the stack should be
realigned
- canRealignStack - true if we are still able to realign the stack (e.g. we
can still reserve/have reserved a frame pointer)
- hasStackRealignment = shouldRealignStack && canRealignStack (not target
customisable)
Targets can now override shouldRealignStack to indicate that stack realignment
is required.
This change will make it easier in a future change to handle the case where we
need to realign the stack but can't do so (for example when the register
allocator creates an aligned spill after the frame pointer has been
eliminated).
Differential Revision: https://reviews.llvm.org/D98716
Change-Id: Ib9a4d21728bf9d08a545b4365418d3ffe1af4d87
This is needed for Fortran assumed shape arrays whose dimensions are
defined as,
- 'count' is taken from array descriptor passed as parameter by
caller, access from descriptor is defined by type DIExpression.
- 'lowerBound' is defined by callee.
The current alternate way represents using upperBound in place of
count, where upperBound is calculated in callee in a temp variable
using lowerBound and count
Representation with count (DIExpression) is not only clearer as
compared to upperBound (DIVariable) but it has another advantage that
variable count is accessed by being parameter has better chance of
survival at higher optimization level than upperBound being local
variable.
Reviewed By: aprantl
Differential Revision: https://reviews.llvm.org/D99335
Empty functions (functions with no real code) are irrelevant for propeller optimizations and their addresses sometimes conflict with other functions which obfuscates the analysis.
This simple change skips the BB address map emission for such functions.
Reviewed By: tmsriram
Differential Revision: https://reviews.llvm.org/D99395
D89239 adjusts the stack offset of emergency spill slots for overaligned
stacks. However the adjustment is not valid for targets whose stack
grows up (such as AMDGPU).
This change makes the adjustment conditional only to those targets whose
stack grows down.
Fixes https://bugs.llvm.org/show_bug.cgi?id=49686
Differential Revision: https://reviews.llvm.org/D99504
This is currently performed in SelectionDAGLegalize, here we make it also
happen in LegalizeVectorOps, allowing a target to lower the SETCC condition
codes first in LegalizeVectorOps and then lower to a custom node afterwards,
without having to duplicate all of the SETCC condition legalization in the
target specific lowering.
As a result of this, fixed length floating point SETCC nodes can now be
properly lowered for SVE.
Differential Revision: https://reviews.llvm.org/D98939
This patch adds a new isIntOrFPConstant helper function to check if a
SDValue is a integer of FP constant. This pattern is used in various
places.
There also are places that incorrectly just check for integer constants,
e.g. D99384, so hopefully this helper will help people avoid that issue.
Reviewed By: RKSimon
Differential Revision: https://reviews.llvm.org/D99428
Darwin platforms for both AArch64 and X86 can provide optimized `bzero()`
routines. In this case, it may be preferable to use `bzero` in place of a
memset of 0.
This adds a G_BZERO generic opcode, similar to G_MEMSET et al. This opcode can
be generated by platforms which may want to use bzero.
To emit the G_BZERO, this adds a pre-legalize combine for AArch64. The
conditions for this are largely a port of the bzero case in
`AArch64SelectionDAGInfo::EmitTargetCodeForMemset`.
The only difference in comparison to the SelectionDAG code is that, when
compiling for minsize, this will fire for all memsets of 0. The original code
notes that it's not beneficial to do this for small memsets; however, using
bzero here will save a mov from wzr. For minsize, I think that it's preferable
to prioritise omitting the mov.
This also fixes a bug in the libcall legalization code which would delete
instructions which could not be legalized. It also adds a check to make sure
that we actually get a libcall name.
Code size improvements (Darwin):
- CTMark -Os: -0.0% geomean (-0.1% on pairlocalalign)
- CTMark -Oz: -0.2% geomean (-0.5% on bullet)
Differential Revision: https://reviews.llvm.org/D99358
This may occur when swifterror codegen in the translator generates these,
but we shouldn't try to handle them since they should have regclasses anyway.
rdar://75784009
Differential Revision: https://reviews.llvm.org/D99287
This patch changes the interface to take a RegisterKind, to indicate
whether the register bitwidth of a scalar register, fixed-width vector
register, or scalable vector register must be returned.
Reviewed By: paulwalker-arm
Differential Revision: https://reviews.llvm.org/D98874
Statepoint instruction is known to have a variable and big number of operands.
It is possible that Register Allocator will split live intervals in the way that all
physical registers are occupied by "zero-length" live intervals which are marked
as not-spillable.
While intervals are marked as not-spillable in the moment of creation when they are
really zero-length it is possible that in future as part of re-materialization there will
need for physical register between def and use of such tiny interval (the use is not
related to this interval at all).
As all physical registers are assigned to not-spillable intervals there is not avaialbe
registers and RA reports an error.
The idea of the fix is avoid marking tiny live intervals where there is a use in statepoint
instruction in var args section. Such interval may be perfectly spilled and folded to
operand of statepoint.
Reviewers: reames, dantrushin, qcolombet, dsanders, dmgreen
Reviewed By: reames
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D98766
This avoids temporary and memcpy call when computing large expressions.
It's basically some kind of poor man's expression template, but it seems easier
to maintain to have a single generic `apply` call instead of the whole
expression template machinery here.
Differential Revision: https://reviews.llvm.org/D98176
This patch adds a new llvm.experimental.stepvector intrinsic,
which takes no arguments and returns a linear integer sequence of
values of the form <0, 1, ...>. It is primarily intended for
scalable vectors, although it will work for fixed width vectors
too. It is intended that later patches will make use of this
new intrinsic when vectorising induction variables, currently only
supported for fixed width. I've added a new CreateStepVector
method to the IRBuilder, which will generate a call to this
intrinsic for scalable vectors and fall back on creating a
ConstantVector for fixed width.
For scalable vectors this intrinsic is lowered to a new ISD node
called STEP_VECTOR, which takes a single constant integer argument
as the step. During lowering this argument is set to a value of 1.
The reason for this additional argument at the codegen level is
because in future patches we will introduce various generic DAG
combines such as
mul step_vector(1), 2 -> step_vector(2)
add step_vector(1), step_vector(1) -> step_vector(2)
shl step_vector(1), 1 -> step_vector(2)
etc.
that encourage a canonical format for all targets. This hopefully
means all other targets supporting scalable vectors can benefit
from this too.
I've added cost model tests for both fixed width and scalable
vectors:
llvm/test/Analysis/CostModel/AArch64/neon-stepvector.ll
llvm/test/Analysis/CostModel/AArch64/sve-stepvector.ll
as well as codegen lowering tests for fixed width and scalable
vectors:
llvm/test/CodeGen/AArch64/neon-stepvector.ll
llvm/test/CodeGen/AArch64/sve-stepvector.ll
See this thread for discussion of the intrinsic:
https://lists.llvm.org/pipermail/llvm-dev/2021-January/147943.html