This patch adds initial support for a DemandedElts mask to the internal computeKnownBits/ComputeNumSignBits methods, matching the SelectionDAG and GlobalISel equivalents.
So far only a couple of instructions have been setup to handle the DemandedElts, the remainder still using the existing 'all elements' default. The plan is to extend support as we have test coverage.
Differential Revision: https://reviews.llvm.org/D73435
This addresses https://bugs.llvm.org/show_bug.cgi?id=42801.
The m_c_ICmp() matcher is changed to provide the swapped predicate
if the operands are swapped.
Existing uses of m_c_ICmp() fall in one of two categories: Working
on equality predicates only, where swapping is irrelevant.
Or performing a manual swap, in which case this patch removes it.
The only exception is the foldICmpWithLowBitMaskedVal() fold, which
does not swap the predicate, and instead reasons about whether
a swap occurred or not for each predicate. Getting the swapped
predicate allows us to merge the logic for pairs of predicates,
instead of duplicating it.
Differential Revision: https://reviews.llvm.org/D72976
Summary:
It is pretty common to assume that something is not zero.
Even optimizer itself sometimes emits such assumptions
(e.g. `addAssumeNonNull()` in `PromoteMemoryToRegister.cpp`).
But we currently don't deal with such assumptions :)
The only way `isKnownNonZero()` handles assumptions is
by calling `computeKnownBits()` which calls `computeKnownBitsFromAssume()`.
But `x != 0` does not tell us anything about set bits,
it only says that there are *some* set bits.
So naturally, `KnownBits` does not get populated,
and we fail to make use of this assumption.
I propose to deal with this special case by special-casing it
via adding a `isKnownNonZeroFromAssume()` that returns boolean
when there is an applicable assumption.
While there, we also deal with other predicates,
mainly if the comparison is with constant.
Fixes [[ https://bugs.llvm.org/show_bug.cgi?id=43267 | PR43267 ]].
Differential Revision: https://reviews.llvm.org/D71660
This is a pretty rare case, when CxtI and assume are
in the same basic block, with assume being located later.
We were already checking that assumption was guaranteed to be
executed, but we omitted CxtI itself from consideration,
and as the test (miscompile) shows, that is incorrect.
As noted in D71660 review by @nikic.
GEP index size can be specified in the DataLayout, introduced in D42123. However, there were still places
in which getIndexSizeInBits was used interchangeably with getPointerSizeInBits. This notably caused issues
with Instcombine's visitPtrToInt; but the unit tests was incorrect, so this remained undiscovered.
This fixes the buildbot failures.
Differential Revision: https://reviews.llvm.org/D68328
Patch by Joseph Faulls!
GEP index size can be specified in the DataLayout, introduced in D42123. However, there were still places
in which getIndexSizeInBits was used interchangeably with getPointerSizeInBits. This notably caused issues
with Instcombine's visitPtrToInt; but the unit tests was incorrect, so this remained undiscovered.
Differential Revision: https://reviews.llvm.org/D68328
Patch by Joseph Faulls!
This has two main effects:
- Optimizes debug info size by saving 221.86 MB of obj file size in a
Windows optimized+debug build of 'all'. This is 3.03% of 7,332.7MB of
object file size.
- Incremental step towards decoupling target intrinsics.
The enums are still compact, so adding and removing a single
target-specific intrinsic will trigger a rebuild of all of LLVM.
Assigning distinct target id spaces is potential future work.
Part of PR34259
Reviewers: efriedma, echristo, MaskRay
Reviewed By: echristo, MaskRay
Differential Revision: https://reviews.llvm.org/D71320
If the pointer was loaded/stored before the null check, the check
is redundant and can be removed. For now the optimizers do not
remove the nullptr check, see https://gcc.godbolt.org/z/H2r5GG.
The patch allows to use more nonnull constraints. Also, it found
one more optimization in some PowerPC test. This is my first llvm
review, I am free to any comments.
Differential Revision: https://reviews.llvm.org/D71177
Summary:
Same as D60846 and D69571 but with a fix for the problem encountered
after them. Both times it was a missing context adjustment in the
handling of PHI nodes.
The reproducers created from the bugs that caused the old commits to be
reverted are included.
Reviewers: nikic, nlopes, mkazantsev, spatel, dlrobertson, uabelho, hakzsam, hans
Subscribers: hiraditya, bollu, asbirlea, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D71181
As it can be seen from accompanying cleanup, it is not unheard of
to write `~Known.Zero` meaning "what maximal value can this KnownBits
produce". But i think `~Known.Zero` isn't *that* self-explanatory,
as compared to a method with a name.
Note that not all `~Known.Zero` places were cleaned up,
only those where this arguably improves things.
This caused miscompiles of Chromium (https://crbug.com/1023818). The reduced
repro is small enough to fit here:
$ cat /tmp/a.c
unsigned char f(unsigned char *p) {
unsigned char result = 0;
for (int shift = 0; shift < 1; ++shift)
result |= p[0] << (shift * 8);
return result;
}
$ bin/clang -O2 -S -o - /tmp/a.c | grep -A4 f:
f: # @f
.cfi_startproc
# %bb.0: # %entry
xorl %eax, %eax
retq
That's nicely optimized, but I don't think it's the right result :-)
> Same as D60846 but with a fix for the problem encountered there which
> was a missing context adjustment in the handling of PHI nodes.
>
> The test that caused D60846 to be reverted was added in e15ab8f277.
>
> Reviewers: nikic, nlopes, mkazantsev,spatel, dlrobertson, uabelho, hakzsam
>
> Subscribers: hiraditya, bollu, llvm-commits
>
> Tags: #llvm
>
> Differential Revision: https://reviews.llvm.org/D69571
This reverts commit 57dd4b03e4.
Same as D60846 but with a fix for the problem encountered there which
was a missing context adjustment in the handling of PHI nodes.
The test that caused D60846 to be reverted was added in e15ab8f277.
Reviewers: nikic, nlopes, mkazantsev,spatel, dlrobertson, uabelho, hakzsam
Subscribers: hiraditya, bollu, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D69571
This patch improves the handling of pointer offset in GEP expressions where
one argument is the base pointer. isPointerOffset() is being used by memcpyopt
where current code synthesizes consecutive 32 bytes stores to one store and
two memset intrinsic calls. With this patch, we convert the stores to one
memset intrinsic.
Differential Revision: https://reviews.llvm.org/D67989
llvm-svn: 374454
The static analyzer is warning about a potential null dereferences, but since the pointer is only used in a switch statement for Operator::getOpcode() (with an empty default) then its easiest just to wrap this in a null test as the dyn_cast might return null here.
llvm-svn: 372962
Static analyzer complains about const_cast uninitialized variables, we should explicitly set these to null.
Ideally that const wrapper would go away though.......
llvm-svn: 372603
Expose a utility function so that all places which want to suppress speculation (when otherwise legal) due to ordering and/or sanitizer interaction can do so.
llvm-svn: 371556
Summary:
Simplify the API using Optional<> and address comments in
https://reviews.llvm.org/D66165
Reviewers: vitalybuka
Subscribers: hiraditya, llvm-commits, ostannard, pcc
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D66317
llvm-svn: 369300
Summary:
Currently we fail to compute known bits for recurrences where the
first incoming value is the start value of the recurrence.
Instead of exiting the loop when the first incoming value is not
the step of the recurrence, continue to check the second incoming
value.
The original code uses a loop to handle both cases, but incorrectly
exits instead of continuing.
Reviewers: lebedev.ri, spatel, nikic
Reviewed By: lebedev.ri
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D66216
llvm-svn: 369088
Some uses of getArgumentAliasingToReturnedPointer and
isIntrinsicReturningPointerAliasingArgumentWithoutCapturing require the
calls/intrinsics to preserve the nullness of the argument.
For alias analysis, the nullness property does not really come into
play.
This patch explicitly sets it to true. In D61669, the alias analysis
uses will be switched to not require preserving nullness.
Reviewers: nlopes, efriedma, hfinkel, sanjoy, aqjune, jdoerfert
Reviewed By: jdoerfert
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D64150
llvm-svn: 368993
Use isGuaranteedToTransferExecutionToSuccessor() instead of
isSafeToSpeculativelyExecute() when seeing whether we can propagate
the information in an assume backwards in isValidAssumeForContext().
The latter is more general - it also allows arbitrary loads/stores -
and is also the condition we want: if our assume is guaranteed to
execute, its condition not holding would be UB.
Original patch by arielb1.
Differential Revision: https://reviews.llvm.org/D37215
llvm-svn: 368723
The matchSelectPattern code can match patterns like (x >= 0) ? x : -x
for absolute value. But it can also match ((x-y) >= 0) ? (x-y) : (y-x).
If the latter form was matched we can only use the nsw flag if its
set on both subtracts.
This match makes sure we're looking at the former case only.
Differential Revision: https://reviews.llvm.org/D65692
llvm-svn: 368195
Summary:
In D37215, AssumeLikeInstruction are regarded as `willreturn`. In this patch, annotation is added to those which don't have `willreturn` now(`sideeffect, object_size, experimental_widenable_condition`).
Reviewers: jdoerfert, nikic, sstefan1
Reviewed By: nikic
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D65455
llvm-svn: 367342
Summary: As clarified in D53184, volatile load and store do not trap. Therefore, we should remove volatile checks for instructions in `isGuaranteedToTransferExecutionToSuccessor`.
Reviewers: jdoerfert, efriedma, nikic
Reviewed By: nikic
Subscribers: hiraditya, jfb, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D65375
llvm-svn: 367226
Implement IR intrinsics for stack tagging. Generated code is very
unoptimized for now.
Two special intrinsics, llvm.aarch64.irg.sp and llvm.aarch64.tagp are
used to implement a tagged stack frame pointer in a virtual register.
Differential Revision: https://reviews.llvm.org/D64172
llvm-svn: 366360
Summary: Vector of the same value with few undefs will sill be considered "Bytewise"
Reviewers: eugenis, pcc, jfb
Reviewed By: jfb
Subscribers: dexonsmith, hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D64031
llvm-svn: 365971
Summary:
This helps with more efficient use of memset for pattern initialization
From @pcc prototype for -ftrivial-auto-var-init=pattern optimizations
Binary size change on CTMark, (with -fuse-ld=lld -Wl,--icf=all, similar results with default linker options)
```
master patch diff
Os 8.238864e+05 8.238864e+05 0.0
O3 1.054797e+06 1.054797e+06 0.0
Os zero 8.292384e+05 8.292384e+05 0.0
O3 zero 1.062626e+06 1.062626e+06 0.0
Os pattern 8.579712e+05 8.338048e+05 -0.030299
O3 pattern 1.090502e+06 1.067574e+06 -0.020481
```
Zero vs Pattern on master
```
zero pattern diff
Os 8.292384e+05 8.579712e+05 0.036578
O3 1.062626e+06 1.090502e+06 0.025124
```
Zero vs Pattern with the patch
```
zero pattern diff
Os 8.292384e+05 8.338048e+05 0.003333
O3 1.062626e+06 1.067574e+06 0.003193
```
Reviewers: pcc, eugenis
Subscribers: hiraditya, cfe-commits, llvm-commits
Tags: #clang, #llvm
Differential Revision: https://reviews.llvm.org/D63967
llvm-svn: 365858
This patch replaces the three almost identical "strip & accumulate"
implementations for constant pointer offsets with a single one,
combining the respective functionalities. The old interfaces are kept
for now.
Differential Revision: https://reviews.llvm.org/D64468
llvm-svn: 365723
Summary:
We will need to handle IntToPtr which I will submit in a separate patch as it's
not going to be NFC.
Reviewers: eugenis, pcc
Reviewed By: eugenis
Subscribers: hiraditya, cfe-commits, llvm-commits
Tags: #clang, #llvm
Differential Revision: https://reviews.llvm.org/D63940
llvm-svn: 365709
This makes the functions in Loads.h require a type to be specified
independently of the pointer Value so that when pointers have no structure
other than address-space, it can still do its job.
Most callers had an obvious memory operation handy to provide this type, but a
SROA and ArgumentPromotion were doing more complicated analysis. They get
updated to merge the properties of the various instructions they were
considering.
llvm-svn: 365468
The `willreturn` function attribute guarantees that a function call will
come back to the call site if the call is also known not to throw.
Therefore, this attribute can be used in
`isGuaranteedToTransferExecutionToSuccessor`.
Patch by Hideto Ueno (@uenoku)
Reviewers: jdoerfert, sstefan1
Reviewed By: jdoerfert
Subscribers: hiraditya, jfb, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D63372
llvm-svn: 364580
I find the current documentation of poison somewhat confusing,
mainly because its use of "undefined behavior" doesn't seem to
align with our usual interpretation (of immediate UB). Especially
the sentence "any instruction that has a dependence on a poison
value has undefined behavior" is very confusing.
Clarify poison semantics by:
* Replacing the introductory paragraph with the standard rationale
for having poison values.
* Spelling out that instructions depending on poison return poison.
* Spelling out how we go from a poison value to immediate undefined
behavior and give the two examples we currently use in ValueTracking.
* Spelling out that side effects depending on poison are UB.
Differential Revision: https://reviews.llvm.org/D63044
llvm-svn: 363320
I recently got this wrong (again), and I'm sure I'm not the only one. Put a comment in the logical place someone would look to "fix" the obvious "missed optimization" which arrises based on the common misunderstanding. Hopefully, this will save others time. :)
llvm-svn: 363318
Summary:
The logic in EarlyCSE that looks through 'not' operations in the
predicate recognizes e.g. that `select (not (cmp sgt X, Y)), X, Y` is
equivalent to `select (cmp sgt X, Y), Y, X`. Without this change,
however, only the latter is recognized as a form of `smin X, Y`, so the
two expressions receive different hash codes. This leads to missed
optimization opportunities when the quadratic probing for the two hashes
doesn't happen to collide, and assertion failures when probing doesn't
collide on insertion but does collide on a subsequent table grow
operation.
This change inverts the order of some of the pattern matching, checking
first for the optional `not` and then for the min/max/abs patterns, so
that e.g. both expressions above are recognized as a form of `smin X, Y`.
It also adds an assertion to isEqual verifying that it implies equal
hash codes; this fires when there's a collision during insertion, not
just grow, and so will make it easier to notice if these functions fall
out of sync again. A new flag --earlycse-debug-hash is added which can
be used when changing the hash function; it forces hash collisions so
that any pair of values inserted which compare as equal but hash
differently will be caught by the isEqual assertion.
Reviewers: spatel, nikic
Reviewed By: spatel, nikic
Subscribers: lebedev.ri, arsenm, craig.topper, efriedma, hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D62644
llvm-svn: 363274
In order to fold an always overflowing signed saturating add/sub,
we need to know in which direction the always overflow occurs.
This patch splits up AlwaysOverflows into AlwaysOverflowsLow and
AlwaysOverflowsHigh to pass through this information (but it is
not used yet).
Differential Revision: https://reviews.llvm.org/D62463
llvm-svn: 361858
The implementation in ValueTracking and ConstantRange are equally
powerful, reuse the one in ConstantRange, which will make this easier
to extend.
llvm-svn: 361723
Summary:
Both the input Value pointer and the returned Value
pointers in GetUnderlyingObjects are now declared as
const.
It turned out that all current (in-tree) uses of
GetUnderlyingObjects were trivial to update, being
satisfied with have those Value pointers declared
as const. Actually, in the past several of the users
had to use const_cast, just because of ValueTracking
not providing a version of GetUnderlyingObjects with
"const" Value pointers. With this patch we get rid
of those const casts.
Reviewers: hfinkel, materi, jkorous
Reviewed By: jkorous
Subscribers: dexonsmith, jkorous, jholewinski, sdardis, eraman, hiraditya, jrtc27, atanasyan, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D61038
llvm-svn: 359072
ConstantRanges have an annoying special case: If upper and lower are
the same, it can be either an empty or a full set. When constructing
constant ranges nearly always a full set is intended, but this still
requires an explicit check in many places.
This revision adds a getNonEmpty() constructor that disambiguates this
case: If upper and lower are the same, a full set is created.
Differential Revision: https://reviews.llvm.org/D60947
llvm-svn: 358854
This adds a WithOverflowInst class with a few helper methods to get
the underlying binop, signedness and nowrap type and makes use of it
where sensible. There will be two more uses in D60650/D60656.
The refactorings are all NFC, though I left some TODOs where things
could be improved. In particular we have two places where add/sub are
handled but mul isn't.
Differential Revision: https://reviews.llvm.org/D60668
llvm-svn: 358512
This is a follow-up patch to D60504 to further improve
performance issues in computeKnownBitsFromAssume.
The patch is NFC, but may improve compile-time performance
if the compiler isn't clever enough to do the optimization
itself.
llvm-svn: 358163
This patch changes the order of pattern matching by first testing
a compare instruction's predicate, before doing the pattern
match for the whole expression tree.
Patch by Paul Walker.
Reviewed By: spatel
Differential Revision: https://reviews.llvm.org/D60504
llvm-svn: 358097
This is the same change as D60420 but for signed sub rather than
signed add: Range information is intersected into the known bits
result, allows to detect more no/always overflow conditions.
Differential Revision: https://reviews.llvm.org/D60469
llvm-svn: 358020
This is D59386 for the signed add case. The computeConstantRange()
result is now intersected into the existing known bits information,
allowing to detect additional no-overflow/always-overflow conditions
(though the latter isn't used yet).
This (finally...) covers the motivating case from D59071.
Differential Revision: https://reviews.llvm.org/D60420
llvm-svn: 358014
Switch part of the computeOverflowForSignedAdd() implementation to
use Range.isAllNegative() rather than KnownBits.isNegative() and
similar. They do the same thing, but using the ConstantRange methods
allows dropping the KnownBits variables more easily in D60420.
llvm-svn: 357969
Add support for min/max flavor selects in computeConstantRange(),
which allows us to fold comparisons of a min/max against a constant
in InstSimplify. This fixes an infinite InstCombine loop, with the
test case taken from D59378.
Relative to the previous iteration, this contains some adjustments for
AMDGPU med3 tests: The AMDGPU target runs InstSimplify prior to codegen,
which ends up constant folding some existing med3 tests after this
change. To preserve these tests a hidden -amdgpu-scalar-ir-passes option
is added, which allows disabling scalar IR passes (that use InstSimplify)
for testing purposes.
Differential Revision: https://reviews.llvm.org/D59506
llvm-svn: 357870
This adds ConstantRange::getFull(BitWidth) and
ConstantRange::getEmpty(BitWidth) named constructors as more readable
alternatives to the current ConstantRange(BitWidth, /* full */ false)
and similar. Additionally private getFull() and getEmpty() member
functions are added which return a full/empty range with the same bit
width -- these are commonly needed inside ConstantRange.cpp.
The IsFullSet argument in the ConstantRange(BitWidth, IsFullSet)
constructor is now mandatory for the few usages that still make use of it.
Differential Revision: https://reviews.llvm.org/D59716
llvm-svn: 356852
We're already computing the known bits of the operands here. If the
known bits of the operands can determine the sign bit of the result,
we'll already catch this in signedAddMayOverflow(). The only other
way (and as the comment already indicates) we'll get new information
from computing known bits on the whole add, is if there's an assumption
on it.
As such, we change the code to only compute known bits from assumptions,
instead of computing full known bits on the add (which would unnecessarily
recompute the known bits of the operands as well).
Differential Revision: https://reviews.llvm.org/D59473
llvm-svn: 356785
This is D59450, but for signed sub. This case is not NFC, because
the overflow logic in ConstantRange is more powerful than the existing
check. This resolves the TODO in the function.
I've added two tests to show that this indeed catches more cases than
the previous logic, but the main correctness test coverage here is in
the existing ConstantRange unit tests.
Differential Revision: https://reviews.llvm.org/D59617
llvm-svn: 356685
This is a small followup to D59511. The code that was moved into
computeConstantRange() there is a bit overly conversative: If the
abs is not nsw, it does not compute any range. However, abs without
nsw still has a well-defined contiguous unsigned range from 0 to
SIGNED_MIN. This is a lot less useful than the usual 0 to SIGNED_MAX
range, but if we're already here we might as well specify it...
Differential Revision: https://reviews.llvm.org/D59563
llvm-svn: 356586
Improve computeOverflowForUnsignedAdd/Sub in ValueTracking by
intersecting the computeConstantRange() result into the ConstantRange
created from computeKnownBits(). This allows us to detect some
additional never/always overflows conditions that can't be determined
from known bits.
This revision also adds basic handling for constants to
computeConstantRange(). Non-splat vectors will be handled in a followup.
The signed case will also be handled in a followup, as it needs some
more groundwork.
Differential Revision: https://reviews.llvm.org/D59386
llvm-svn: 356489
These changes are related to PR37743 and include:
SelectionDAGBuilder::visitSelect handles the unary SelectPatternFlavor::SPF_ABS case to build ABS node.
Delete the redundant recognizer of the integer ABS pattern from the DAGCombiner.
Add promoting the integer ABS node in the LegalizeIntegerType.
Expand-based legalization of integer result for the ABS nodes.
Expand-based legalization of ABS vector operations.
Add some integer abs testcases for different typesizes for Thumb arch
Add the custom ABS expanding and change the SAD pattern recognizer for X86 arch: The i64 result of the ABS is expanded to:
tmp = (SRA, Hi, 31)
Lo = (UADDO tmp, Lo)
Hi = (XOR tmp, (ADDCARRY tmp, hi, Lo:1))
Lo = (XOR tmp, Lo)
The "detectZextAbsDiff" function is changed for the recognition of pattern with the ABS node. Given a ABS node, detect the following pattern:
(ABS (SUB (ZERO_EXTEND a), (ZERO_EXTEND b))).
Change integer abs testcases for codegen with the ABS node support for AArch64.
Indicate that the ABS is legal for the i64 type when the NEON is supported.
Change the integer abs testcases to show changing of codegen.
Add combine and legalization of ABS nodes for Thumb arch.
Extend 'matchSelectPattern' to recognize the ABS patterns with ICMP_SGE condition.
For discussion, see https://bugs.llvm.org/show_bug.cgi?id=37743
Patch by: @ikulagin (Ivan Kulagin)
Differential Revision: https://reviews.llvm.org/D49837
llvm-svn: 356468
Add support for min/max flavor selects in computeConstantRange(),
which allows us to fold comparisons of a min/max against a constant
in InstSimplify. This was suggested by spatel as an alternative
approach to D59378. I've also added the infinite looping test from
that revision here.
Differential Revision: https://reviews.llvm.org/D59506
llvm-svn: 356415
This is preparation for D59506. The InstructionSimplify abs handling
is moved into computeConstantRange(), which is the general place for
such calculations. This is NFC and doesn't affect the existing tests
in test/Transforms/InstSimplify/icmp-abs-nabs.ll.
Differential Revision: https://reviews.llvm.org/D59511
llvm-svn: 356409
This is the same change as rL356290, but for signed add. It replaces
the existing ripple logic with the overflow logic in ConstantRange.
This is NFC in that it should return NeverOverflow in exactly the
same cases as the previous implementation. However, it does make
computeOverflowForSignedAdd() more powerful by now also determining
AlwaysOverflows conditions. As none of its consumers handle this yet,
this has no impact on optimization. Making use of AlwaysOverflows
in with.overflow folding will be handled as a followup.
Differential Revision: https://reviews.llvm.org/D59450
llvm-svn: 356345
Following the suggestion in D59450, I'm moving the code for constructing
a ConstantRange from KnownBits out of ValueTracking, which also allows us
to test this code independently.
I'm adding this method to ConstantRange rather than KnownBits (which
would have been a bit nicer API wise) to avoid creating a dependency
from Support to IR, where ConstantRange lives.
Differential Revision: https://reviews.llvm.org/D59475
llvm-svn: 356339
Use the methods introduced in rL356276 to implement the
computeOverflowForUnsigned(Add|Sub) functions in ValueTracking, by
converting the KnownBits into a ConstantRange.
This is NFC: The existing KnownBits based implementation uses the same
logic as the the ConstantRange based one. This is not the case for the
signed equivalents, so I'm only changing unsigned here.
This is in preparation for D59386, which will also intersect the
computeConstantRange() result into the range determined from KnownBits.
llvm-svn: 356290
InstructionSimplify currently has some code to determine the constant
range of integer instructions for some simple cases. It is used to
simplify icmps.
This change moves the relevant code into ValueTracking as
llvm::computeConstantRange(), so it can also be reused for other
purposes.
In particular this is with the optimization of overflow checks in
mind (ref D59071), where constant ranges cover some cases that
known bits don't.
llvm-svn: 355781
There are no tests for this case, and I'm not sure how it could ever work,
so I'm just removing this option from the matcher. This should fix PR40940:
https://bugs.llvm.org/show_bug.cgi?id=40940
llvm-svn: 355292
We have two sources of known bits:
1. For adds leading ones of either operand are preserved. For sub
leading zeros of LHS and leading ones of RHS become leading zeros in
the result.
2. The saturating math is a select between add/sub and an all-ones/
zero value. As such we can carry out the add/sub known bits
calculation, and only preseve the known one/zero bits respectively.
Differential Revision: https://reviews.llvm.org/D58329
llvm-svn: 355223
Second part of D58593.
Compute precise overflow conditions based on all known bits, rather
than just the sign bits. Unsigned a - b overflows iff a < b, and we
can determine whether this always/never happens based on the minimal
and maximal values achievable for a and b subject to the known bits
constraint.
llvm-svn: 355109
Summary:
The description of KnownBits::zext() and
KnownBits::zextOrTrunc() has confusingly been telling
that the operation is equivalent to zero extending the
value we're tracking. That has not been true, instead
the user has been forced to explicitly set the extended
bits as known zero afterwards.
This patch adds a second argument to KnownBits::zext()
and KnownBits::zextOrTrunc() to control if the extended
bits should be considered as known zero or as unknown.
Reviewers: craig.topper, RKSimon
Reviewed By: RKSimon
Subscribers: javed.absar, hiraditya, jdoerfert, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D58650
llvm-svn: 355099
Part of D58593.
Compute precise overflow conditions based on all known bits, rather
than just the sign bits. Unsigned a + b overflows iff a > ~b, and we
can determine whether this always/never happens based on the minimal
and maximal values achievable for a and ~b subject to the known bits
constraint.
llvm-svn: 355072
This patch accompanies the RFC posted here:
http://lists.llvm.org/pipermail/llvm-dev/2018-October/127239.html
This patch adds a new CallBr IR instruction to support asm-goto
inline assembly like gcc as used by the linux kernel. This
instruction is both a call instruction and a terminator
instruction with multiple successors. Only inline assembly
usage is supported today.
This also adds a new INLINEASM_BR opcode to SelectionDAG and
MachineIR to represent an INLINEASM block that is also
considered a terminator instruction.
There will likely be more bug fixes and optimizations to follow
this, but we felt it had reached a point where we would like to
switch to an incremental development model.
Patch by Craig Topper, Alexander Ivchenko, Mikhail Dvoretckii
Differential Revision: https://reviews.llvm.org/D53765
llvm-svn: 353563
Bitcast and certain Ptr2Int/Int2Ptr instructions will not alter the
value of their operand and can therefore be looked through when we
determine non-nullness.
Differential Revision: https://reviews.llvm.org/D54956
llvm-svn: 352293
to reflect the new license.
We understand that people may be surprised that we're moving the header
entirely to discuss the new license. We checked this carefully with the
Foundation's lawyer and we believe this is the correct approach.
Essentially, all code in the project is now made available by the LLVM
project under our new license, so you will see that the license headers
include that license only. Some of our contributors have contributed
code under our old license, and accordingly, we have retained a copy of
our old license notice in the top-level files in each project and
repository.
llvm-svn: 351636
minted `CallBase` class instead of the `CallSite` wrapper.
This moves the largest interwoven collection of APIs that traffic in
`CallSite`s. While a handful of these could have been migrated with
a minorly more shallow migration by converting from a `CallSite` to
a `CallBase`, it hardly seemed worth it. Most of the APIs needed to
migrate together because of the complex interplay of AA APIs and the
fact that converting from a `CallBase` to a `CallSite` isn't free in its
current implementation.
Out of tree users of these APIs can fairly reliably migrate with some
combination of `.getInstruction()` on the `CallSite` instance and
casting the resulting pointer. The most generic form will look like `CS`
-> `cast_or_null<CallBase>(CS.getInstruction())` but in most cases there
is a more elegant migration. Hopefully, this migrates enough APIs for
users to fully move from `CallSite` to the base class. All of the
in-tree users were easily migrated in that fashion.
Thanks for the review from Saleem!
Differential Revision: https://reviews.llvm.org/D55641
llvm-svn: 350503
GetPointerBaseWithConstantOffset include this code, where ByteOffset
and GEPOffset are both of type llvm::APInt :
ByteOffset += GEPOffset.getSExtValue();
The problem with this line is that getSExtValue() returns an int64_t, but
the += matches an overload for uint64_t. The problem is that the resulting
APInt is no longer considered to be signed. That in turn causes assertion
failures later on if the relevant pointer type is > 64 bits in width and
the GEPOffset was negative.
Changing it to
ByteOffset += GEPOffset.sextOrTrunc(ByteOffset.getBitWidth());
resolves the issue and explicitly performs the sign-extending
or truncation. Additionally, instead of asserting later if the result
is > 64 bits, it breaks out of the loop in that case.
See also
https://reviews.llvm.org/D24729https://reviews.llvm.org/D24772
This commit must be merged after D38662 in order for the test to pass.
Patch by Michael Ferguson <mpfergu@gmail.com>.
Reviewers: reames, sanjoy, hfinkel
Reviewed By: hfinkel
Differential Revision: https://reviews.llvm.org/D38501
llvm-svn: 350395
Instruction::isLifetimeStartOrEnd() checks whether an Instruction is an
llvm.lifetime.start or an llvm.lifetime.end intrinsic.
This was suggested as a cleanup in D55967.
Differential Revision: https://reviews.llvm.org/D56019
llvm-svn: 349964
If the shift amount is known, we can determine the known bits of the
output based on the known bits of two inputs.
This is essentially the same functionality as implemented in D54869,
but for ValueTracking rather than InstCombine SimplifyDemandedBits.
Differential Revision: https://reviews.llvm.org/D55140
llvm-svn: 348091
We were duplicating code around the existing isImpliedCondition() that
checks for a predecessor block/dominating condition, so make that a
wrapper call.
llvm-svn: 348088
Always-overflow was already determined for unsigned addition, but
not subtraction. This patch establishes parity.
This allows us to perform some additional simplifications for
signed saturating subtractions.
This change is part of https://reviews.llvm.org/D54534.
llvm-svn: 347771
In PR39475:
https://bugs.llvm.org/show_bug.cgi?id=39475
..we may fail to recognize/simplify fabs() in some cases because we do not
canonicalize fcmp with a -0.0 operand.
Adding that canonicalization can cause regressions on min/max FP tests, so
that's this patch: for the purpose of determining whether something is min/max,
let the value returned by the select determine how we treat a 0.0 operand in the fcmp.
This patch doesn't actually change the -0.0 to +0.0. It just changes the analysis, so
we don't fail to recognize equivalent min/max patterns that only differ in the
signbit of 0.0.
Differential Revision: https://reviews.llvm.org/D54001
llvm-svn: 346097
This patch gives the IR ComputeNumSignBits the same functionality as the
DAG version (the code is derived from the existing code).
This an extension of the single input shuffle analysis added with D53659.
Differential Revision: https://reviews.llvm.org/D53987
llvm-svn: 346071
The motivating case is from PR37549:
https://bugs.llvm.org/show_bug.cgi?id=37549
The analysis improvement allows us to form a vector 'select' out of
bitwise logic (the use of ComputeNumSignBits was added at rL345149).
The smaller test shows another InstCombine improvement - we use
ComputeNumSignBits to add 'nsw' to shift-left. But the negative
test shows an example where we must not add 'nsw' - when the shuffle
mask contains undef elements.
Differential Revision: https://reviews.llvm.org/D53659
llvm-svn: 345429
Summary:
This CL allows constant vectors of floats to be recognized as non-NaN
and non-zero in select patterns. This change makes
`matchSelectPattern` more powerful generally, but was motivated
specifically because I wanted fminnan and fmaxnan to be created for
vector versions of the scalar patterns they are created for.
Tested with check-all on all targets. A testcase in the WebAssembly
backend that tests the non-nan codepath is in an upcoming CL.
Reviewers: aheejin, dschuff
Subscribers: sunfish, llvm-commits
Differential Revision: https://reviews.llvm.org/D52324
llvm-svn: 343364
Summary:
his code was in CGDecl.cpp and really belongs in LLVM's isBytewiseValue. Teach isBytewiseValue the tricks clang's isRepeatedBytePattern had, including merging undef properly, and recursing on more types.
clang part of this patch: D51752
Subscribers: dexonsmith, llvm-commits
Differential Revision: https://reviews.llvm.org/D51751
llvm-svn: 342709
rL340921 has been reverted by rL340923 due to linkage dependency
from Transform/Utils to Analysis which is not allowed. In this patch
this has been fixed, a new utility function moved to Analysis.
Differential Revision: https://reviews.llvm.org/D51152
llvm-svn: 341014
We have multiple places in code where we try to identify whether or not
some instruction is a guard. This patch factors out this logic into a separate
utility function which works uniformly in all places.
Differential Revision: https://reviews.llvm.org/D51152
Reviewed By: fedor.sergeev
llvm-svn: 340921
We need to allow ConstantExpr Selects in addition to SelectInst.
I'll try to put together a test case, but I wanted to fix the issues being reported.
Fixes PR38677
llvm-svn: 340546
If we have a min/max pair we can do a better job of counting sign bits if we look at them together. This is similar to what is done in the SelectionDAG version of computeNumSignBits for ISD::SMAX/SMIN.
Differential Revision: https://reviews.llvm.org/D51112
llvm-svn: 340480
NewGVN uses InstructionSimplify for simplifications of leaders of
congruence classes. It is not guaranteed that the metadata or other
flags/keywords (like nsw or exact) of the leader is available for all members
in a congruence class, so we cannot use it for simplification.
This patch adds a InstrInfoQuery struct with a boolean field
UseInstrInfo (which defaults to true to keep the current behavior as
default) and a set of helper methods to get metadata/keywords for a
given instruction, if UseInstrInfo is true. The whole thing might need a
better name, to avoid confusion with TargetInstrInfo but I am not sure
what a better name would be.
The current patch threads through InstrInfoQuery to the required
places, which is messier then it would need to be, if
InstructionSimplify and ValueTracking would share the same Query struct.
The reason I added it as a separate struct is that it can be shared
between InstructionSimplify and ValueTracking's query objects. Also,
some places do not need a full query object, just the InstrInfoQuery.
It also updates some interfaces that do not take a Query object, but a
set of optional parameters to take an additional boolean UseInstrInfo.
See https://bugs.llvm.org/show_bug.cgi?id=37540.
Reviewers: dberlin, davide, efriedma, sebpop, hiraditya
Reviewed By: hiraditya
Differential Revision: https://reviews.llvm.org/D47143
llvm-svn: 340031
The patch was reverted because of bug detected by sanitizer. The bug is fixed,
respective tests added.
Differential Revision: https://reviews.llvm.org/D50172
llvm-svn: 339005
Multiple failues reported by sanitizer-x86_64-linux, seem to be caused by this
patch. Reverting to see if they sustain without it.
Differential Revision: https://reviews.llvm.org/D50172
llvm-svn: 338994
`isKnownNonNullFromDominatingCondition` is able to prove non-null basing on `br` or `guard`
by `%p != null` condition, but is unable to do so basing on `(%p != null) && %other_cond`.
This patch allows it to do so.
Differential Revision: https://reviews.llvm.org/D50172
Reviewed By: reames
llvm-svn: 338990
This adds the NAN checks suggested in PR37776:
https://bugs.llvm.org/show_bug.cgi?id=37776
If both operands to maxnum are NAN, that should get constant folded, so we don't
have to handle that case. This is the same assumption as other FP ops in this
function. Returning 'false' is always conservatively correct.
Copying from the bug report:
Currently, we have this for "when is cannotBeOrderedLessThanZero
(mustBePositiveOrNaN) true for maxnum":
L
-------------------
| Pos | Neg | NaN |
------------------------
|Pos | x | x | x |
------------------------
R |Neg | x | | x |
------------------------
|NaN | x | x | x |
------------------------
The cases with (Neg & NaN) are wrong. We should have:
L
-------------------
| Pos | Neg | NaN |
------------------------
|Pos | x | x | x |
------------------------
R |Neg | x | | |
------------------------
|NaN | x | | x |
------------------------
Differential Revision: https://reviews.llvm.org/D50081
llvm-svn: 338716
Currently ComputeNumSignBits does early exit while processing some
of the operations (add, sub, mul, and select). This prevents the
function from using AssumptionCacheTracker if passed.
Differential Revision: https://reviews.llvm.org/D49759
llvm-svn: 337936
Summary:
Support for this option is needed for building Linux kernel.
This is a very frequently requested feature by kernel developers.
More details : https://lkml.org/lkml/2018/4/4/601
GCC option description for -fdelete-null-pointer-checks:
This Assume that programs cannot safely dereference null pointers,
and that no code or data element resides at address zero.
-fno-delete-null-pointer-checks is the inverse of this implying that
null pointer dereferencing is not undefined.
This feature is implemented in LLVM IR in this CL as the function attribute
"null-pointer-is-valid"="true" in IR (Under review at D47894).
The CL updates several passes that assumed null pointer dereferencing is
undefined to not optimize when the "null-pointer-is-valid"="true"
attribute is present.
Reviewers: t.p.northover, efriedma, jyknight, chandlerc, rnk, srhines, void, george.burgess.iv
Reviewed By: efriedma, george.burgess.iv
Subscribers: eraman, haicheng, george.burgess.iv, drinkcat, theraven, reames, sanjoy, xbolva00, llvm-commits
Differential Revision: https://reviews.llvm.org/D47895
llvm-svn: 336613
It's a bit neater to write T.isIntOrPtrTy() over `T.isIntegerTy() ||
T.isPointerTy()`.
I used Python's re.sub with this regex to update users:
r'([\w.\->()]+)isIntegerTy\(\)\s*\|\|\s*\1isPointerTy\(\)'
llvm-svn: 336462
Summary:
This patch introduce new intrinsic -
strip.invariant.group that was described in the
RFC: Devirtualization v2
Reviewers: rsmith, hfinkel, nlopes, sanjoy, amharc, kuhar
Subscribers: arsenm, nhaehnle, JDevlieghere, hiraditya, xbolva00, llvm-commits
Differential Revision: https://reviews.llvm.org/D47103
Co-authored-by: Krzysztof Pszeniczny <krzysztof.pszeniczny@gmail.com>
llvm-svn: 336073
When checking a select to see if it matches an abs, allow the true/false values
to be a sign-extension of the comparison value instead of requiring that they're
directly the comparison value, as all the comparison cares about is the sign of
the value.
This fixes a regression due to r333702, where we were no longer generating ctlz
due to isKnownNonNegative failing to match such a pattern.
Differential Revision: https://reviews.llvm.org/D47631
llvm-svn: 333927
Summary:
The isKnownNonZero() function have checks that abort the recursion when
it reaches the specified max depth. However one of the recursive calls
was placed before the max depth check was done, resulting in a endless
recursion that eventually triggered a segmentation fault.
Fixed the problem by moving the max depth check above the first
recursive call.
Reviewers: Prazek, nlopes, spatel, craig.topper, hfinkel
Reviewed By: hfinkel
Subscribers: hfinkel, bjope, llvm-commits
Differential Revision: https://reviews.llvm.org/D47531
llvm-svn: 333557
Libfuzzer tests have been fixed to prevent being optimized.
Original commit message:
If the nsw flag is used in the absolute value then it is undefined for INT_MIN. For all other value it will produce a positive number. So we can assume the result is positive.
This breaks some InstCombine abs/nabs combining tests because we simplify the second compare from known bits rather than as the whole pattern. Looks like we can probably fix it by adding a neg+abs/nabs combine to just swap the select operands. N
Differential Revision: https://reviews.llvm.org/D47041
llvm-svn: 333300
If the nsw flag is used in the absolute value then it is undefined for INT_MIN. For all other value it will produce a positive number. So we can assume the result is positive.
This breaks some InstCombine abs/nabs combining tests because we simplify the second compare from known bits rather than as the whole pattern. Looks like we can probably fix it by adding a neg+abs/nabs combine to just swap the select operands. Need to check alive to make sure there are no corner cases.
Differential Revision: https://reviews.llvm.org/D47041
llvm-svn: 333226
Summary:
Patch for capture tracking broke
bootstrap of clang with -fstict-vtable-pointers
which resulted in debbugging nightmare. It was fixed
https://reviews.llvm.org/D46900 but as it turned
out, there were other parts like inliner (computing of
noalias metadata) that I found after bootstraping with enabled
assertions.
Reviewers: hfinkel, rsmith, chandlerc, amharc, kuhar
Subscribers: JDevlieghere, eraman, llvm-commits, hiraditya
Differential Revision: https://reviews.llvm.org/D47088
llvm-svn: 333070
Summary: Previous patch does not care if a value is changed between calloc and strlen. This needs to be removed from InstCombine and maybe moved to DSE later after some rework.
Reviewers: efriedma
Reviewed By: efriedma
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D47218
llvm-svn: 333022
Change matchSelectPattern to return X and -X for ABS/NABS in a well defined order. Adjust EarlyCSE to account for this. Ensure the SPF result is some kind of min/max and not abs/nabs in one place in InstCombine that made me nervous.
Prevously we returned the two operands of the compare part of the abs pattern. The RHS is always going to be a 0i, 1 or -1 constant. This isn't a very meaningful thing to return for any one. There's also some freedom in the abs pattern as to what happens when the value is equal to 0. This freedom led to early cse failing to match when different constants were used in otherwise equivalent operations. By returning the input and its negation in a defined order we can ensure an exact match. This also makes sure both patterns use the exact same subtract instruction for the negation. I believe CSE should evebntually make this happen and properly merge the nsw/nuw flags. But I'm not familiar with CSE and what order it does things in so it seemed like it might be good to really enforce that they were the same.
Differential Revision: https://reviews.llvm.org/D47037
llvm-svn: 332865
Summary:
invariant.group.launder should not stop propagation
of nonnull and dereferenceable, because e.g. we would not be
able to hoist loads speculatively.
Reviewers: rsmith, amharc, kuhar, xbolva00, hfinkel
Subscribers: hiraditya, llvm-commits
Differential Revision: https://reviews.llvm.org/D46972
llvm-svn: 332788
In order to set breakpoints on labels and list source code around
labels, we need collect debug information for labels, i.e., label
name, the function label belong, line number in the file, and the
address label located. In order to keep these information in LLVM
IR and to allow backend to generate debug information correctly.
We create a new kind of metadata for labels, DILabel. The format
of DILabel is
!DILabel(scope: !1, name: "foo", file: !2, line: 3)
We hope to keep debug information as much as possible even the
code is optimized. So, we create a new kind of intrinsic for label
metadata to avoid the metadata is eliminated with basic block.
The intrinsic will keep existing if we keep it from optimized out.
The format of the intrinsic is
llvm.dbg.label(metadata !1)
It has only one argument, that is the DILabel metadata. The
intrinsic will follow the label immediately. Backend could get the
label metadata through the intrinsic's parameter.
We also create DIBuilder API for labels to be used by Frontend.
Frontend could use createLabel() to allocate DILabel objects, and use
insertLabel() to insert llvm.dbg.label intrinsic in LLVM IR.
Differential Revision: https://reviews.llvm.org/D45024
Patch by Hsiangkai Wang.
llvm-svn: 331841
We've been running doxygen with the autobrief option for a couple of
years now. This makes the \brief markers into our comments
redundant. Since they are a visual distraction and we don't want to
encourage more \brief markers in new code either, this patch removes
them all.
Patch produced by
for i in $(git grep -l '\\brief'); do perl -pi -e 's/\\brief //g' $i & done
Differential Revision: https://reviews.llvm.org/D46290
llvm-svn: 331272
Summary:
Currently, we
1. match `LHS` matcher to the `first` operand of binary operator,
2. and then match `RHS` matcher to the `second` operand of binary operator.
If that does not match, we swap the `LHS` and `RHS` matchers:
1. match `RHS` matcher to the `first` operand of binary operator,
2. and then match `LHS` matcher to the `second` operand of binary operator.
This works ok.
But it complicates writing of commutative matchers, where one would like to match
(`m_Value()`) the value on one side, and use (`m_Specific()`) it on the other side.
This is additionally complicated by the fact that `m_Specific()` stores the `Value *`,
not `Value **`, so it won't work at all out of the box.
The last problem is trivially solved by adding a new `m_c_Specific()` that stores the
`Value **`, not `Value *`. I'm choosing to add a new matcher, not change the existing
one because i guess all the current users are ok with existing behavior,
and this additional pointer indirection may have performance drawbacks.
Also, i'm storing pointer, not reference, because for some mysterious-to-me reason
it did not work with the reference.
The first one appears trivial, too.
Currently, we
1. match `LHS` matcher to the `first` operand of binary operator,
2. and then match `RHS` matcher to the `second` operand of binary operator.
If that does not match, we swap the ~~`LHS` and `RHS` matchers~~ **operands**:
1. match ~~`RHS`~~ **`LHS`** matcher to the ~~`first`~~ **`second`** operand of binary operator,
2. and then match ~~`LHS`~~ **`RHS`** matcher to the ~~`second`~ **`first`** operand of binary operator.
Surprisingly, `$ ninja check-llvm` still passes with this.
But i expect the bots will disagree..
The motivational unittest is included.
I'd like to use this in D45664.
Reviewers: spatel, craig.topper, arsenm, RKSimon
Reviewed By: craig.topper
Subscribers: xbolva00, wdng, llvm-commits
Differential Revision: https://reviews.llvm.org/D45828
llvm-svn: 331085
Summary:
In order to get the whole fold as specified in [[ https://bugs.llvm.org/show_bug.cgi?id=6773 | PR6773 ]],
let's first handle the simple straight-forward things.
Let's start with the `and` -> `or` simplification.
The one obvious thing missing here: the constant mask is not handled.
I have an idea how to handle it, but it will require some thinking,
and is not strictly required here, so i've left that for later.
https://rise4fun.com/Alive/Pkmg
Reviewers: spatel, craig.topper, eli.friedman, jingyue
Reviewed By: spatel
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D45631
llvm-svn: 330101
Most of the folds based on SelectPatternResult belong in InstSimplify rather than
InstCombine, so the helper code should be available to other passes/analysis.
llvm-svn: 326812
This is similar to what's done in computeKnownBits and computeSignBits. Don't do anything fancy just collect information valid for any element.
Differential Revision: https://reviews.llvm.org/D43789
llvm-svn: 326237
Making a width of GEP Index, which is used for address calculation, to be one of the pointer properties in the Data Layout.
p[address space]:size:memory_size:alignment:pref_alignment:index_size_in_bits.
The index size parameter is optional, if not specified, it is equal to the pointer size.
Till now, the InstCombiner normalized GEPs and extended the Index operand to the pointer width.
It works fine if you can convert pointer to integer for address calculation and all registered targets do this.
But some ISAs have very restricted instruction set for the pointer calculation. During discussions were desided to retrieve information for GEP index from the Data Layout.
http://lists.llvm.org/pipermail/llvm-dev/2018-January/120416.html
I added an interface to the Data Layout and I changed the InstCombiner and some other passes to take the Index width into account.
This change does not affect any in-tree target. I added tests to cover data layouts with explicitly specified index size.
Differential Revision: https://reviews.llvm.org/D42123
llvm-svn: 325102
The last assume in the test says that %B12 is 0.
The first assume says that %and1 is less than %B12.
Therefore, %and1 is unsigned less than 0...does not compute.
That means this line:
Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros() + 1);
...tries to set more bits than exist.
Differential Revision: https://reviews.llvm.org/D43052
llvm-svn: 324610
Generalize existing constant matching to work with non-uniform constant vectors as well.
Differential Revision: https://reviews.llvm.org/D42818
llvm-svn: 324369
We're getting bug reports:
https://bugs.llvm.org/show_bug.cgi?id=35807https://bugs.llvm.org/show_bug.cgi?id=35840https://bugs.llvm.org/show_bug.cgi?id=36045
...where we blow up the stack in value tracking because other passes are sending
in selects that have an operand that is itself the select.
We don't currently have a reliable way to avoid analyzing dead code that may take
non-standard forms, so bail out when things go too far.
This mimics the recursion depth limitations in other parts of value tracking.
Unfortunately, this pushes the underlying problems for other passes (jump-threading,
simplifycfg, correlated-propagation) into hiding. If someone wants to uncover those
again, the first draft of this patch on Phab would do that (it would assert rather
than bail out).
Differential Revision: https://reviews.llvm.org/D42442
llvm-svn: 323331
This was originally planned as the fix for:
https://bugs.llvm.org/show_bug.cgi?id=35834
...but simpler transforms handled that case, so I implemented a
lesser solution. It turns out we need to handle the case with 'not'
ops too because the real code example that we are trying to solve:
https://bugs.llvm.org/show_bug.cgi?id=35875
...has extra uses of the intermediate values, so we can't rely on
smaller canonicalizations to get us to the goal.
As with rL321672, I've tried to show every possibility in the
codegen tests because that's the simplest way to prove we're doing
the right thing in the wide variety of permutations of this pattern.
We can also show an InstCombine win because we added a fold for
this case in:
rL321998 / D41603
An Alive proof for one variant of the pattern to show that the
InstCombine and codegen results are correct:
https://rise4fun.com/Alive/vd1
Name: min3_nots
%nx = xor i8 %x, -1
%ny = xor i8 %y, -1
%nz = xor i8 %z, -1
%cmpxz = icmp slt i8 %nx, %nz
%minxz = select i1 %cmpxz, i8 %nx, i8 %nz
%cmpyz = icmp slt i8 %ny, %nz
%minyz = select i1 %cmpyz, i8 %ny, i8 %nz
%cmpyx = icmp slt i8 %y, %x
%r = select i1 %cmpyx, i8 %minxz, i8 %minyz
=>
%cmpxyz = icmp slt i8 %minxz, %ny
%r = select i1 %cmpxyz, i8 %minxz, i8 %ny
Name: min3_nots_alt
%nx = xor i8 %x, -1
%ny = xor i8 %y, -1
%nz = xor i8 %z, -1
%cmpxz = icmp slt i8 %nx, %nz
%minxz = select i1 %cmpxz, i8 %nx, i8 %nz
%cmpyz = icmp slt i8 %ny, %nz
%minyz = select i1 %cmpyz, i8 %ny, i8 %nz
%cmpyx = icmp slt i8 %y, %x
%r = select i1 %cmpyx, i8 %minxz, i8 %minyz
=>
%xz = icmp sgt i8 %x, %z
%maxxz = select i1 %xz, i8 %x, i8 %z
%xyz = icmp sgt i8 %maxxz, %y
%maxxyz = select i1 %xyz, i8 %maxxz, i8 %y
%r = xor i8 %maxxyz, -1
llvm-svn: 322283
This is a preliminary step for the patch discussed in D41136 (and denoted here with the FIXME comment).
When we match an FP min/max that is cast to integer, any intermediate difference between +0.0 or -0.0
should be muted in the result by the conversion (either fptosi or fptoui) of the result. Thus, we can
enable 'nsz' for the purpose of matching fmin/fmax.
Note that there's probably room to generalize this more, possibly by fixing the current calls to the
weak version of isKnownNonZero() in matchSelectPattern() to the more powerful recursive version.
Differential Revision: https://reviews.llvm.org/D41333
llvm-svn: 321456
SROA analysis of InlineCost can figure out that some stores can be removed
after inlining and then the repeated loads clobbered by these stores are also
free. This patch finds these clobbered loads and adjust the inline cost
accordingly.
Differential Revision: https://reviews.llvm.org/D33946
llvm-svn: 320814
When the lowest bits of the operands to an integer multiply are known, the low bits of the result are deducible.
Code to deduce known-zero bottom bits already existed, but this change improves on that by deducing known-ones.
Patch by: Pedro Ferreira
Reviewers: craig.topper, sanjoy, efriedma
Differential Revision: https://reviews.llvm.org/D34029
llvm-svn: 320269
Summary:
This is LLVM instrumentation for the new HWASan tool. It is basically
a stripped down copy of ASan at this point, w/o stack or global
support. Instrumenation adds a global constructor + runtime callbacks
for every load and store.
HWASan comes with its own IR attribute.
A brief design document can be found in
clang/docs/HardwareAssistedAddressSanitizerDesign.rst (submitted earlier).
Reviewers: kcc, pcc, alekseyshl
Subscribers: srhines, mehdi_amini, mgorny, javed.absar, eraman, llvm-commits, hiraditya
Differential Revision: https://reviews.llvm.org/D40932
llvm-svn: 320217
This patch implements Chandler's idea [0] for supporting languages that
require support for infinite loops with side effects, such as Rust, providing
part of a solution to bug 965 [1].
Specifically, it adds an `llvm.sideeffect()` intrinsic, which has no actual
effect, but which appears to optimization passes to have obscure side effects,
such that they don't optimize away loops containing it. It also teaches
several optimization passes to ignore this intrinsic, so that it doesn't
significantly impact optimization in most cases.
As discussed on llvm-dev [2], this patch is the first of two major parts.
The second part, to change LLVM's semantics to have defined behavior
on infinite loops by default, with a function attribute for opting into
potential-undefined-behavior, will be implemented and posted for review in
a separate patch.
[0] http://lists.llvm.org/pipermail/llvm-dev/2015-July/088103.html
[1] https://bugs.llvm.org/show_bug.cgi?id=965
[2] http://lists.llvm.org/pipermail/llvm-dev/2017-October/118632.html
Differential Revision: https://reviews.llvm.org/D38336
llvm-svn: 317729
As discussed in D39204, this is effectively a revert of rL265521 which required nnan
to vectorize sqrt libcalls based on the old LangRef definition of llvm.sqrt. Now that
the definition has been updated so the libcall and intrinsic have the same semantics
apart from potentially setting errno, we can remove the nnan requirement.
We have the right check to know that errno is not set:
if (!ICS.onlyReadsMemory())
...ahead of the switch.
This will solve https://bugs.llvm.org/show_bug.cgi?id=27435 assuming that's being
built for a target with -fno-math-errno.
Differential Revision: https://reviews.llvm.org/D39642
llvm-svn: 317519
Summary:
ValueTracking was recognizing not all variations of clamp. Swapping of
true value and false value of select was added to fix this problem. The
first patch was reverted because it caused miscompile in NVPTX target.
Added corresponding test cases.
Reviewers: spatel, majnemer, efriedma, reames
Subscribers: llvm-commits, jholewinski
Differential Revision: https://reviews.llvm.org/D39240
llvm-svn: 316795
Neither of these cases really require a temporary APInt outside the loop. For the ConstantDataSequential case the APInt will never be larger than 64-bits so its fine to just call getElementAsAPInt. For ConstantVector we can get the APInt by reference and only make a copy where the inversion is needed.
llvm-svn: 316265
(recommit #2 after checking for timeout issue).
The original patch was an improvement to IR ValueTracking on
non-negative integers. It has been checked in to trunk (D18777,
r284022). But was disabled by default due to performance regressions.
Perf impact has improved. The patch would be enabled by default.
Reviewers: reames, hfinkel
Differential Revision: https://reviews.llvm.org/D34101
Patch by: Olga Chupina <olga.chupina@intel.com>
llvm-svn: 316208
Added check that type of CmpConst and source type of trunc are equal
for correct matching of the case when we can set widened C constant
equal to CmpConstant.
%cond = cmp iN %x, CmpConst
%tr = trunc iN %x to iK
%narrowsel = select i1 %cond, iK %t, iK C
Patch by: Gainullin, Artur <artur.gainullin@intel.com>
llvm-svn: 316082
Summary:
When we have the following case:
%cond = cmp iN %x, CmpConst
%tr = trunc iN %x to iK
%narrowsel = select i1 %cond, iK %t, iK C
We could possibly match only min/max pattern after looking through cast.
So it is more profitable if widened C constant will be equal CmpConst.
That is why just set widened C constant equal to CmpConst, because there
is a further check in this function that trunc CmpConst == C.
Also description for lookTroughCast function was added.
Reviewers: spatel
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D38536
Patch by: Artur Gainullin <artur.gainullin@intel.com>
llvm-svn: 316070
Summary:
ValueTracking was recognizing not all variations of clamp. Swapping of
true value and false value of select was added to fix this problem. This
change breaks the canonical form of cmp inside the matchMinMax function,
that is why additional checks for compare predicates is needed. Added
corresponding test cases.
Reviewers: spatel
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D38531
Patch by: Artur Gainullin <artur.gainullin@intel.com>
llvm-svn: 315992
This patch fixes the bug introduced in https://reviews.llvm.org/D35907; the bug is reported by http://lists.llvm.org/pipermail/llvm-commits/Week-of-Mon-20171002/491452.html.
Before D35907, when GetUnderlyingObjects fails to find an identifiable object, allMMOsOkay lambda in getUnderlyingObjectsForInstr returns false and Objects vector is cleared. This behavior is unintentionally changed by D35907.
This patch makes the behavior for such case same as the previous behavior.
Since D35907 introduced a wrapper function getUnderlyingObjectsForCodeGen around GetUnderlyingObjects, getUnderlyingObjectsForCodeGen is modified to return a boolean value to ask the caller to clear the Objects vector.
Differential Revision: https://reviews.llvm.org/D38735
llvm-svn: 315565
parameterized emit() calls
Summary: This is not functional change to adopt new emit() API added in r313691.
Reviewed By: anemet
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D38285
llvm-svn: 315476
It now knows the tricks of both functions.
Also, fix a bug that considered allocas of non-zero address space to be always non null
Differential Revision: https://reviews.llvm.org/D37628
llvm-svn: 312869
This is a preliminary step towards solving the remaining part of PR27145 - IR for isfinite():
https://bugs.llvm.org/show_bug.cgi?id=27145
In order to solve that one more generally, we need to add matching for and/or of fcmp ord/uno
with a constant operand.
But while looking at those patterns, I realized we were missing a canonicalization for nonzero
constants. Rather than limiting to just folds for constants, we're adding a general value
tracking method for this based on an existing DAG helper.
By transforming everything to 0.0, we can simplify the existing code in foldLogicOfFCmps()
and pick up missing vector folds.
Differential Revision: https://reviews.llvm.org/D37427
llvm-svn: 312591
The function does an equality check later to terminate the recursion, but that won't work if its starts out too high. Similar assert already exists in computeKnownBits.
llvm-svn: 311400
ValueTracking has to strike a balance when attempting to propagate information
backwards from assumes, because if the information is trivially propagated
backwards, it can appear to LLVM that the assumption is known to be true, and
therefore can be removed.
This is sound (because an assumption has no semantic effect except for causing
UB), but prevents the assume from allowing further optimizations.
The isEphemeralValueOf check exists to try and prevent this issue by not
removing the source of an assumption. This tries to make it a little bit more
general to handle the case of side-effectful instructions, such as in
%0 = call i1 @get_val()
%1 = xor i1 %0, true
call void @llvm.assume(i1 %1)
Patch by Ariel Ben-Yehuda, thanks!
Differential Revision: https://reviews.llvm.org/D36590
llvm-svn: 310859
causing compile time issues.
Moreover, the patch *deleted* the flag in addition to changing the
default, and links to a code review that doesn't even discuss the flag
and just has an update to a Clang test case.
I've followed up on the commit thread to ask for numbers on compile time
at this point, leaving the flag in place until things stabilize, and
pointing at specific code that seems to exhibit excessive compile time
with this patch.
Original commit message for r310583:
"""
[ValueTracking] Enabling ValueTracking patch by default (recommit). Part 2.
The original patch was an improvement to IR ValueTracking on
non-negative integers. It has been checked in to trunk (D18777,
r284022). But was disabled by default due to performance regressions.
Perf impact has improved. The patch would be enabled by default.
""""
llvm-svn: 310816
The original patch was an improvement to IR ValueTracking on non-negative
integers. It has been checked in to trunk (D18777, r284022). But was disabled by
default due to performance regressions.
Perf impact has improved. The patch would be enabled by default.
Reviewers: reames, hfinkel
Differential Revision: https://reviews.llvm.org/D34101
Patch by: Olga Chupina <olga.chupina@intel.com>
llvm-svn: 310583
The recently improved support for `icmp` in ValueTracking
(r307304) exposes the fact that `isImplied` condition doesn't
really bail out if we hit the recursion limit (and calls
`computeKnownBits` which increases the depth and asserts).
Differential Revision: https://reviews.llvm.org/D36512
llvm-svn: 310481
I want to reuse this code in SimplifyDemandedBits handling of Add/Sub. This will make that easier.
Wonder if we should use it in SelectionDAG's computeKnownBits too.
Differential Revision: https://reviews.llvm.org/D36433
llvm-svn: 310378
Summary:
This commit allows matchSelectPattern to recognize clamp of float
arguments in the presence of FMF the same way as already done for
integers.
This case is a little different though. With integers, given the
min/max pattern is recognized, DAGBuilder starts selecting MIN/MAX
"automatically". That is not the case for float, because for them only
full FMINNAN/FMINNUM/FMAXNAN/FMAXNUM ISD nodes exist and they do care
about NaNs. On the other hand, some backends (e.g. X86) have only
FMIN/FMAX nodes that do not care about NaNS and the former NAN/NUM
nodes are illegal thus selection is not happening. So I decided to do
such kind of transformation in IR (InstCombiner) instead of
complicating the logic in the backend.
Reviewers: spatel, jmolloy, majnemer, efriedma, craig.topper
Reviewed By: efriedma
Subscribers: hiraditya, javed.absar, n.bozhenov, llvm-commits
Patch by Andrei Elovikov <andrei.elovikov@intel.com>
Differential Revision: https://reviews.llvm.org/D33186
llvm-svn: 310054
This patch is update after the first patch (https://reviews.llvm.org/rL309651) based on the post-commit comments.
Stack coloring pass need to maintain AliasAnalysis information when merging stack slots of different types.
Actually, there is a FIXME comment in StackColoring.cpp
// FIXME: In order to enable the use of TBAA when using AA in CodeGen,
// we'll also need to update the TBAA nodes in MMOs with values
// derived from the merged allocas.
But, TBAA has been already enabled in CodeGen without fixing this pass.
The incorrect TBAA metadata results in recent failures in bootstrap test on ppc64le (PR33928) by allowing unsafe instruction scheduling.
Although we observed the problem on ppc64le, this is a platform neutral issue.
This patch makes the stack coloring pass maintains AliasAnalysis information when merging multiple stack slots.
This patch fixes PR33928.
llvm-svn: 309849
Stack coloring pass need to maintain AliasAnalysis information when merging stack slots of different types.
Actually, there is a FIXME comment in StackColoring.cpp
// FIXME: In order to enable the use of TBAA when using AA in CodeGen,
// we'll also need to update the TBAA nodes in MMOs with values
// derived from the merged allocas.
But, TBAA has been already enabled in CodeGen without fixing this pass.
The incorrect TBAA metadata results in recent failures in bootstrap test on ppc64le (PR33928) by allowing unsafe instruction scheduling.
Although we observed the problem on ppc64le, this is a platform neutral issue.
This patch makes the stack coloring pass maintains AliasAnalysis information when merging multiple stack slots.
llvm-svn: 309651
Prior to this commit both of the added test cases were passing. However, in the
latter case (test7) we were doing a lot more work to arrive at the same answer
(i.e., we were using isImpliedCondMatchingOperands() to determine the
implication.).
llvm-svn: 307400
This patch adds support for handling some forms of ands and ors in
ValueTracking's isImpliedCondition API.
PR33611
https://reviews.llvm.org/D34901
llvm-svn: 307304
Going through the Constant methods requires redetermining that the Constant is a ConstantInt and then calling isZero/isOne/isMinusOne.
llvm-svn: 307292
The original patch was an improvement to IR ValueTracking on non-negative
integers. It has been checked in to trunk (D18777, r284022). But was disabled by
default due to performance regressions.
Perf impact has improved. The patch would be enabled by default.
Reviewers: reames
Differential Revision: https://reviews.llvm.org/D34101
Patch by: Olga Chupina <olga.chupina@intel.com>
llvm-svn: 306528
Summary:
This commit allows matchSelectPattern to recognize clamp of float
arguments in the presence of FMF the same way as already done for
integers.
This case is a little different though. With integers, given the
min/max pattern is recognized, DAGBuilder starts selecting MIN/MAX
"automatically". That is not the case for float, because for them only
full FMINNAN/FMINNUM/FMAXNAN/FMAXNUM ISD nodes exist and they do care
about NaNs. On the other hand, some backends (e.g. X86) have only
FMIN/FMAX nodes that do not care about NaNS and the former NAN/NUM
nodes are illegal thus selection is not happening. So I decided to do
such kind of transformation in IR (InstCombiner) instead of
complicating the logic in the backend.
Reviewers: spatel, jmolloy, majnemer, efriedma, craig.topper
Reviewed By: efriedma
Subscribers: hiraditya, javed.absar, n.bozhenov, llvm-commits
Patch by Andrei Elovikov <andrei.elovikov@intel.com>
Differential Revision: https://reviews.llvm.org/D33186
llvm-svn: 306525
There's an early out that's trying to detect when we don't know any bits that make up the legal range of a shift. The code subtracts one from BitWidth which creates a mask in the lower bits for power of 2 bit widths. This is then ANDed with the known bits to see if any of those bits are known. If the bit width isn't a power of 2 this creates a non-sensical mask.
This patch corrects this by rounding up to a power of 2 before doing the subtract and mask.
Differential Revision: https://reviews.llvm.org/D34165
llvm-svn: 305400
I did this a long time ago with a janky python script, but now
clang-format has built-in support for this. I fed clang-format every
line with a #include and let it re-sort things according to the precise
LLVM rules for include ordering baked into clang-format these days.
I've reverted a number of files where the results of sorting includes
isn't healthy. Either places where we have legacy code relying on
particular include ordering (where possible, I'll fix these separately)
or where we have particular formatting around #include lines that
I didn't want to disturb in this patch.
This patch is *entirely* mechanical. If you get merge conflicts or
anything, just ignore the changes in this patch and run clang-format
over your #include lines in the files.
Sorry for any noise here, but it is important to keep these things
stable. I was seeing an increasing number of patches with irrelevant
re-ordering of #include lines because clang-format was used. This patch
at least isolates that churn, makes it easy to skip when resolving
conflicts, and gets us to a clean baseline (again).
llvm-svn: 304787
This will be used by another commit to remove some code from InstSimplify that is redundant for scalars, but was needed for vectors due to this issue.
llvm-svn: 304774
This patch does an inline expansion of memcmp.
It changes the memcmp library call into an inline expansion when the size is
known at compile time and is under a target specified threshold.
This expansion is implemented in CodeGenPrepare and expands into straight line
code. The target specifies a maximum load size and the expansion works by using
this size to load the two sources, compare, and exit early if a difference is
found. It also has a special case when the memcmp result is used in a compare
to zero equality.
Differential Revision: https://reviews.llvm.org/D28637
llvm-svn: 304313
Refactor the strlen optimization code to work for both strlen and wcslen.
This especially helps with programs in the wild where people pass
L"string"s to const std::wstring& function parameters and the wstring
constructor gets inlined.
This also fixes a lingerind API problem/bug in getConstantStringInfo()
where zeroinitializers would always give you an empty string (without a
length) back regardless of the actual length of the initializer which
did not work well in the TrimAtNul==false causing the PR mentioned
below.
Note that the fixed getConstantStringInfo() needed fixes to SelectionDAG
memcpy lowering and may lead to some cases for out-of-bounds
zeroinitializer accesses not getting optimized anymore. So some code
with UB may produce out of bound memory reads now instead of just
producing zeros.
The refactoring "accidentally" fixes http://llvm.org/PR32124
Differential Revision: https://reviews.llvm.org/D32839
llvm-svn: 303461
Summary:
Merge overflow computation for signed add,
appearing both in InstCombine and ValueTracking.
As part of the merge,
cleanup the interface for overflow checks in InstCombine.
Patch by Yoav Ben-Shalom.
Reviewers: craig.topper, majnemer
Reviewed By: craig.topper
Subscribers: takuto.ikuta, llvm-commits
Differential Revision: https://reviews.llvm.org/D32946
llvm-svn: 303029
This patch adds min/max population count, leading/trailing zero/one bit counting methods.
The min methods return answers based on bits that are known without considering unknown bits. The max methods give answers taking into account the largest count that unknown bits could give.
Differential Revision: https://reviews.llvm.org/D32931
llvm-svn: 302925
This patch uses KnownOnes of the input of ctlz/cttz to bound the value that can be returned from these intrinsics. This makes these intrinsics more similar to the handling for ctpop which already uses known bits to produce a similar bound.
Differential Revision: https://reviews.llvm.org/D32521
llvm-svn: 302444
This introduces a new interface for computeKnownBits that returns the KnownBits object instead of requiring it to be pre-constructed and passed in by reference.
This is a much more convenient interface as it doesn't require the caller to figure out the BitWidth to pre-construct the object. It's so convenient that I believe we can use this interface to remove the special ComputeSignBit flavor of computeKnownBits.
As a step towards that idea, this patch replaces all of the internal usages of ComputeSignBit with this new interface. As you can see from the patch there were a couple places where we called ComputeSignBit which really called computeKnownBits, and then called computeKnownBits again directly. I've reduced those places to only making one call to computeKnownBits. I bet there are probably external users that do it too.
A future patch will update the external users and remove the ComputeSignBit interface. I'll also working on moving more locations to the KnownBits returning interface for computeKnownBits.
Differential Revision: https://reviews.llvm.org/D32848
llvm-svn: 302437
This adds routines for reseting KnownBits to unknown, making the value all zeros or all ones. It also adds methods for querying if the value is zero, all ones or unknown.
Differential Revision: https://reviews.llvm.org/D32637
llvm-svn: 302262
I don't believe its possible to have non-zero values here since DataLayout became required. The APInt constructor inside of the KnownBits object will assert if this ever happens.
llvm-svn: 302089
This patch adds zext, sext, and trunc methods to KnownBits and uses them where possible.
Differential Revision: https://reviews.llvm.org/D32784
llvm-svn: 302088
Summary:
programUndefinedIfPoison makes more sense, given what the function
does; and I'm about to add a function with a name similar to
isKnownNotFullPoison (so do the rename to avoid confusion).
Reviewers: broune, majnemer, bjarke.roune
Reviewed By: broune
Subscribers: mcrosier, llvm-commits, mzolotukhin
Differential Revision: https://reviews.llvm.org/D30444
llvm-svn: 301776
Summary: This patch adds isNegative, isNonNegative for querying whether the sign bit is known. It also adds makeNegative and makeNonNegative for controlling the sign bit.
Reviewers: RKSimon, spatel, davide
Reviewed By: RKSimon
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D32651
llvm-svn: 301747
This patch introduces a new KnownBits struct that wraps the two APInt used by computeKnownBits. This allows us to treat them as more of a unit.
Initially I've just altered the signatures of computeKnownBits and InstCombine's simplifyDemandedBits to pass a KnownBits reference instead of two separate APInt references. I'll do similar to the SelectionDAG version of computeKnownBits/simplifyDemandedBits as a separate patch.
I've added a constructor that allows initializing both APInts to the same bit width with a starting value of 0. This reduces the repeated pattern of initializing both APInts. Once place default constructed the APInts so I added a default constructor for those cases.
Going forward I would like to add more methods that will work on the pairs. For example trunc, zext, and sext occur on both APInts together in several places. We should probably add a clear method that can be used to clear both pieces. Maybe a method to check for conflicting information. A method to return (Zero|One) so we don't write it out everywhere. Maybe a method for (Zero|One).isAllOnesValue() to determine if all bits are known. I'm sure there are many other methods we can come up with.
Differential Revision: https://reviews.llvm.org/D32376
llvm-svn: 301432
This patch uses various APInt methods to reduce temporary APInt creation.
This should be all of the unrelated cleanups that got buried in D32376(creating a KnownBits struct) as well as some pointed out by Simon during the review of that. Plus a few improvements to use counting instead of masking.
I've left out any places where we do something like (KnownZero & KnownOne) != 0 as I plan to add a helper method to KnownBits to ask that question and didn't want to thrash that code an additional time.
Differential Revision: https://reviews.llvm.org/D32495
llvm-svn: 301338
This is a pre-commit for a patch I'm working on to turn KnownZero/One into a struct. Once I do that the type here will be less obvious.
llvm-svn: 301324
This is a pre-commit for a patch that I'm working on to merge KnownZero/KnownOne into a KnownBits struct which would have had to touch this line.
llvm-svn: 301323
getSignBit is a static function that creates an APInt with only the sign bit set. getSignMask seems like a better name to convey its functionality. In fact several places use it and then store in an APInt named SignMask.
Differential Revision: https://reviews.llvm.org/D32108
llvm-svn: 300856
This is preparation for a clang change to improve the [[nodiscard]] warning to not be ignored on methods that return a class marked [[nodiscard]] that are defined in the class itself. See D32207.
We should consider adding wrapper methods to APInt that return the overflow flag directly and discard the APInt result. This would eliminate the void casts and the need to create a bool before the call to pass to the out param.
llvm-svn: 300758
This patch uses lshrInPlace to replace code where the object that lshr is called on is being overwritten with the result.
This adds an lshrInPlace(const APInt &) version as well.
Differential Revision: https://reviews.llvm.org/D32155
llvm-svn: 300566
If we already called computeKnownBits for the RHS being a constant power of 2, we've already computed everything we can and should just stop. I think previously we would still recurse if we had determined the result was negative or had not determined the sign bit at all.
llvm-svn: 300432
The APInt was created from an 'unsigned' and we just wanted to know how many bits the value needed to represent it. We can just use Log2_32 from MathExtras.h to get the info.
llvm-svn: 300309
We call it unconditionally on the operands of the select. Then decide if its a min/max and call it on the min/max operands or on the select operands again. Either of those second calls will overwrite the results of the initial call so we can just delete the first call.
llvm-svn: 300256
Previously it tried to call SimplifyInstruction which doesn't know anything about alloca so defers to constant folding which also doesn't do anything with alloca. This results in wasted cycles making calls that won't do anything. Given the frequency with which this function is called this time adds up.
llvm-svn: 300118