'ForOpIterArgsFolder' can now remove iterator arguments (and corresponding
results) with no use.
Example:
```
%cst = constant 32 : i32
%0:2 = scf.for %arg1 = %lb to %ub step %step iter_args(%arg2 = %arg0, %arg3 = %cst)
-> (i32, i32) {
%1 = addu %arg2, %cst : i32
scf.yield %1, %1 : i32, i32
}
use(%0#0)
```
%arg3 is not used in the block, and its corresponding result `%0#1` has no use,
thus remove the iter argument.
Reviewed By: nicolasvasilache
Differential Revision: https://reviews.llvm.org/D98711
Returning structs directly in LLVM does not necessarily align with the C ABI of
the platform. This might happen to work on Linux but for small structs this
breaks on Windows. With this change, the wrappers work platform independently.
Differential Revision: https://reviews.llvm.org/D98725
This commit fixes the lowering of `Affine.IfOp` to `SCF.IfOp` in the
presence of yield values. These changes have been made as a part of
`-lower-affine` pass.
Differential Revision: https://reviews.llvm.org/D98760
Some parameters to attributes and types rely on special comparison routines other than operator== to ensure equality. This revision adds support for those parameters by allowing them to specify a `comparator` code block that determines if `$_lhs` and `$_rhs` are equal. An example of one of these paramters is APFloat, which requires `bitwiseIsEqual` for bitwise comparison (which we want for attribute equality).
Differential Revision: https://reviews.llvm.org/D98473
Supporting ranges in the byte code requires additional complexity, given that a range can't be easily representable as an opaque void *, as is possible with the existing bytecode value types (Attribute, Type, Value, etc.). To enable representing a range with void *, an auxillary storage is used for the actual range itself, with the pointer being passed around in the normal byte code memory. For type ranges, a TypeRange is stored. For value ranges, a ValueRange is stored. The above problem represents a majority of the complexity involved in this revision, the rest is adapting/adding byte code operations to support the changes made to the PDL interpreter in the parent revision.
After this revision, PDL will have initial end-to-end support for variadic operands/results.
Differential Revision: https://reviews.llvm.org/D95723
This revision extends the PDL Interpreter dialect to add support for variadic operands and results, with ranges of these values represented via the recently added !pdl.range type. To support this extension, three new operations have been added that closely match the single variant:
* pdl_interp.check_types : Compare a range of types with a known range.
* pdl_interp.create_types : Create a constant range of types.
* pdl_interp.get_operands : Get a range of operands from an operation.
* pdl_interp.get_results : Get a range of results from an operation.
* pdl_interp.switch_types : Switch on a range of types.
This revision handles adding support in the interpreter dialect and the conversion from PDL to PDLInterp. Support for variadic operands and results in the bytecode will be added in a followup revision.
Differential Revision: https://reviews.llvm.org/D95722
This revision extends the PDL dialect to add support for variadic operands and results, with ranges of these values represented via the recently added !pdl.range type. To support this extension, three new operations have been added that closely match the single variant:
* pdl.operands : Define a range of input operands.
* pdl.results : Extract a result group from an operation.
* pdl.types : Define a handle to a range of types.
Support for these in the pdl interpreter dialect and byte code will be added in followup revisions.
Differential Revision: https://reviews.llvm.org/D95721
This has a numerous amount of benefits, given the overly clunky nature of CreateNativeOp:
* Users can now call into arbitrary rewrite functions from inside of PDL, allowing for more natural interleaving of PDL/C++ and enabling for more of the pattern to be in PDL.
* Removes the need for an additional set of C++ functions/registry/etc. The new ApplyNativeRewriteOp will use the same PDLRewriteFunction as the existing RewriteOp. This reduces the API surface area exposed to users.
This revision also introduces a new PDLResultList class. This class is used to provide results of native rewrite functions back to PDL. We introduce a new class instead of using a SmallVector to simplify the work necessary for variadics, given that ranges will require some changes to the structure of PDLValue.
Differential Revision: https://reviews.llvm.org/D95720
Up until now, results have been represented as additional results to a pdl.operation. This is fairly clunky, as it mismatches the representation of the rest of the IR constructs(e.g. pdl.operand) and also isn't a viable representation for operations returned by pdl.create_native. This representation also creates much more difficult problems when factoring in support for variadic result groups, optional results, etc. To resolve some of these problems, and simplify adding support for variable length results, this revision extracts the representation for results out of pdl.operation in the form of a new `pdl.result` operation. This operation returns the result of an operation at a given index, e.g.:
```
%root = pdl.operation ...
%result = pdl.result 0 of %root
```
Differential Revision: https://reviews.llvm.org/D95719
Enhance 'ForOpIterArgsFolder' to remove unused iteration arguments in a
scf::ForOp. If the block argument corresponding to the given iterator has no
use and the yielded value equals the input, we fold it away.
Reviewed By: nicolasvasilache
Differential Revision: https://reviews.llvm.org/D98503
The Intel Advanced Matrix Extensions (AMX) provides a tile matrix
multiply unit (TMUL), a tile control register (TILECFG), and eight
tile registers TMM0 through TMM7 (TILEDATA). This new MLIR dialect
provides a bridge between MLIR concepts like vectors and memrefs
and the lower level LLVM IR details of AMX.
Reviewed By: nicolasvasilache
Differential Revision: https://reviews.llvm.org/D98470
A previous commit moved multiple ops from Standard to MemRef dialect.
Some of these ops are exercised in Python bindings. Enable bindings for
the newly created MemRef dialect and update a test accordingly.
The patch in question broke the build with shared libraries due to
missing dependencies, one of which would have been circular between
MLIRStandard and MLIRMemRef if added. Fix this by moving more code
around and swapping the dependency direction. MLIRMemRef now depends on
MLIRStandard, but MLIRStandard does _not_ depend on MLIRMemRef.
Arguably, this is the right direction anyway since numerous libraries
depend on MLIRStandard and don't necessarily need to depend on
MLIRMemref.
Other otable changes include:
- some EDSC code is moved inline to MemRef/EDSC/Intrinsics.h because it
creates MemRef dialect operations;
- a utility function related to shape moved to BuiltinTypes.h/cpp
because it only realtes to shaped types and not any particular dialect
(standard dialect is erroneously believed to contain MemRefType);
- a Python test for the standard dialect is disabled completely because
the ops it tests moved to the new MemRef dialect, but it is not
exposed to Python bindings, and the change for that is non-trivial.
This reverts commit b5d9a3c923.
The commit introduced a memory error in canonicalization/operation
walking that is exposed when compiled with ASAN. It leads to crashes in
some "release" configurations.
We know that all ConstantLike operations have one result and no operands,
so check this first before doing the trait check. This change speeds up
Canonicalize on a CIRCT testcase by ~5%.
Differential Revision: https://reviews.llvm.org/D98615
Two changes:
1) Change the canonicalizer to walk the function in top-down order instead of
bottom-up order. This composes well with the "top down" nature of constant
folding and simplification, reducing iterations and re-evaluation of ops in
simple cases.
2) Explicitly enter existing constants into the OperationFolder table before
canonicalizing. Previously we would "constant fold" them and rematerialize
them, wastefully recreating a bunch fo constants, which lead to pointless
memory traffic.
Both changes together provide a 33% speedup for canonicalize on some mid-size
CIRCT examples.
One artifact of this change is that the constants generated in normal pattern
application get inserted at the top of the function as the patterns are applied.
Because of this, we get "inverted" constants more often, which is an aethetic
change to the IR but does permute some testcases.
Differential Revision: https://reviews.llvm.org/D98609
This is a temporary work-around to get our all-annotations-all-flags
stress testing effort run clean. In the long run, we want to provide
efficient implementations of strided loads and stores though
Reviewed By: bixia
Differential Revision: https://reviews.llvm.org/D98563
Functions used only in `assert` cause warnings in release mode
Reviewed By: mehdi_amini, dcaballe, ftynse
Differential Revision: https://reviews.llvm.org/D98476
NestedPattern uses a BumpPtrAllocator to store child (nested) pattern
objects to decrease the overhead of dynamic allocation. This assumes all
allocations happen inside the allocator that will be freed as a whole.
However, NestedPattern contains `std::function` as a member, which
allocates internally using `new`, unaware of the BumpPtrAllocator. Since
NestedPattern only holds pointers to the nested patterns allocated in
the BumpPtrAllocator, it never calls their destructors, so the
destructor of the `std::function`s they contain are never called either,
leaking the allocated memory.
Make NestedPattern explicitly call destructors of nested patterns. This
additionally requires to actually copy the nested patterns in
copy-construction and copy-assignment instead of just sharing the
pointer to the arena-allocated list of children to avoid double-free. An
alternative solution would be to add reference counting to the list of
arena-allocated list of children.
Reviewed By: nicolasvasilache
Differential Revision: https://reviews.llvm.org/D98485
Forward references to blocks lead to `Block`s being allocated in the
parser, but they are not necessarily included into a region if parsing
fails, leading to a leak. Clean them up in parser destructor.
Reviewed By: rriddle, mehdi_amini
Differential Revision: https://reviews.llvm.org/D98403
This restricts the attributes to integers for constants of type
IndexType. So far an attribute like StringAttr as in
%c1 = constant "" : index
is valid.
Reviewed By: mehdi_amini
Differential Revision: https://reviews.llvm.org/D98216
This patch introduces progressive lowering patterns for rewriting
vector.transfer_read/write to vector.load/store and vector.broadcast
in certain supported cases.
Reviewed By: dcaballe, nicolasvasilache
Differential Revision: https://reviews.llvm.org/D97822
This patch adds support for vectorizing loops with 'iter_args' when those loops
are not a vector dimension. This allows vectorizing outer loops with an inner
'iter_args' loop (e.g., reductions). Vectorizing scenarios where 'iter_args'
loops are vector dimensions would require more work (e.g., analysis,
generating horizontal reduction, etc.) not included in this patch.
Reviewed By: nicolasvasilache
Differential Revision: https://reviews.llvm.org/D97892
This patch replaces the root-terminal vectorization approach implemented in the
Affine vectorizer with a topological order approach that vectorizes all the
operations within the target loop nest. These are the most important changes
introduced by the new algorithm:
* Removed tracking of root and terminal ops. Existing vectorization
functionality is preserved and extended so that loop nests without
root-terminal chains can be vectorized.
* Vectorizing a loop nest now only requires a single topological traversal.
* A new vector loop nest is incrementally built along the vectorization
process. The original scalar loop is kept intact. No cloning guard is needed
to recover the scalar loop if vectorization fails. This approach also
simplifies the challenging task of replacing a loop operation amid the
vectorization process without invalidating the analysis information that
depends on the original loop.
* Vectorization of specific operations has been implemented as independent,
preparing them to be moved to a potential vectorization interface.
Reviewed By: nicolasvasilache
Differential Revision: https://reviews.llvm.org/D97442
This allows for storage instances to store data that isn't uniqued in the context, or contain otherwise non-trivial logic, in the rare situations that they occur. Storage instances with trivial destructors will still have their destructor skipped. A consequence of this is that the storage instance definition must be visible from the place that registers the type.
Differential Revision: https://reviews.llvm.org/D98311
This patch fixes a heap-use-after-free introduced by the recent changes
in the vectorizer: https://reviews.llvm.org/rG95db7b4aeaad590f37720898e339a6d54313422f
The problem is due to the way candidate loops are visited. All candidate loops
are pattern-matched beforehand using the 'NestedMatch' utility. These matches may
intersect with each other so it may happen that we try to vectorize a loop that
was previously vectorized. The new vectorization algorithm replaces the original
loops that are vectorized with new loops and, therefore, any reference to the
original loops in the pre-computed matches becomes invalid.
This patch fixes the problem by classifying the candidate matches into buckets
before vectorization. Each bucket contains all the matches that intersect. The
vectorizer uses these buckets to make sure that we only vectorize *one* match from
each bucket, at most.
Differential Revision: https://reviews.llvm.org/D98382
For the use in LLVMOps.td I used the getPointerElementType()
escape hatch, as it's not obvious to me how the load type
should be properly obtained here.
Data layout information allows to answer questions about the size and alignment
properties of a type. It enables, among others, the generation of various
linear memory addressing schemes for containers of abstract types and deeper
reasoning about vectors. This introduces the subsystem for modeling data
layouts in MLIR.
The data layout subsystem is designed to scale to MLIR's open type and
operation system. At the top level, it consists of attribute interfaces that
can be implemented by concrete data layout specifications; type interfaces that
should be implemented by types subject to data layout; operation interfaces
that must be implemented by operations that can serve as data layout scopes
(e.g., modules); and dialect interfaces for data layout properties unrelated to
specific types. Built-in types are handled specially to decrease the overall
query cost.
A concrete default implementation of these interfaces is provided in the new
Target dialect. Defaults for built-in types that match the current behavior are
also provided.
Reviewed By: rriddle
Differential Revision: https://reviews.llvm.org/D97067
verifyCompatibleShapes is not transitive. Create an n-ary version and
update SameOperandShapes and SameOperandAndResultShapes traits to use
it.
Differential Revision: https://reviews.llvm.org/D98331
If MLIR_CUDA_RUNNER_ENABLED, register a 'gpu-to-cubin' conversion pass to mlir-opt.
The next step is to switch CUDA integration tests from mlir-cuda-runner to mlir-opt + mlir-cpu-runner and remove mlir-cuda-runner.
Depends On D98279
Reviewed By: herhut, rriddle, mehdi_amini
Differential Revision: https://reviews.llvm.org/D98203
The current implementation has some inefficiencies that become noticeable when running on large modules. This revision optimizes the code, and updates some out-dated idioms with newer utilities. The main components of this optimization include:
* Add an overload of Block::eraseArguments that allows for O(N) erasure of disjoint arguments.
* Don't process entry block arguments given that we don't erase them at this point.
* Don't track individual operation results, given that we don't erase them. We can just track the parent operation.
Differential Revision: https://reviews.llvm.org/D98309
This patch adds support for vectorizing loops with 'iter_args' when those loops
are not a vector dimension. This allows vectorizing outer loops with an inner
'iter_args' loop (e.g., reductions). Vectorizing scenarios where 'iter_args'
loops are vector dimensions would require more work (e.g., analysis,
generating horizontal reduction, etc.) not included in this patch.
Reviewed By: nicolasvasilache
Differential Revision: https://reviews.llvm.org/D97892
This patch replaces the root-terminal vectorization approach implemented in the
Affine vectorizer with a topological order approach that vectorizes all the
operations within the target loop nest. These are the most important changes
introduced by the new algorithm:
* Removed tracking of root and terminal ops. Existing vectorization
functionality is preserved and extended so that loop nests without
root-terminal chains can be vectorized.
* Vectorizing a loop nest now only requires a single topological traversal.
* A new vector loop nest is incrementally built along the vectorization
process. The original scalar loop is kept intact. No cloning guard is needed
to recover the scalar loop if vectorization fails. This approach also
simplifies the challenging task of replacing a loop operation amid the
vectorization process without invalidating the analysis information that
depends on the original loop.
* Vectorization of specific operations has been implemented as independent,
preparing them to be moved to a potential vectorization interface.
Reviewed By: nicolasvasilache
Differential Revision: https://reviews.llvm.org/D97442
Link `MLIRStandardToLLVM` to `MLIRAVX512Transforms`, since
the latter uses `LLVMTypeConverter` defined in the first one.
Reviewed By: ftynse
Differential Revision: https://reviews.llvm.org/D98336