Read a raw binary profile that corresponds to a memory dump from the
runtime profile.
The test is a binary file generated from
cfe/trunk/test/Profile/c-general.c with the new compiler-rt runtime and
the matching text version of the input. It includes instructions on how
to regenerate.
<rdar://problem/15950346>
llvm-svn: 204496
This isn't a format we'll want to write out in practice, but moving it
to the writer library simplifies llvm-profdata and isolates it from
further changes to the format.
This also allows us to update the tests to not rely on the text output
format.
llvm-svn: 204489
This introduces the ProfileData library and updates llvm-profdata to
use this library for reading profiles. InstrProfReader is an abstract
base class that will be subclassed for both the raw instrprof data
from compiler-rt and the efficient instrprof format that will be used
for PGO.
llvm-svn: 204482
Some targets require more than one relocation entry to perform a relocation.
This change allows processRelocationRef to process more than one relocation
entry at a time by passing the relocation iterator itself instead of just
the relocation entry.
Related to <rdar://problem/16199095>
llvm-svn: 204439
Extend the target hook to take also the operand index into account when
calculating the cost of the constant materialization.
Related to <rdar://problem/16381500>
llvm-svn: 204435
NumberOfRelocations field in COFF section table is only 16-bit wide. If an
object has more than 65535 relocations, the number of relocations is stored
to VirtualAddress field in the first relocation field, and a special flag
(IMAGE_SCN_LNK_NRELOC_OVFL) is set to Characteristics field.
In test we cheated a bit. I made up a test file so that it has
IMAGE_SCN_LNK_NRELOC_OVFL flag but the number of relocations is much smaller
than 65535. This is to avoid checking in a large test file just to test a
file with many relocations.
Differential Revision: http://llvm-reviews.chandlerc.com/D3139
llvm-svn: 204418
RTDyldMemoryManager, regardless of whether it thinks they're "required for
execution".
Currently, RuntimeDyld only passes sections that are "required for execution"
to the RTDyldMemoryManager, and takes "required for execution" to mean exactly
"contains symbols or relocations". There are two problems with this:
(1) It can drop sections with anonymous data that is referenced by code.
(2) It leaves the JIT client no way to inspect interesting sections that aren't
actually required to run the program (e.g dwarf sections).
A test case is still in the works.
Future work: We may want to replace this with a generic section filtering
mechanism, but that will require more consideration. For now, this flag at least
allows clients to volunteer to do the filtering themselves.
Fixes <rdar://problem/15177691>.
llvm-svn: 204398
This commit extends the coverage of the constant hoisting pass, adds additonal
debug output and updates the function names according to the style guide.
Related to <rdar://problem/16381500>
llvm-svn: 204389
This option caused LowerInvoke to generate code using SJLJ-based
exception handling, but there is no code left that interprets the
jmp_buf stack that the resulting code maintained (llvm.sjljeh.jblist).
This option has been obsolete for a while, and replaced by
SjLjEHPrepare.
This leaves the default behaviour of LowerInvoke, which is to convert
invokes to calls.
Differential Revision: http://llvm-reviews.chandlerc.com/D3136
llvm-svn: 204388
Given
bar = foo + 4
.long bar
MC would eat the 4. GNU as includes it in the relocation. The rule seems to be
that a variable that defines a symbol is used in the relocation and one that
does not define a symbol is evaluated and the result included in the relocation.
Fixing this unfortunately required some other changes:
* Since the variable is now evaluated, it would prevent the ELF writer from
noticing the weakref marker the elf streamer uses. This patch then replaces
that with a VariantKind in MCSymbolRefExpr.
* Using VariantKind then requires us to look past other VariantKind to see
.weakref bar,foo
call bar@PLT
doing this also fixes
zed = foo +2
call zed@PLT
so that is a good thing.
* Looking past VariantKind means that the relocation selection has to use
the fixup instead of the target.
This is a reboot of the previous fixes for MC. I will watch the sanitizer
buildbot and wait for a build before adding back the previous fixes.
llvm-svn: 204294
The current state of affairs has auxiliary symbols described as a big
bag of bytes. This is less than satisfying, it detracts from the YAML
file as being human readable.
Instead, allow for symbols to optionally contain their auxiliary data.
This allows us to have a much higher level way of describing things like
weak symbols, function definitions and section definitions.
This depends on D3105.
Differential Revision: http://llvm-reviews.chandlerc.com/D3092
llvm-svn: 204214
Summary: These definitions are useful to other aspects of LLVM, move them out.
Reviewers: rafael, nrieck, ruiu
CC: llvm-commits
Differential Revision: http://llvm-reviews.chandlerc.com/D3105
llvm-svn: 204213
This isn't a complete fix - it falls back to non-comp_dir when multiple
compile units are in play. Adding a map of comp_dir to table is part of
the more general solution, but I gave up (in the short term) when I
realized I'd also have to calculate the size of each type unit so as to
produce correct DW_AT_stmt_list attributes.
llvm-svn: 204202
The "noduplicate" function attribute exists to prevent certain optimizations
from duplicating calls to the function. This is important on platforms where
certain function call duplications are unsafe (for example execution barriers
for CUDA and OpenCL).
This patch makes it possible to specify intrinsics as "noduplicate" and
translates that to the appropriate function attribute.
llvm-svn: 204200
Allow object files to be tagged with a version-min load command for iOS
or MacOSX.
Teach macho-dump to understand the version-min load commands for
testcases.
rdar://11337778
llvm-svn: 204190
LLVM part of MSan implementation of advanced origin tracking,
when we record not only creation point, but all locations where
an uninitialized value was stored to memory, too.
llvm-svn: 204151
The revision I'm reverting breaks handling of transitive aliases. This blocks us
and breaks sanitizer bootstrap:
http://lab.llvm.org:8011/builders/sanitizer-x86_64-linux-bootstrap/builds/2651
(and checked locally by Alexey).
This revision is the result of:
svn merge -r204059:204058 -r204028:204027 -r203962:203961 .
+ the regression test added to test/MC/ELF/alias.s
Another way to reproduce the regression with clang:
$ cat q.c
void a1();
void a2() __attribute__((alias("a1")));
void a3() __attribute__((alias("a2")));
void a1() {}
$ ~/work/llvm-build/bin/clang-3.5-good -c q.c && mv q.o good.o && \
~/work/llvm-build/bin/clang-3.5-bad -c q.c && mv q.o bad.o && \
objdump -t good.o bad.o
good.o: file format elf64-x86-64
SYMBOL TABLE:
0000000000000000 l df *ABS* 0000000000000000 q.c
0000000000000000 l d .text 0000000000000000 .text
0000000000000000 l d .data 0000000000000000 .data
0000000000000000 l d .bss 0000000000000000 .bss
0000000000000000 l d .comment 0000000000000000 .comment
0000000000000000 l d .note.GNU-stack 0000000000000000 .note.GNU-stack
0000000000000000 l d .eh_frame 0000000000000000 .eh_frame
0000000000000000 g F .text 0000000000000006 a1
0000000000000000 g F .text 0000000000000006 a2
0000000000000000 g F .text 0000000000000006 a3
bad.o: file format elf64-x86-64
SYMBOL TABLE:
0000000000000000 l df *ABS* 0000000000000000 q.c
0000000000000000 l d .text 0000000000000000 .text
0000000000000000 l d .data 0000000000000000 .data
0000000000000000 l d .bss 0000000000000000 .bss
0000000000000000 l d .comment 0000000000000000 .comment
0000000000000000 l d .note.GNU-stack 0000000000000000 .note.GNU-stack
0000000000000000 l d .eh_frame 0000000000000000 .eh_frame
0000000000000000 g F .text 0000000000000006 a1
0000000000000000 g F .text 0000000000000006 a2
0000000000000000 g .text 0000000000000000 a3
llvm-svn: 204137
This allows us to catch more opportunities for ODR-based type uniquing
during LTO.
Paired commit with CFE which updates some testcases to verify the new
DIBuilder behavior.
llvm-svn: 204106
Our handling of compilation directory in DwarfDebug was broken
(incorrectly using the 'last' compilation directory (that of the last
CU in the metadata list) for all function emission in any CU). By moving
this handling down into MCDwarf the issue is fixed as the compilation
dir is tracked correctly per line table.
llvm-svn: 204089
See r204027 for the precursor to this that applied to asm debug info.
This required some non-obvious API changes to handle the case of asm
output (we never go asm->asm so this didn't come up in r204027): the
modification of the file/directory name by MCDwarfLineTableHeader needed
to be reflected in the MCAsmStreamer caller so it could print the
appropriate .file directive, so those StringRef parameters are now
non-const ref (in/out) parameters rather than just const.
llvm-svn: 204069
Rather than LegalizeAction::Expand, this needs LegalizeAction::Promote to get
promoted to fp_to_sint v8f32->v8i32. This is a legal operation on AVX.
For that to work properly, we also need to teach the legalizer about the
specific promotion required here. The default vector promotion uses
bitcasting to a vector type of the same total size. We want to promote the
vector element type, effectively widening the operation and then truncating
the result. This is analogous to the current logic of how int_to_fp is
promoted.
The change also factors out some code from the int_to_fp promotion code to
ValueType::widenIntegerVectorElementType. This is now shared between
int_to_fp and fp_to_int.
There is no longer need for the custom lowering of fp_to_sint f32->v8i16 in
X86. It can now go through the new target-independent fp_to_*int promotion
logic.
I also checked that no other target uses Promote for these ops yet, so there
shouldn't be any unexpected change in behavior.
Fixes <rdar://problem/16202247>
llvm-svn: 204058
The "noduplicate" attribute of call instructions is sometimes queried directly
and sometimes through the cannotDuplicate() predicate. This patch streamlines
all queries to use the cannotDuplicate() predicate. It also adds this predicate
to InvokeInst, to mirror what CallInst has.
llvm-svn: 204049
The previous deduping strategy was woefully inadequate - it only
considered the most recent file used and avoided emitting a duplicate in
that case - never considering the a/b/a scenario.
It was also lacking when it came to directory paths as the previous
filename would never match the current if the filename had been split
into file and directory components.
This change builds caching functionality into the line table at the
lowest level in an optional form (a file number of 0 indicates that one
should be chosen and returned) and will eventually be reused by the
normal source level debugging DWARF emission.
llvm-svn: 204027
If we use a pair with an enum type this could create values outside
of the enum range. Avoid it by creating the bit pattern directly.
While there turn a dynamic assert into a static one. No functionality
change.
llvm-svn: 204010
Since our error_category is based on the std one, we should have the
same visibility for the constructor. This also allows us to avoid
using the _do_message implementation detail in our own categories.
llvm-svn: 203998
Microsoft PE/COFF Spec clearly states that the field is of signed interger
type. However, in reality, it's unsigned. If cl.exe needs to create a large
number of sections for COMDAT sections, it will just create more than 32768
sections. Handling large section number as negative number is not correct.
I think this is a spec bug.
Differential Revision: http://llvm-reviews.chandlerc.com/D3088
llvm-svn: 203986
Summary:
The sample profiler pass emits several error messages. Instead of
just aborting the compiler with report_fatal_error, we can emit
better messages using DiagnosticInfo.
This adds a new sub-class of DiagnosticInfo to handle the sample
profiler.
Reviewers: chandlerc, qcolombet
CC: llvm-commits
Differential Revision: http://llvm-reviews.chandlerc.com/D3086
llvm-svn: 203976
This sometimes remains null into MCLineTableHeader::Emit where we
conditionally construct a label if one isn't provided for us. We need it
to remain null (rather than just always constructing the label) so we
can identify unused line tables... which is a bit weird and maybe we can
do away with that logic one day (& on that day we can always construct
the label up-front and just have compilation units query the line table
for its label, etc)
llvm-svn: 203967
The idea behind this split of ValueTypes.h, is to make it easier to
ensure that stuff after type legalization only use MVT (rather than
EVT), by watching include dependencies.
Reviewed By: Tim Northover
llvm-svn: 203926
issue in that the new MachineRegisterInfo bundle iterators didn't
dereference to the START of the bundle, while the old skipBundle()
method did.
llvm-svn: 203890
These linkages were introduced some time ago, but it was never very
clear what exactly their semantics were or what they should be used
for. Some investigation found these uses:
* utf-16 strings in clang.
* non-unnamed_addr strings produced by the sanitizers.
It turns out they were just working around a more fundamental problem.
For some sections a MachO linker needs a symbol in order to split the
section into atoms, and llvm had no idea that was the case. I fixed
that in r201700 and it is now safe to use the private linkage. When
the object ends up in a section that requires symbols, llvm will use a
'l' prefix instead of a 'L' prefix and things just work.
With that, these linkages were already dead, but there was a potential
future user in the objc metadata information. I am still looking at
CGObjcMac.cpp, but at this point I am convinced that linker_private
and linker_private_weak are not what they need.
The objc uses are currently split in
* Regular symbols (no '\01' prefix). LLVM already directly provides
whatever semantics they need.
* Uses of a private name (start with "\01L" or "\01l") and private
linkage. We can drop the "\01L" and "\01l" prefixes as soon as llvm
agrees with clang on L being ok or not for a given section. I have two
patches in code review for this.
* Uses of private name and weak linkage.
The last case is the one that one could think would fit one of these
linkages. That is not the case. The semantics are
* the linker will merge these symbol by *name*.
* the linker will hide them in the final DSO.
Given that the merging is done by name, any of the private (or
internal) linkages would be a bad match. They allow llvm to rename the
symbols, and that is really not what we want. From the llvm point of
view, these objects should really be (linkonce|weak)(_odr)?.
For now, just keeping the "\01l" prefix is probably the best for these
symbols. If we one day want to have a more direct support in llvm,
IMHO what we should add is not a linkage, it is just a hidden_symbol
attribute. It would be applicable to multiple linkages. For example,
on weak it would produce the current behavior we have for objc
metadata. On internal, it would be equivalent to private (and we
should then remove private).
llvm-svn: 203866
operator* on the by-operand iterators to return a MachineOperand& rather than
a MachineInstr&. At this point they almost behave like normal iterators!
Again, this requires making some existing loops more verbose, but should pave
the way for the big range-based for-loop cleanups in the future.
llvm-svn: 203865
When initializing an iterator, we may have to step forward to find the first
operand that passes the current filter set. When doing that stepping, we should
always step one operand at a time, even if this is by-instr or by-bundle iterator,
as we're stepping between invalid values, so the stride doesn't make sense there.
Fixes a miscompilation of YASM on Win32 reported by Hans Wennborg. I have not
yet figured out how to reduce it to something testcase-able, because it's sensitive
to the details of how the registers get spilled.
llvm-svn: 203852
There aren't /that/ many files, and we are already using various maps
and other standard containers that don't use MCContext's allocator to
store these values, so this doesn't seem to be critical and simplifies
the design (I'll be moving construction out of MCContext shortly so it'd
be annoying to have to pass the allocator around to allocate these
things... and we'll have non-MCContext users (debug_line.dwo) shortly)
llvm-svn: 203831
This patch fixes the bug in peephole optimization that folds a load which defines one vreg into the one and only use of that vreg. With debug info, a DBG_VALUE that referenced the vreg considered to be a use, preventing the optimization. The fix is to ignore DBG_VALUE's during the optimization, and undef a DBG_VALUE that references a vreg that gets removed.
Patch by Trevor Smigiel!
llvm-svn: 203829
This changes the implementation of local directional labels to use a dedicated
map. With that it can then just use CreateTempSymbol, which is what the rest
of MC uses.
CreateTempSymbol doesn't do a great job at making sure the names are unique
(or being efficient when the names are not needed), but that should probably
be fixed in a followup patch.
This fixes pr18928.
llvm-svn: 203826
This replaces several "compile unit ID -> thing" mappings in favor of
one mapping from CUID to the whole line table structure (files,
directories, and lines).
This is another step along the way to refactoring out reusable
components of line table handling for use when generating debug_line.dwo
for fission type units.
Also, might be a good basis to fold some of this handling down into
MCStreamers to avoid the special case of "One line table when doing asm
printing, line table per CU otherwise" by building it into the different
MCStreamer implementations.
llvm-svn: 203821
This is a follow-up to r203635. Saleem pointed out that since symbolic register
names are much easier to read, it would be good if we could turn them off only
when we really need to because we're using an external assembler.
Differential Revision: http://llvm-reviews.chandlerc.com/D3056
llvm-svn: 203806
Summary:
This adds ObjectFile::section_iterator_range, that allows to write
range-based for-loops running over all sections of a given file.
Several files from lib/ are converted to the new interface. Similar fixes
should be applied to a variety of llvm-* tools.
Reviewers: rafael
Reviewed By: rafael
CC: llvm-commits
Differential Revision: http://llvm-reviews.chandlerc.com/D3069
llvm-svn: 203799
order to use the single assignment. That's probably worth doing for
a lot of these types anyways as they may have non-trivial moves and so
getting copy elision in more places seems worthwhile.
I've tried to add some tests that actually catch this mistake, and one
of the types is now well tested but the others' tests still fail to
catch this. I'll keep working on tests, but this gets the core pattern
right.
llvm-svn: 203780
convenient it is to imagine a world where this works, that is not C++ as
was pointed out in review. The standard even goes to some lengths to
preclude any attempt at this, for better or worse. Maybe better. =]
llvm-svn: 203775
There are currently two schemes for mapping instruction operands to
instruction-format variables for generating the instruction encoders and
decoders for the assembler and disassembler respectively: a) to map by name and
b) to map by position.
In the long run, we'd like to remove the position-based scheme and use only
name-based mapping. Unfortunately, the name-based scheme currently cannot deal
with complex operands (those with suboperands), and so we currently must use
the position-based scheme for those. On the other hand, the position-based
scheme cannot deal with (register) variables that are split into multiple
ranges. An upcoming commit to the PowerPC backend (adding VSX support) will
require this capability. While we could teach the position-based scheme to
handle that, since we'd like to move away from the position-based mapping
generally, it seems silly to teach it new tricks now. What makes more sense is
to allow for partial transitioning: use the name-based mapping when possible,
and only use the position-based scheme when necessary.
Now the problem is that mixing the two sensibly was not possible: the
position-based mapping would map based on position, but would not skip those
variables that were mapped by name. Instead, the two sets of assignments would
overlap. However, I cannot currently change the current behavior, because there
are some backends that rely on it [I think mistakenly, but I'll send a message
to llvmdev about that]. So I've added a new TableGen bit variable:
noNamedPositionallyEncodedOperands, that can be used to cause the
position-based mapping to skip variables mapped by name.
llvm-svn: 203767
for use with C++11 range-based for-loops.
The gist of phase 1 is to remove the skipInstruction() and skipBundle()
methods from these iterators, instead splitting each iterator into a version
that walks operands, a version that walks instructions, and a version that
walks bundles. This has the result of making some "clever" loops in lib/CodeGen
more verbose, but also makes their iterator invalidation characteristics much
more obvious to the casual reader. (Making them concise again in the future is a
good motivating case for a pre-incrementing range adapter!)
Phase 2 of this undertaking with consist of removing the getOperand() method,
and changing operator*() of the operand-walker to return a MachineOperand&. At
that point, it should be possible to add range views for them that work as one
might expect.
llvm-svn: 203757
This makes the mapping consistent with other CU->X mappings in the
MCContext, helping pave the way to refactor all these values into a
single data structure per CU and thus a single map.
I haven't renamed the data structure as that would make the patch churn
even higher (the MCLineSection name no longer makes sense, as this
structure now contains lines for multiple sections covered by a single
CU, rather than lines for a single section in multiple CUs) and further
refactorings will follow that may remove this type entirely.
For convenience, I also gave the MCLineSection value semantics so we
didn't have to do the lazy construction, manual delete, etc.
(& for those playing at home, refactoring the line printing into a
single data structure will eventually alow that data structure to be
reused to own the debug_line.dwo line table used for type unit file name
resolution)
llvm-svn: 203726
Chandler voiced some concern with checking this in without some
discussion first. Reverting for now.
This reverts r203703, r203704, r203708, and 203709.
llvm-svn: 203723
This replaces the llvm-profdata tool with a version that uses the
recently introduced Profile library. The new tool has the ability to
generate and summarize profdata files as well as merging them.
llvm-svn: 203704
This provides a library to work with the instrumentation based
profiling format that is used by clang's -fprofile-instr-* options and
by the llvm-profdata tool. This is a binary format, rather than the
textual one that's currently in use.
The tests are in the subsequent commits that use this.
llvm-svn: 203703
There's a bit of duplicated "magic" code in opt.cpp and Clang's CodeGen that
computes the inliner threshold from opt level and size opt level.
This patch moves the code to a function that lives alongside the inliner itself,
providing a convenient overload to the inliner creation.
A separate patch can be committed to Clang to use this once it's committed to
LLVM. Standalone tools that use the inlining pass can also avoid duplicating
this code and fearing it will go out of sync.
Note: this patch also restructures the conditinal logic of the computation to
be cleaner.
llvm-svn: 203669
Add a utility function to convert the Windows path separator to Unix style path
separators. This is used by a subsequent change in clang to enable the use of
Windows SDK headers on Linux.
llvm-svn: 203611
The function hasReliableSymbolDifference had exactly one use in the MachO
writer. It is also only true for X86_64. In fact, the comments refers to
"Darwin x86_64" and everything else, so this makes the code match the
comment.
If this is to be abstracted again, it should be a property of
TargetObjectWriter, like useAggressiveSymbolFolding.
llvm-svn: 203605
Before this patch the unix code for creating hardlinks was unused. The code
for creating symbolic links was implemented in lib/Support/LockFileManager.cpp
and the code for creating hard links in lib/Support/*/Path.inc.
The only use we have for these is in LockFileManager.cpp and it can use both
soft and hard links. Just have a create_link function that creates one or the
other depending on the platform.
llvm-svn: 203596
The syntax for "cmpxchg" should now look something like:
cmpxchg i32* %addr, i32 42, i32 3 acquire monotonic
where the second ordering argument gives the required semantics in the case
that no exchange takes place. It should be no stronger than the first ordering
constraint and cannot be either "release" or "acq_rel" (since no store will
have taken place).
rdar://problem/15996804
llvm-svn: 203559
The official specifications state the name to be ARMNT (as per the Microsoft
Portable Executable and Common Object Format Specification v8.3).
llvm-svn: 203530
optimize a call to a llvm intrinsic to something that invovles a call to a C
library call, make sure it sets the right calling convention on the call.
e.g.
extern double pow(double, double);
double t(double x) {
return pow(10, x);
}
Compiles to something like this for AAPCS-VFP:
define arm_aapcs_vfpcc double @t(double %x) #0 {
entry:
%0 = call double @llvm.pow.f64(double 1.000000e+01, double %x)
ret double %0
}
declare double @llvm.pow.f64(double, double) #1
Simplify libcall (part of instcombine) will turn the above into:
define arm_aapcs_vfpcc double @t(double %x) #0 {
entry:
%__exp10 = call double @__exp10(double %x) #1
ret double %__exp10
}
declare double @__exp10(double)
The pre-instcombine code works because calls to LLVM builtins are special.
Instruction selection will chose the right calling convention for the call.
However, the code after instcombine is wrong. The call to __exp10 will use
the C calling convention.
I can think of 3 options to fix this.
1. Make "C" calling convention just work since the target should know what CC
is being used.
This doesn't work because each function can use different CC with the "pcs"
attribute.
2. Have Clang add the right CC keyword on the calls to LLVM builtin.
This will work but it doesn't match the LLVM IR specification which states
these are "Standard C Library Intrinsics".
3. Fix simplify libcall so the resulting calls to the C routines will have the
proper CC keyword. e.g.
%__exp10 = call arm_aapcs_vfpcc double @__exp10(double %x) #1
This works and is the solution I implemented here.
Both solutions #2 and #3 would work. After carefully considering the pros and
cons, I decided to implement #3 for the following reasons.
1. It doesn't change the "spec" of the intrinsics.
2. It's a self-contained fix.
There are a couple of potential downsides.
1. There could be other places in the optimizer that is broken in the same way
that's not addressed by this.
2. There could be other calling conventions that need to be propagated by
simplify-libcall that's not handled.
But for now, this is the fix that I'm most comfortable with.
llvm-svn: 203488
the stack of the analysis group because they are all immutable passes.
This is made clear by Craig's recent work to use override
systematically -- we weren't overriding anything for 'finalizePass'
because there is no such thing.
This is kind of a lame restriction on the API -- we can no longer push
and pop things, we just set up the stack and run. However, I'm not
invested in building some better solution on top of the existing
(terrifying) immutable pass and legacy pass manager.
llvm-svn: 203437
constructors from the classes which only have a single reference member
to many other places. This resulted in them copying their single member
instead of moving. =/ Fix this.
There's really not a useful test to add sadly because these move
constructors are only called when something deep inside some standard
library implementation *needs* to move them. Many of the types aren't
even user-impacting types. Or, the objects are copyable anyways and so
the result was merely a performance problem rather than a correctness
problem.
Anyways, thanks for the review. And this is a great example of why
I wish I colud have the compiler write these for me.
llvm-svn: 203431
synthesize a move constructor. Thus, for any types where move semantics
are important (yea, that's essentially every type...) you must
explicitly define the special members. Do so systematically throughout
the pass manager as the core of the design relies heavily on move
semantics.
This will hopefully fix the build with MSVC 2013. We still don't know
why MSVC 2012 accepted this code, but it almost certainly wasn't doing
the right thing.
I've also added explicit to a few single-argument constructors spotted
in passing.
llvm-svn: 203426
it is available. Also make the move semantics sufficiently correct to
tolerate move-only passes, as the PassManagers *are* move-only passes.
llvm-svn: 203391
This reverts commit r203374.
Ambiguities in assign... oh well. I'm just going to revert this and
probably not try to recommit it as it's not terribly important.
llvm-svn: 203375
Move a common utility (assign(iter, iter)) into SmallVector (some of the
others could be moved there too, but this one seemed particularly
generic) and replace repetitions overrides with using directives.
And simplify SmallVector::assign(num, element) while I'm here rather
than thrashing these files (that cause everyone to rebuild) again.
llvm-svn: 203374
This requires a number of steps.
1) Move value_use_iterator into the Value class as an implementation
detail
2) Change it to actually be a *Use* iterator rather than a *User*
iterator.
3) Add an adaptor which is a User iterator that always looks through the
Use to the User.
4) Wrap these in Value::use_iterator and Value::user_iterator typedefs.
5) Add the range adaptors as Value::uses() and Value::users().
6) Update *all* of the callers to correctly distinguish between whether
they wanted a use_iterator (and to explicitly dig out the User when
needed), or a user_iterator which makes the Use itself totally
opaque.
Because #6 requires churning essentially everything that walked the
Use-Def chains, I went ahead and added all of the range adaptors and
switched them to range-based loops where appropriate. Also because the
renaming requires at least churning every line of code, it didn't make
any sense to split these up into multiple commits -- all of which would
touch all of the same lies of code.
The result is still not quite optimal. The Value::use_iterator is a nice
regular iterator, but Value::user_iterator is an iterator over User*s
rather than over the User objects themselves. As a consequence, it fits
a bit awkwardly into the range-based world and it has the weird
extra-dereferencing 'operator->' that so many of our iterators have.
I think this could be fixed by providing something which transforms
a range of T&s into a range of T*s, but that *can* be separated into
another patch, and it isn't yet 100% clear whether this is the right
move.
However, this change gets us most of the benefit and cleans up
a substantial amount of code around Use and User. =]
llvm-svn: 203364
First: refactor out the emission of entries into the .debug_loc section
into its own routine.
Second: add a new class ByteStreamer that can be used to either emit
using an AsmPrinter or hash using DIEHash the series of bytes that
would be emitted. Use this in all of the location emission routines
for the .debug_loc section.
No functional change intended outside of a few additional comments
in verbose assembly.
llvm-svn: 203304
Previously, the assertions in PointerIntPair would try to calculate the value
(1 << NumLowBitsAvailable); the inferred type here is 'int', so if there were
more than 31 bits available we'd get a shift overflow.
Also, add a rudimentary unit test file for PointerIntPair.
llvm-svn: 203273
Summary:
llvm/MC/MCSectionMachO.h and llvm/Support/MachO.h both had the same
definitions for the section flags. Instead, grab the definitions out of
support.
No functionality change.
Reviewers: grosbach, Bigcheese, rafael
Reviewed By: rafael
CC: llvm-commits
Differential Revision: http://llvm-reviews.chandlerc.com/D2998
llvm-svn: 203211
The old system was fairly convoluted:
* A temporary label was created.
* A single PROLOG_LABEL was created with it.
* A few MCCFIInstructions were created with the same label.
The semantics were that the cfi instructions were mapped to the PROLOG_LABEL
via the temporary label. The output position was that of the PROLOG_LABEL.
The temporary label itself was used only for doing the mapping.
The new CFI_INSTRUCTION has a 1:1 mapping to MCCFIInstructions and points to
one by holding an index into the CFI instructions of this function.
I did consider removing MMI.getFrameInstructions completelly and having
CFI_INSTRUCTION own a MCCFIInstruction, but MCCFIInstructions have non
trivial constructors and destructors and are somewhat big, so the this setup
is probably better.
The net result is that we don't create temporary labels that are never used.
llvm-svn: 203204