The original patch of the A->B->A BitCast optimization was reverted by r274094 because it may cause infinite loop inside compiler https://llvm.org/bugs/show_bug.cgi?id=27996.
The problem is with following code
xB = load (type B);
xA = load (type A);
+yA = (A)xB; B -> A
+zAn = PHI[yA, xA]; PHI
+zBn = (B)zAn; // A -> B
store zAn;
store zBn;
optimizeBitCastFromPhi generates
+zBn = (B)zAn; // A -> B
and expects it will be combined with the following store instruction to another
store zAn
Unfortunately before combineStoreToValueType is called on the store instruction, optimizeBitCastFromPhi is called on the new BitCast again, and this pattern repeats indefinitely.
optimizeBitCastFromPhi only generates BitCast for load/store instructions, only the BitCast before store can cause the reexecution of optimizeBitCastFromPhi, and BitCast before store can easily be handled by InstCombineLoadStoreAlloca.cpp. So the solution to the problem is if all users of a CI are store instructions, we should not do optimizeBitCastFromPhi on it. Then optimizeBitCastFromPhi will not be called on the new BitCast instructions.
Differential Revision: https://reviews.llvm.org/D23896
llvm-svn: 285116
This reverts r285093, as it caused unexpected buildbot failures on
clang-ppc64le-linux, clang-ppc64be-linux, clang-ppc64be-linux-multistage
and clang-ppc64be-linux-lnt. Failing test ubsan/TestCases/TypeCheck/vptr.cpp.
llvm-svn: 285110
Summary:
The intention is to make APFloat an interface class, so that later I can add a second implementation class DoubleAPFloat to correctly implement PPCDoubleDouble semantic. The interface of IEEEFloat is not public, and can be simplified (currently it's exactly the same as the old APFloat), but that belongs to a separate patch.
DoubleAPFloat should look like:
class DoubleAPFloat {
const fltSemantics *Semantics;
std::unique_ptr<APFloat> APFloats; // Two heap-allocated APFloats.
};
There is no functional change, nor public interface change.
Reviewers: hfinkel, chandlerc, iteratee, echristo, kbarton
Subscribers: llvm-commits, mehdi_amini
Differential Revision: https://reviews.llvm.org/D25536
llvm-svn: 285105
Add an option to allow easier experimentation by target maintainers with the
minimum number of entries to create jump tables. Also clarify the name of
the other existing option governing the creation of jump tables.
Differential revision: https://reviews.llvm.org/D25883
llvm-svn: 285104
When there's a tie between partitionings of jump tables, consider also cases
that result in no jump tables, but in one or a few cases. The motivation is
that many contemporary processors typically perform case switches fairly
quickly.
Differential revision: https://reviews.llvm.org/D25212
llvm-svn: 285099
When we predicate an instruction (div, rem, store) we place the instruction in
its own basic block within the vectorized loop. If a predicated instruction has
scalar operands, it's possible to recursively sink these scalar expressions
into the predicated block so that they might avoid execution. This patch sinks
as much scalar computation as possible into predicated blocks. We previously
were able to sink such operands only if they were extractelement instructions.
Differential Revision: https://reviews.llvm.org/D25632
llvm-svn: 285097
This adds a new function to DebugInfo.cpp that takes an llvm::Module
as input and removes all debug info metadata that is not directly
needed for line tables, thus effectively stripping all type and
variable information from the module.
The primary motivation for this feature was the bitcode work flow
(cf. http://lists.llvm.org/pipermail/llvm-dev/2016-June/100643.html
for more background). This is not wired up yet, but will be in
subsequent patches. For testing, the new functionality is exposed to
opt with a -strip-nonlinetable-debuginfo option.
The secondary use-case (and one that works right now!) is as a
reduction pass in bugpoint. I added two new bugpoint options
(-disable-strip-debuginfo and -disable-strip-debug-types) to control
the new features. By default it will first attempt to remove all debug
information, then only the type info, and then proceed to hack at any
remaining MDNodes.
Thanks to Adrian Prantl for stewarding this patch!
llvm-svn: 285094
The branch folding pass tail merges blocks into a common-tail. However, the
tail retains the debug information from one of the original inputs to the
merge (chosen randomly). This is a problem for sampled-based PGO, as hits
on the common-tail will be attributed to whichever block was chosen,
irrespective of which path was actually taken to the common-tail.
This patch fixes the issue by nulling the debug location for the common-tail.
Differential Revision: https://reviews.llvm.org/D25742
llvm-svn: 285093
The sanitizer-windows bot turned red with:
FAILED: utils/TableGen/CMakeFiles/obj.llvm-tblgen.dir/IntrinsicEmitter.cpp.obj
C:\PROGRA~2\MICROS~1.0\VC\bin\AMD64_~2\cl.exe ... -c
C:\...\llvm\utils\TableGen\IntrinsicEmitter.cpp
c:\...\llvm\utils\tablegen\intrinsicemitter.cpp(254) :
fatal error C1001: An internal error has occurred in the compiler.
http://lab.llvm.org:8011/builders/sanitizer-windows/builds/114/steps/build%20clang%20lld/logs/stdio
llvm-svn: 285089
When indvars widened an induction variable, the debug location for the loop
increment computation was incorrectly set equal to the debug loc of the loop
latch terminator.
This patch fixes the issue by propagating the correct location from the
original loop increment instruction to the new widened increment.
Differential Revision: https://reviews.llvm.org/D25872
llvm-svn: 285083
Now that MemorySSA keeps track of whether MemoryUses are optimized, use
getClobberingMemoryAccess() to check MemoryUse memory dependencies since
it should no longer be so expensive.
This is a follow-up change to https://reviews.llvm.org/D25881
llvm-svn: 285080
It is not safe to use LOAD ON CONDITION to implement access to a memory
location marked "volatile", since the architecture leaves it unspecified
whether or not an access happens if the condition is false.
The current code already appears to care about that:
def LOC : CondUnaryRSY<"loc", 0xEBF2, nonvolatile_load, GR32, 4>;
Unfortunately, that "nonvolatile_load" operator is simply ignored
by the CondUnaryRSY class, and there was no test to catch it.
llvm-svn: 285077
We already have (V)PMOVZX* combining support, this is the beginning of handling (V)PMOVSX* similarly - other combines in combineVSZext can be generalized in future patches.
This unearthed an interesting bug in that we were generating illegal build vectors on 32-bit targets - it was proving difficult to create a test for it from PMOVZX, but it fired immediately with PMOVSX. I've created a more general form of the existing getConstVector to handle these cases - ideally this should be handled in non-target-specific code but I couldn't find an equivalent.
Differential Revision: https://reviews.llvm.org/D25874
llvm-svn: 285072
Summary:
Do *not* perform combines such as:
vector_shuffle<4,1,2,3>(build_vector(Ud, C0, C1 C2), scalar_to_vector(X))
->
build_vector(X, C0, C1, C2)
Keeping the shuffle allows lowering the constant build_vector to a materialized
constant vector (such as a vector-load from the constant-pool or some other idiom).
Reviewers: delena, igorb, spatel, mkuper, andreadb, RKSimon
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D25524
llvm-svn: 285063
In an IR symbol table I would expect the comdats to be represented as:
- A table of strings, one for each comdat name.
- Each symbol has an optional index into that table.
The natural api for accessing that would be
InputFile:
ArrayRef<StringRef> getComdatTable() const;
Symbol:
int getComdatIndex() const;
This patch implements an API as close to that as possible. The
implementation on top of the current IRObjectFile is a bit hackish,
but should map just fine over a symbol table and is very convenient to
use.
llvm-svn: 285061
Summary: The one tricky thing about this is that the sign/zero_extend_inreg uses v64i8 as an input type which isn't legal without BWI support. Though the vpmovsxbq and vpmovzxbq instructions themselves don't require BWI. To support this we need to add custom lowering for ZERO_EXTEND_VECTOR_INREG with v64i8 input. This can mostly reuse the existing sign extend code with a couple checks for sign extend vs zero extend added.
Reviewers: delena, RKSimon
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D25594
llvm-svn: 285053
This is a function to go backwards in a block to find the first
instruction in a bundle, so iterator is a more natural choice for
parameter/return rather than a reference to a MachineInstruction.
llvm-svn: 285051
When we load coverage data from multiple objects, we don't have a way to
attribute a source object to a function record. Printing out the object
filename next to the source filename is already not very useful: soon,
it'll actually become misleading. Stop printing out the filename now.
llvm-svn: 285043
This changes locals from being declared by the emitLocal hook in
WebAssemblyTargetStreamer, rather than with an instruction. After exploring
the infastructure in LLVM more, this seems to make more sense since
declaring locals doesn't use an encoded opcode.
This also adds more 0xd opcodes, type encodings, and miscellaneous
binary encoding bits.
llvm-svn: 285040
Passing a MachineFunction as argument is more natural and avoids an
unnecessary round-trip through the logic determining the correct
Subtarget because MachineFunction already has a reference anyway.
llvm-svn: 285039
The installhdrs target was inconsistently named and would behave
differently depending on whether or not you ran a build first. This
renames it to install-llvm-headers to match other target names and
adds a dependency on intrinsics_gen so that it will always install the
same set of things.
llvm-svn: 285035
There are two fixes here: one, AnalyzeUsesOfPointer can't return
false until it has checked all the uses of the pointer. Two, if a
global uses another global, we have to assume the address of the
first global escapes.
Fixes https://llvm.org/bugs/show_bug.cgi?id=30707 .
Differential Revision: https://reviews.llvm.org/D25798
llvm-svn: 285034
(Const)?MIOperands is equivalent to the C++ style
MachineInstr::mop_iterator. Use the latter for consistency except for a
few callers of MIOperands::analyzePhysReg().
llvm-svn: 285029
I took the opportunity to replace some copy|move constructors|assignment
operators with default implementations.
As a follow-up, I plan on threading unique_ptr<T []> through a few areas
per David Blaikie's advice.
Differential Revision: https://reviews.llvm.org/D24424
llvm-svn: 285018
This patch adds a pass, controlled by an option and off by default for
now, for making implicit get_local/set_local explicit. This simplifies
emitting wasm with MC.
Differential Revision: https://reviews.llvm.org/D25836
llvm-svn: 285009
These functions are about classifying a global which will actually be
emitted, so it does not make sense for them to take a GlobalValue which may
for example be an alias.
Change the Mach-O object writer and the Hexagon, Lanai and MIPS backends to
look through aliases before using TargetLoweringObjectFile interfaces. These
are functional changes but all appear to be bug fixes.
Differential Revision: https://reviews.llvm.org/D25917
llvm-svn: 285006
This fixes a bug in the handling of lexical scopes, when more than one
scope is defined on the same line or functions are inlined into call
sites that are on the same line as the function definition. This
situation can easily happen in macro expansions.
The problem is solved by introducing a SmallDenseMap<DIScope *,
DILexicalBlockFile *, 1> that keeps track of all the different lexical
scopes that share a line/file location.
Fixes PR30681.
llvm-svn: 284998
Add support for estimating the square root or its reciprocal and division or
reciprocal using the combiner generic Newton series.
Differential revision: https://reviews.llvm.org/D25291
llvm-svn: 284986
Summary:
If you try to instantiate it with a non-power-of-two buckets, DenseMap
will assert at runtime (!) if we ever outgrow our inline storage.
I believe using a constexpr function inside of a static_assert is safe
now that we've unsupported MSVC 2013 and GCC < 4.8.
Reviewers: bkramer, qcolombet, escha
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D25900
llvm-svn: 284985
Summary:
When using MemorySSA, re-optimize MemoryPhis when removing a store since
this may create MemoryPhis with all identical arguments.
Also, when using MemorySSA to check if two MemoryUses are reading from
the same version of the heap, use the defining access instead of calling
getClobberingAccess, since the latter can currently result in many more
AA calls. Once the MemorySSA use optimization tracking changes are
done, we can remove this limitation, which should result in more loads
being CSE'd.
Reviewers: dberlin
Subscribers: mcrosier, llvm-commits
Differential Revision: https://reviews.llvm.org/D25881
llvm-svn: 284984
https://reviews.llvm.org/D24924
This improves the code generated for a sequence of AND, ANY_EXT, SRL instructions. This is a targetted fix for this special pattern. The pattern is generated by target independet dag combiner and so a more general fix may not be necessary. If we come across other similar cases, some ideas for handling it are discussed on the code review.
llvm-svn: 284983
Summary:
The v_movreld machine instruction is used with three operands that are
in a sense tied to each other (the explicit VGPR_32 def and the implicit
VGPR_NN def and use). There is no way to express that using the currently
available operand bits, and indeed there are cases where the Two Address
instructions pass does the wrong thing.
This patch introduces a new set of pseudo instructions that are identical
in intended semantics as v_movreld, but they only have two tied operands.
Having to add a new set of pseudo instructions is admittedly annoying, but
it's a fairly straightforward and solid approach. The only alternative I
see is to try to teach the Two Address instructions pass about Three Address
instructions, and I'm afraid that's trickier and is going to end up more
fragile.
Note that v_movrels does not suffer from this problem, and so this patch
does not touch it.
This fixes several GL45-CTS.shaders.indexing.* tests.
Reviewers: tstellarAMD, arsenm
Subscribers: kzhuravl, wdng, yaxunl, llvm-commits, tony-tye
Differential Revision: https://reviews.llvm.org/D25633
llvm-svn: 284980
Fix AsmParser lines to correctly handle end-of-line pre-processor
comments parsing when '#' is not the assembly line comment prefix.
Reviewers: rnk
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D25567
llvm-svn: 284978
If we don't have futimens(), we fall back to futimes(), which only supports
microsecond timestamps. In that case, we need to explicitly cast away the extra
precision in setLastModificationAndAccessTime().
llvm-svn: 284977
Summary:
Most of the changes are very straight-forward. The only choice I had to make was
to use second-precision time points in the Archive classes. I did this because
the archive files use that precision in the on-disk representation anyway.
Reviewers: rafael, zturner
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D25773
llvm-svn: 284974
Summary:
Add relocations for AArch64 ILP32. Includes:
- Addition of definitions for R_AARCH32_*
- Definition of new -target-abi: ilp32
- Definition of data layout string
- Tests for added relocations. Not comprehensive, but matches
existing tests for 64-bit. Renames "CHECK-OBJ" to "CHECK-OBJ-LP64".
- Tests for llvm-readobj
Reviewers: zatrazz, peter.smith, echristo, t.p.northover
Subscribers: aemerson, rengolin, mehdi_amini
Differential Revision: https://reviews.llvm.org/D25159
llvm-svn: 284973
Summary:
These are good candidates for jump threading. This enables later opts
(such as InstCombine) to combine instructions from the selects with
instructions out of the selects. SimplifyCFG will fold the select
again if unfolding wasn't worth it.
Patch by James Molloy and Pablo Barrio.
Reviewers: reames, bkramer, mcrosier, gberry, haicheng, jmolloy, sebpop
Subscribers: jojo, rengolin, llvm-commits
Differential Revision: https://reviews.llvm.org/D25477
llvm-svn: 284971
Summary:
This is a follow-up to D25416. It removes all usages of TimeValue from
llvm/Support library (except for the actual TimeValue declaration), and replaces
them with appropriate usages of std::chrono. To facilitate this, I have added
small utility functions for converting time points and durations into appropriate
OS-specific types (FILETIME, struct timespec, ...).
Reviewers: zturner, mehdi_amini
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D25730
llvm-svn: 284966
Add synci to the microMIPS instruction definitions, mark the MIPS sync & synci
as not being part of microMIPS. This does not cover the sync instruction alias,
as that will be handled with a different patch. Add sync to the valid tests for
microMIPS.
Reviewers: vkalintiris
Differential Revision: https://reviews.llvm.org/D25795
llvm-svn: 284962
Summary: With MSVC 2013 and GCC < 4.8 gone, we can use the "constexpr" keyword.
Reviewers: bkramer, mehdi_amini
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D25901
llvm-svn: 284947
We were defaulting to SSE2 costs which weren't taking into account the availability of PBLENDW/PBLENDVB to improve merging of per-element shift results.
llvm-svn: 284939
Summary:
r283710 introduced two regressions, one to llvm-lit, and the other to
lit executables that were installed via setuptools. Add instructions on
how to test for these regressions in the future.
Reviewers: ddunbar, delcypher, beanz, chapuni, cmatthews, echristo
Subscribers: llvm-commits, mehdi_amini
Differential Revision: https://reviews.llvm.org/D25459
llvm-svn: 284919
In BasicAA GEP operand values get adjusted ("wrap-around") based on the
pointersize. Otherwise, in non-64b modes, AA could report false negatives.
However, a wrap-around is valid only for a fully evaluated expression.
It had been introduced to fix an alias problem in
http://lists.llvm.org/pipermail/llvm-commits/Week-of-Mon-20160118/326163.html.
This commit restricts the wrap-around to constant gep operands only where the
value is known at compile-time.
llvm-svn: 284908
The assert() macro doesn't actually execute its body in Release builds, so using
it to check cache invariants requires that the insertion be outside of the
assert() statement. This change does that, and also makes sure to return the
actual map contents.
llvm-svn: 284898
The build was breaking on some platforms because we assumed that
CachedHashString("foo") would match the CachedHashString(StringRef)
constructor rather than the CachedHashString(char*) constructor.
To fix this, provide a CachedHashString(const char*) constructor, and
add a dummy argument to the old CachedHashString(char*) constructor.
llvm-svn: 284892
This will prevent following regression when enabling i16 support (D18049):
test/CodeGen/AMDGPU/cvt_f32_ubyte.ll
Differential Revision: https://reviews.llvm.org/D25805
llvm-svn: 284891
Summary:
SetVector already used DenseSet, but SmallSetVector used std::set. This
leads to surprising performance differences. Moreover, it means that
the set of key types accepted by SetVector and SmallSetVector are
quite different!
In order to make this change, we had to convert some callsites that used
SmallSetVector<std::string, N> to use SmallSetVector<CachedHashString, N>
instead.
Reviewers: timshen
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D25648
llvm-svn: 284887
Summary:
We already have the hashes in hand, and comparing hashes should be much
more discriminatory than comparing the StringRefs' sizes.
Reviewers: rafael
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D25705
llvm-svn: 284872
Summary:
This is like CachedHashStringRef, but owns its data.
This lets us use strings inside of DenseMaps.
Reviewers: timshen
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D25645
llvm-svn: 284871
Summary:
A CallSite is basically an Instruction*, and you can put Instruction*s
into DenseMaps, so you should be able to do the same with CallSites.
This is used in a later patch.
Reviewers: timshen
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D25643
llvm-svn: 284870
Summary:
When SCEVRewriteVisitor traverses the SCEV DAG, it may visit the same SCEV
multiple times if this SCEV is referenced by multiple other SCEVs. This has
exponential time complexity in the worst case. Memoizing the results will
avoid re-visiting the same SCEV. Add a map to save the results, and override
the visit function of SCEVVisitor. Now SCEVRewriteVisitor only visit each
SCEV once and thus returns the same result for the same input SCEV.
This patch fixes PR18606, PR18607.
Reviewers: Sanjoy Das, Mehdi Amini, Michael Zolotukhin
Differential Revision: https://reviews.llvm.org/D25810
llvm-svn: 284868
iterating over an archive with object and non-object members that
would cause an Abort because to was not calling consumeError()
when the code was wanting to ignore a non-object file.
Found by Justin Bogner!
llvm-svn: 284867
If a 64-bit value is tested against a bit which is known to be in the range
[0..31) (modulo 64), we can use the 32-bit BT instruction, which has a slightly
shorter encoding.
Differential Revision: https://reviews.llvm.org/D25862
llvm-svn: 284864
Summary: This adds support for dumping the globals stream from PDB files using llvm-pdbdump, similar to the support we have for the publics stream.
Reviewers: ruiu, zturner
Subscribers: beanz, mgorny, modocache
Differential Revision: https://reviews.llvm.org/D25801
llvm-svn: 284861
Summary:
Utility pass to remove gc.relocates created by rewrite statepoints for GC.
With respect to safepoint verification, the IR generated would be incorrect, and cannot run
as such.
This would be a single transformation on the final optimized IR.
The benefit of the pass is for easy analysis when the IRs are 'polluted' by too
many gc.relocates.
Added tests.
test run: All RS4GC tests with -verify option. Local downstream tests on large
IR files. This also works when the pointer being gc.relocated is another
gc.relocate.
Reviewers: sanjoy, reames
Subscribers: beanz, mgorny, llvm-commits
Differential Revision: https://reviews.llvm.org/D25096
llvm-svn: 284855
the ARM_THREAD_STATE in the same format as
otool-classic(1) on darwin.
Also remove an extra space in printing the initprot to make
the output match otool-classic(1) on darwin.
rdar://28851457
llvm-svn: 284852
0 - X --> 0, if the sub is NUW
0 - X --> 0, if X is 0 or the minimum signed value and the sub is NSW
0 - X --> X, if X is 0 or the minimum signed value
This is the DAG equivalent of:
https://reviews.llvm.org/rL284649
plus the fold for the NUW case which already existed in InstSimplify.
Note that we miss a vector fold because of a deficiency in the DAG version of
computeKnownBits().
llvm-svn: 284844
These are the backend equivalents for the tests added in r284627.
The patterns may emerge late, so we should have folds for these in the DAG too.
llvm-svn: 284842
After register allocation it is possible to have a spill of a register
that is only partially defined. That in itself it fine, but creates a
problem for double vector registers. Stores of such registers are pseudo
instructions that are expanded into pairs of individual vector stores,
and in case of a partially defined source, one of the stores may use
an entirely undefined register. To avoid this, track the defined parts
and only generate actual stores for those.
llvm-svn: 284841
Summary:
Need to reorder the operands to have the callee as the last argument.
Adds a pseudo-instruction, and a pass to lower it into a real
call_indirect.
This is the first of two options for how to fix the problem.
Reviewers: dschuff, sunfish
Subscribers: jfb, beanz, mgorny, llvm-commits
Differential Revision: https://reviews.llvm.org/D25708
llvm-svn: 284840
Because we're just 'or-ing' these 2 variables later in the code, I
don't think there's a logical bug here, but of course the string with
"no size" is the one that should have the size suffix stripped off.
llvm-svn: 284826
As discussed in D24815, let's start the process of killing off the broken fast-math global
state housed in TargetOptions and eliminate the need for function-level fast-math attributes.
Here we enable two similar folds that are possible when we don't care about signed-zero:
fadd nsz x, 0 --> x
fsub nsz 0, x --> -x
Note that although the test cases include a 'sin' function call, I'm side-stepping the
FMF-on-calls question (and lack of support in the DAG) for now. It's not needed for these
tests - isNegatibleForFree/GetNegatedExpression just look through a ISD::FSIN node.
Also, when we create an FNEG node and propagate the Flags of the FSUB to it, this doesn't
actually do anything today because Flags are silently dropped for any node that is not a
binary operator.
Differential Revision: https://reviews.llvm.org/D25297
llvm-svn: 284824
When we have a loop with a known upper bound on the number of iterations, and
furthermore know that either the number of iterations will be either exactly
that upper bound or zero, then we can fully unroll up to that upper bound
keeping only the first loop test to check for the zero iteration case.
Most of the work here is in plumbing this 'max-or-zero' information from the
part of scalar evolution where it's detected through to loop unrolling. I've
also gone for the safe default of 'false' everywhere but howManyLessThans which
could probably be improved.
Differential Revision: https://reviews.llvm.org/D25682
llvm-svn: 284818
Summary:
The spill size was incorrectly set to 196 bits,
which isn't a multiple of 8. This problem was detected when
experimenting with asserts that the spill size should be a
multiple of the byte size.
New corrected value for the spill size is set to 192 bits.
Note that tablegen (RegisterInfoEmitter) will divide the
size set in the RegisterClass definition by 8. So this
change should not have any impact on the tablegen output
(trunc(192/8) == trunc(196/8) == 24 bytes).
Reviewers: t.p.northover
Subscribers: llvm-commits, aemerson, rengolin
Differential Revision: https://reviews.llvm.org/D25818
llvm-svn: 284814
On i386 alignof(double) = 8 is not the same as alignof(struct { double
}) = 4. This used to be not an issue because the old implementation
always measured alignment inside of structs. Wrap a dummy struct around
the test to avoid this issue.
llvm-svn: 284812
There's no agreement about this patch. I personally find the
PRE machinery of the current GVN hard enough to reason about
that I'm not sure I'll try to land this again, instead of working
on the rewrite).
llvm-svn: 284796
rL284780 fixed the PREL31 relocation and added a test for it. Being
the first such test for ARM relocations, it exposed incorrect endianness
assumptions (causing buildbot failures on big-endian hosts). Fix that by
using the same helpers used for the x86 case.
llvm-svn: 284789
This is to avoid inlining too many multiplication operands into a SCEV, which could
take exponential time in the worst case.
Reviewers: Sanjoy Das, Mehdi Amini, Michael Zolotukhin
Differential Revision: https://reviews.llvm.org/D25794
llvm-svn: 284784
Summary:
This allows us to mark when uses have been optimized.
This lets us avoid rewalking (IE when people call getClobberingAccess on everything), and also
enables us to later relax the requirement of use optimization during updates with less cost.
Reviewers: george.burgess.iv
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D25172
llvm-svn: 284771
load commands that use the MachO::twolevel_hints_command type
which includes only the LC_TWOLEVEL_HINTS load command.
This is not used in llvm libObject code or in llvm tool code. But
does appear in one of the binary test files. While this load command is
obsolete it is easier to add code for it in libObject than edit or change
the binary test case.
llvm-svn: 284769
This was all using ArrayRef<>s before which presents a problem
when you want to serialize to or deserialize from an actual
PDB stream. An ArrayRef<> is really just a special case of
what can be handled with StreamInterface though (e.g. by using
a ByteStream), so changing this to use StreamInterface allows
us to plug in a PDB stream and get all the record serialization
and deserialization for free on a MappedBlockStream.
Subsequent patches will try to remove TypeTableBuilder and
TypeRecordBuilder in favor of class that operate on
Streams as well, which should allow us to completely merge
the reading and writing codepaths for both types and symbols.
Differential Revision: https://reviews.llvm.org/D25831
llvm-svn: 284762
Summary:
The original heuristic to break critical edge during machine sink is relatively conservertive: when there is only one instruction sinkable to the critical edge, it is likely that the machine sink pass will not break the critical edge. This leads to many speculative instructions executed at runtime. However, with profile info, we could model the splitting benefits: if the critical edge has 50% taken rate, it would always be beneficial to split the critical edge to avoid the speculated runtime instructions. This patch uses profile to guide critical edge splitting in machine sink pass.
The performance impact on speccpu2006 on Intel sandybridge machines:
spec/2006/fp/C++/444.namd 25.3 +0.26%
spec/2006/fp/C++/447.dealII 45.96 -0.10%
spec/2006/fp/C++/450.soplex 41.97 +1.49%
spec/2006/fp/C++/453.povray 36.83 -0.96%
spec/2006/fp/C/433.milc 23.81 +0.32%
spec/2006/fp/C/470.lbm 41.17 +0.34%
spec/2006/fp/C/482.sphinx3 48.13 +0.69%
spec/2006/int/C++/471.omnetpp 22.45 +3.25%
spec/2006/int/C++/473.astar 21.35 -2.06%
spec/2006/int/C++/483.xalancbmk 36.02 -2.39%
spec/2006/int/C/400.perlbench 33.7 -0.17%
spec/2006/int/C/401.bzip2 22.9 +0.52%
spec/2006/int/C/403.gcc 32.42 -0.54%
spec/2006/int/C/429.mcf 39.59 +0.19%
spec/2006/int/C/445.gobmk 26.98 -0.00%
spec/2006/int/C/456.hmmer 24.52 -0.18%
spec/2006/int/C/458.sjeng 28.26 +0.02%
spec/2006/int/C/462.libquantum 55.44 +3.74%
spec/2006/int/C/464.h264ref 46.67 -0.39%
geometric mean +0.20%
Manually checked 473 and 471 to verify the diff is in the noise range.
Reviewers: rengolin, davidxl
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D24818
llvm-svn: 284757
Summary:
While promoting *_EXTEND_VECTOR_INREG nodes whose inputs are already
promoted, perform the appropriate sign extension for the promoted node
before doing the *_EXTEND_VECTOR_INREG operation. If not, the undefined
high-order bits of the promoted operand may (a) be garbage inc ase of
zext) or (b) contribute the wrong sign-bit (in case of sext)
Updated the promote-vec3.ll test after this change. The diff shows
explicit zeroing in case of zext and intermediate sign extension in case
of sext.
Reviewers: RKSimon
Subscribers: llvm-commits, srhines
Differential Revision: https://reviews.llvm.org/D25790
llvm-svn: 284752
This is a retry of r284495 which was reverted at r284513 due to use-after-scope bugs
caused by faulty usage of StringRef.
This version also renames a pair of functions:
getRecipEstimateDivEnabled()
getRecipEstimateSqrtEnabled()
as suggested by Eric Christopher.
original commit msg:
[Target] remove TargetRecip class; move reciprocal estimate isel functionality to TargetLowering
This is a follow-up to https://reviews.llvm.org/D24816 - where we changed reciprocal estimates to be function attributes
rather than TargetOptions.
This patch is intended to be a structural, but not functional change. By moving all of the
TargetRecip functionality into TargetLowering, we can remove all of the reciprocal estimate
state, shield the callers from the string format implementation, and simplify/localize the
logic needed for a target to enable this.
If a function has a "reciprocal-estimates" attribute, those settings may override the target's
default reciprocal preferences for whatever operation and data type we're trying to optimize.
If there's no attribute string or specific setting for the op/type pair, just use the target
default settings.
As noted earlier, a better solution would be to move the reciprocal estimate settings to IR
instructions and SDNodes rather than function attributes, but that's a multi-step job that
requires infrastructure improvements. I intend to work on that, but it's not clear how long
it will take to get all the pieces in place.
Differential Revision: https://reviews.llvm.org/D25440
llvm-svn: 284746
We weren't accounting for legal types on every subtarget, meaning that many of the costs were using defaults.
We still don't correctly cost (or test) the 512-bit sdiv/udiv by uniform const cases, nor the power-of-2 cases.
llvm-svn: 284744
Also clean up the legacy hacks for AlignedCharArray. I'm keeping
LLVM_ALIGNAS alive for a bit longer because GCC 4.8.0 (which we still
support apparently) shipped a buggy alignas(). All other supported
compilers have a working alignas.
llvm-svn: 284736
All of these existed because MSVC 2013 was unable to synthesize default
move ctors. We recently dropped support for it so all that error-prone
boilerplate can go.
No functionality change intended.
llvm-svn: 284721
This is a resubmission of r284590. The mingw build should be fixed now. The
problem was we were matching time_t with _localtime_64s, which was incorrect on
_USE_32BIT_TIME_T systems. Instead I use localtime_s, which should always
evaluate to the correct function.
llvm-svn: 284720
Post-RA sched strategy and scheduling instruction annotations for z196, zEC12
and z13.
This scheduler optimizes decoder grouping and balances processor resources
(including side steering the FPd unit instructions).
The SystemZHazardRecognizer keeps track of the scheduling state, which can
be dumped with -debug-only=misched.
Reviers: Ulrich Weigand, Andrew Trick.
https://reviews.llvm.org/D17260
llvm-svn: 284704
Without this check LLD crashes when SHT_GROUP section has invalid symbol index
because of next code:
template <class ELFT>
StringRef elf::ObjectFile<ELFT>::getShtGroupSignature(const Elf_Shdr &Sec) {
..
const Elf_Sym *Sym = Obj.getSymbol(Symtab, Sec.sh_info);
..
}
If sh_info is too large, &Symbols[Index] just asserts.
No testcases provided because llvm-objdump/llvm-readelf does
not use getSymbol() function.
I`ll commit testcase for LLD separatelly.
Differential revision: https://reviews.llvm.org/D25516
llvm-svn: 284702
- Add alignment attribute to DIVariable family
- Modify bitcode format to match new DIVariable representation
- Update tests to match these changes (also add bitcode upgrade test)
- Expect that frontend passes non-zero align value only when it is not default
(was forcibly aligned by alignas()/_Alignas()/__atribute__(aligned())
Differential Revision: https://reviews.llvm.org/D25073
llvm-svn: 284678
load commands that use the MachO::thread_command type
but are not used in llvm libObject code but used in llvm tool code.
This includes the LC_UNIXTHREAD and LC_THREAD
load commands.
A quick note about the philosophy of the error checking in
libObject for Mach-O files, the idea behind the checking is
that we never will return a Mach-O file out of libObject that
contains unknown things in the load commands.
To do this the 32-bit ARM and PPC general tread states
needed to be defined as two test case binaries contained
them. If other thread states for other CPUs need to be
added we will do that as needed.
Going forward the LC_MAIN load command is used to
set the entry point in Mach-O executables these days
instead of an LC_UNIXTHREAD as was done in the past.
So today only in core files are LC_THREAD load commands
and thread states usually found.
Other thread states have not yet been defined in
include/Support/MachO.h at this time. But that can be
added as needed with their corresponding checking also
added.
llvm-svn: 284668
Profile runtime can generate an empty raw profile (when there is no function in
the shared library). This empty profile is treated as a text format profile. A
test format profile without the flag of "#IR" is thought to be a clang
generated profile. So in llvm profile merging, we will get a bogus warning of
"Merge IR generated profile with Clang generated profile."
The fix here is to skip the empty profile (when the buffer size is 0) for
profile merge.
Reviewers: vsk, davidxl
Differential Revision: http://reviews.llvm.org/D25687
llvm-svn: 284659
Chapter 5.
Chapter 5 demonstrates remote JITing: code is executed on the remote, not the
machine running the REPL, so it's the remote's triple (and TargetMachine) that
we need.
llvm-svn: 284657
These tests rely on two sections being allocated with a limited displacement
from one to the other to work. We've never guaranteed this, and consequently
these tests usually fail. That led to them being XFAILed, but now they XPASS
whenever the sections do happen to be allocated nearby in memory. So I'm
removing these for now to get rid of the noise. We can re-instate them if/when
we take the time to implement a displacement-respecting allocator.
llvm-svn: 284654
This patch builds on clang r284648, and allows the runtime directory to make the bootstrap builds depend on the builtin libraries.
This patch also make the bootstrap build depend on configuring the other runtimes because the libcxx headers are copied during configuration. I have left a TODO in the code to remove that once I come up with a better solution.
llvm-svn: 284650
0 - X --> X, if X is 0 or the minimum signed value
0 - X --> 0, if X is 0 or the minimum signed value and the sub is NSW
I noticed this pattern might be created in the backend after the change from D25485,
so we'll want to add a similar fold for the DAG.
The use of computeKnownBits in InstSimplify may be something to investigate if the
compile time of InstSimplify is noticeable. We could replace computeKnownBits with
specific pattern matchers or limit the recursion.
Differential Revision: https://reviews.llvm.org/D25785
llvm-svn: 284649
This code crashed on funclet-style EH instructions such as catchpad,
catchswitch, and cleanuppad. Just treat all EH pad instructions
equivalently and avoid merging the globals they reference through any
use.
llvm-svn: 284633
Some instructions from the original loop, when vectorized, can become trivially
dead. This happens because of the way we structure the new loop. For example,
we create new induction variables and induction variable "steps" in the new
loop. Thus, when we go to vectorize the original induction variable update, it
may no longer be needed due to the instructions we've already created. This
patch prevents us from creating these redundant instructions. This reduces code
size before simplification and allows greater flexibility in code generation
since we have fewer unnecessary instruction uses.
Differential Revision: https://reviews.llvm.org/D25631
llvm-svn: 284631
This change is motivated by the case when IndVarSimplify doesn't widen a comparison of IV increment because it can't prove IV increment being non-negative. We end up with a redundant trunc of the widened increment on this example.
for.body:
%i = phi i32 [ %start, %for.body.lr.ph ], [ %i.inc, %for.inc ]
%within_limits = icmp ult i32 %i, 64
br i1 %within_limits, label %continue, label %for.end
continue:
%i.i64 = zext i32 %i to i64
%arrayidx = getelementptr inbounds i32, i32* %base, i64 %i.i64
%val = load i32, i32* %arrayidx, align 4
br label %for.inc
for.inc:
%i.inc = add nsw nuw i32 %i, 1
%cmp = icmp slt i32 %i.inc, %limit
br i1 %cmp, label %for.body, label %for.end
There is a range check inside of the loop which guarantees the IV to be non-negative. NSW on the increment guarantees that the increment is also non-negative. Teach IndVarSimplify to use the range check to prove non-negativity of loop increments.
Reviewed By: sanjoy
Differential Revision: https://reviews.llvm.org/D25738
llvm-svn: 284629
This augments the STLExtras toolset with a zip iterator and range
adapter. Zip comes in two varieties: `zip`, which will zip to the
shortest of the input ranges, and `zip_first`, which limits its
`begin() == end()` checks to just the first range.
Recommit r284035 after MSVC2013 support has been dropped.
Patch by: Bryant Wong <github.com/bryant>
Differential Revision: https://reviews.llvm.org/D23252
llvm-svn: 284623
Initializing a ThreadPool with ThreadCount = 1 spawns a thread even
though we don't need to. This is at least slower than it needs to be,
and at worst may somehow be exacerbating PR30735 (llvm-cov times out
on ARM bots).
As a follow-up, I'll try to add logic to llvm::ThreadPool to avoid
spawning a thread when ThreadCount = 1.
llvm-svn: 284621
Summary:
Changes default backend parallelism from thread::hardware_concurrency to
the new llvm::heavyweight_hardware_concurrency, which for X86 Linux
defaults to the number of physical cores (and will fall back to
thread::hardware_concurrency otherwise). This avoid oversubscribing
the physical cores using hyperthreading.
Reviewers: mehdi_amini, pcc
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D25775
llvm-svn: 284618
This reverts commit r284590 as it fails on the mingw buildbot. I think I know the
fix, but I cannot test it right now. Will reapply when I verify it works ok.
This reverts r284590.
llvm-svn: 284615
Use mask and negate for legalization of i1 source type with SIGN_EXTEND_INREG.
With the mask, this should be no worse than 2 shifts. The mask can be eliminated
in some cases, so that should be better than 2 shifts.
This change exposed some missing folds related to negation:
https://reviews.llvm.org/rL284239https://reviews.llvm.org/rL284395
There may be others, so please let me know if you see any regressions.
Differential Revision: https://reviews.llvm.org/D25485
llvm-svn: 284611
This required reengineering of some of the part of liveness calculation,
including fixing some issues caused by the limitations of the previous
approach. The current code is not necessarily the fastest, but it should
be functionally correct (at least more so than before). The compile-time
performance will be addressed in the future.
llvm-svn: 284609
Summary:
std::chrono mostly covers the functionality of llvm::sys::TimeValue and
lldb_private::TimeValue. This header adds a bit of utility functions and
typedefs, which make the usage of the library and porting code from TimeValues
easier.
Rationale:
- TimePoint typedef - precision of system_clock is implementation defined -
using a well-defined precision helps maintain consistency between platforms,
makes it interact better with existing TimeValue classes, and avoids cases
there a time point is implicitly convertible to a specific precision on some
platforms but not on others.
- system_clock::to_time_t only accepts time_points with the default system
precision (even though time_t has only second precision on all platforms we
support). To avoid the need for explicit casts, I have added a toTimeT()
wrapper function. toTimePoint(time_t) was not strictly necessary, but I have
added it for symmetry.
Reviewers: zturner, mehdi_amini
Subscribers: beanz, mgorny, llvm-commits, modocache
Differential Revision: https://reviews.llvm.org/D25416
llvm-svn: 284590
Most z13 vector instructions have a base form where the data type of
the operation (whether to consider the vector to be 16 bytes, 8
halfwords, 4 words, or 2 doublewords) is encoded into a mask field,
and then a set of extended mnemonics where the mask field is not
present but the data type is encoded into the mnemonic name.
Currently, LLVM only supports the type-specific forms (since those
are really the ones needed for code generation), but not the base
type-generic forms.
To complete the assembler support and make it fully compatible with
the GNU assembler, this commit adds assembler aliases for all the
base forms of the various vector instructions.
It also adds two more alias forms that are documented in the PoP:
VFPSO/VFPSODB/WFPSODB -- generic form of VFLCDB etc.
VNOT -- special variant of VNO
llvm-svn: 284586
The vfee[bhf], vfene[bhf], and vistr[bhf] assembler mnemonics are
documented in the Principles of Operation to have an optional last
operand to encode arbitrary values in a mask field.
This commit adds support for those optional operands, and cleans up
the patterns to generate vector string instruction as bit. No change
to code generation intended.
llvm-svn: 284585
Declare the LLVM_CMAKE_PATH to the source directory location of CMake
files, in order to make it possible to easily use them in subprojects.
Such a variable is already declared in most of LLVM projects
(and inconsistently mixed with direct source tree references), including
Clang, LLDB, compiler-rt, libcxx... Declaring it inside main LLVM tree
makes it possible to avoid having to declare fallback values or use
conditionals in those projects.
It should be noted that in some of the subprojects LLVM_CMAKE_PATH is
used to reference generated LLVMConfig.cmake file. However, these
references are conditional to stand-alone builds and explicitly
including this file is unnecessary in combined builds.
Differential Revision: https://reviews.llvm.org/D25724
llvm-svn: 284581
The TBB and TBH instructions in Thumb-2 allow jump tables to be compressed into sequences of bytes or shorts respectively. These instructions do not exist in Thumb-1, however it is possible to synthesize them out of a sequence of other instructions.
It turns out this sequence is so short that it's almost never a lose for performance and is ALWAYS a significant win for code size.
TBB example:
Before: lsls r0, r0, #2 After: add r0, pc
adr r1, .LJTI0_0 ldrb r0, [r0, #6]
ldr r0, [r0, r1] lsls r0, r0, #1
mov pc, r0 add pc, r0
=> No change in prologue code size or dynamic instruction count. Jump table shrunk by a factor of 4.
The only case that can increase dynamic instruction count is the TBH case:
Before: lsls r0, r4, #2 After: lsls r4, r4, #1
adr r1, .LJTI0_0 add r4, pc
ldr r0, [r0, r1] ldrh r4, [r4, #6]
mov pc, r0 lsls r4, r4, #1
add pc, r4
=> 1 more instruction in prologue. Jump table shrunk by a factor of 2.
So there is an argument that this should be disabled when optimizing for performance (and a TBH needs to be generated). I'm not so sure about that in practice, because on small cores with Thumb-1 performance is often tied to code size. But I'm willing to turn it off when optimizing for performance if people want (also note that TBHs are fairly rare in practice!)
llvm-svn: 284580
This will get the same ConstantSDNode scalar or vector splat value as the current separate dyn_cast<ConstantSDNode> / isVector() approach.
llvm-svn: 284578
This renames the function for checking FP function attribute values and also
adds more build attribute tests (which are in separate files because build
attributes are set per file).
Differential Revision: https://reviews.llvm.org/D25625
llvm-svn: 284571
msc18 doesn't recognize "using BaseT::BaseT;"
llvm\include\llvm/ADT/DenseSet.h(213) : error C2875: using-declaration causes a multiple declaration of 'BaseT'
llvm\include\llvm/ADT/DenseSet.h(214) : see reference to class template instantiation 'llvm::DenseSet<ValueT,ValueInfoT>' being compiled
llvm\include\llvm/ADT/DenseSet.h(231) : error C2875: using-declaration causes a multiple declaration of 'BaseT'
llvm\include\llvm/ADT/DenseSet.h(232) : see reference to class template instantiation 'llvm::SmallDenseSet<ValueT,InlineBuckets,ValueInfoT>' being compiled
llvm-svn: 284570
Summary:
This allows us to create broadcasts of 128-bit vector loads into 512-bit vectors.
New patterns added to support 8-bit and 16-bit vector types and v2f64/v2i64->v8f64/v8i64 without DQI instructions.
There also fallback patterns when the load can't be folded. These patterns are a little complex as we first need to insert the lower 128-bits into the second 128-bits using a zmm subvector insert instruction. We need to use a zmm insert in case VLX isn't available. Then use another zmm sub vector insert to take those 256-bits and insert them into the upper bits. Since we used a zmm insert to create the 256-bits we also need to do a extract_subreg to get just the lower 256-bits to pass to the second insert.
The outer insert for the fallback patterns should have its type correct because eventually we should also supported masked operations here too. So we need a DQI and a NoDQI version of the v16f32/v16i32 patterns.
Reviewers: RKSimon, delena, igorb
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D25651
llvm-svn: 284567
Example of output:
COVERAGE:
COVERED: in DSO2(int) /pathto/DSO2.cpp:6
COVERED: in DSO2(int) /pathto/DSO2.cpp:8
COVERED: in DSO1(int) /pathto/DSO1.cpp:6
COVERED: in DSO1(int) /pathto/DSO1.cpp:8
COVERED: in LLVMFuzzerTestOneInput /pathto/DSOTestMain.cpp:16
COVERED: in LLVMFuzzerTestOneInput /pathto/DSOTestMain.cpp:19
COVERED: in LLVMFuzzerTestOneInput /pathto/DSOTestMain.cpp:25
COVERED: in LLVMFuzzerTestOneInput /pathto/DSOTestMain.cpp:26
MODULE_WITH_COVERAGE: /pathto/libLLVMFuzzer-DSO1.so
UNCOVERED_LINE: in DSO1(int) /pathto/DSO1.cpp:9
UNCOVERED_FUNC: in Uncovered1()
MODULE_WITH_COVERAGE: /pathto/libLLVMFuzzer-DSO2.so
UNCOVERED_LINE: in DSO2(int) /pathto/DSO2.cpp:9
UNCOVERED_FUNC: in Uncovered2()
MODULE_WITH_COVERAGE: /pathto/LLVMFuzzer-DSOTest
UNCOVERED_LINE: in LLVMFuzzerTestOneInput /pathto/DSOTestMain.cpp:21
UNCOVERED_LINE: in LLVMFuzzerTestOneInput /pathto/DSOTestMain.cpp:27
UNCOVERED_FILE: /pathto/DSOTestExtra.cpp
Several things are not perfect here:
* we are using objdump+awk instead of sancov because sancov does not support DSOs yet.
* this breaks in the presence of ASAN_OPTIONS=strip_path_prefix=...
(need to implement another API to get the module name by PC)
llvm-svn: 284554
Summary:
The original heuristic to break critical edge during machine sink is relatively conservertive: when there is only one instruction sinkable to the critical edge, it is likely that the machine sink pass will not break the critical edge. This leads to many speculative instructions executed at runtime. However, with profile info, we could model the splitting benefits: if the critical edge has 50% taken rate, it would always be beneficial to split the critical edge to avoid the speculated runtime instructions. This patch uses profile to guide critical edge splitting in machine sink pass.
The performance impact on speccpu2006 on Intel sandybridge machines:
spec/2006/fp/C++/444.namd 25.3 +0.26%
spec/2006/fp/C++/447.dealII 45.96 -0.10%
spec/2006/fp/C++/450.soplex 41.97 +1.49%
spec/2006/fp/C++/453.povray 36.83 -0.96%
spec/2006/fp/C/433.milc 23.81 +0.32%
spec/2006/fp/C/470.lbm 41.17 +0.34%
spec/2006/fp/C/482.sphinx3 48.13 +0.69%
spec/2006/int/C++/471.omnetpp 22.45 +3.25%
spec/2006/int/C++/473.astar 21.35 -2.06%
spec/2006/int/C++/483.xalancbmk 36.02 -2.39%
spec/2006/int/C/400.perlbench 33.7 -0.17%
spec/2006/int/C/401.bzip2 22.9 +0.52%
spec/2006/int/C/403.gcc 32.42 -0.54%
spec/2006/int/C/429.mcf 39.59 +0.19%
spec/2006/int/C/445.gobmk 26.98 -0.00%
spec/2006/int/C/456.hmmer 24.52 -0.18%
spec/2006/int/C/458.sjeng 28.26 +0.02%
spec/2006/int/C/462.libquantum 55.44 +3.74%
spec/2006/int/C/464.h264ref 46.67 -0.39%
geometric mean +0.20%
Manually checked 473 and 471 to verify the diff is in the noise range.
Reviewers: rengolin, davidxl
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D24818
llvm-svn: 284545
Summary:
This pass shrink-wraps a condition to some library calls where the call
result is not used. For example:
sqrt(val);
is transformed to
if (val < 0)
sqrt(val);
Even if the result of library call is not being used, the compiler cannot
safely delete the call because the function can set errno on error
conditions.
Note in many functions, the error condition solely depends on the incoming
parameter. In this optimization, we can generate the condition can lead to
the errno to shrink-wrap the call. Since the chances of hitting the error
condition is low, the runtime call is effectively eliminated.
These partially dead calls are usually results of C++ abstraction penalty
exposed by inlining. This optimization hits 108 times in 19 C/C++ programs
in SPEC2006.
Reviewers: hfinkel, mehdi_amini, davidxl
Subscribers: modocache, mgorny, mehdi_amini, xur, llvm-commits, beanz
Differential Revision: https://reviews.llvm.org/D24414
llvm-svn: 284542
Summary:
The original heuristic to break critical edge during machine sink is relatively conservertive: when there is only one instruction sinkable to the critical edge, it is likely that the machine sink pass will not break the critical edge. This leads to many speculative instructions executed at runtime. However, with profile info, we could model the splitting benefits: if the critical edge has 50% taken rate, it would always be beneficial to split the critical edge to avoid the speculated runtime instructions. This patch uses profile to guide critical edge splitting in machine sink pass.
The performance impact on speccpu2006 on Intel sandybridge machines:
spec/2006/fp/C++/444.namd 25.3 +0.26%
spec/2006/fp/C++/447.dealII 45.96 -0.10%
spec/2006/fp/C++/450.soplex 41.97 +1.49%
spec/2006/fp/C++/453.povray 36.83 -0.96%
spec/2006/fp/C/433.milc 23.81 +0.32%
spec/2006/fp/C/470.lbm 41.17 +0.34%
spec/2006/fp/C/482.sphinx3 48.13 +0.69%
spec/2006/int/C++/471.omnetpp 22.45 +3.25%
spec/2006/int/C++/473.astar 21.35 -2.06%
spec/2006/int/C++/483.xalancbmk 36.02 -2.39%
spec/2006/int/C/400.perlbench 33.7 -0.17%
spec/2006/int/C/401.bzip2 22.9 +0.52%
spec/2006/int/C/403.gcc 32.42 -0.54%
spec/2006/int/C/429.mcf 39.59 +0.19%
spec/2006/int/C/445.gobmk 26.98 -0.00%
spec/2006/int/C/456.hmmer 24.52 -0.18%
spec/2006/int/C/458.sjeng 28.26 +0.02%
spec/2006/int/C/462.libquantum 55.44 +3.74%
spec/2006/int/C/464.h264ref 46.67 -0.39%
geometric mean +0.20%
Manually checked 473 and 471 to verify the diff is in the noise range.
Reviewers: rengolin, davidxl
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D24818
llvm-svn: 284541
This is just a quick utility handy for getting rough summaries of types
in a given object or dwo file. I've been using it to investigate the
amount of type info redundancy across a project build, for example.
llvm-svn: 284537
The custom lowering is pretty straightforward: basically, just AND
together the two halves of a <4 x i32> compare.
Differential Revision: https://reviews.llvm.org/D25713
llvm-svn: 284536
Summary:
The original implementation is in r261607, which was reverted in r269726 to accomendate the ProfileSummaryInfo analysis pass. The new implementation:
1. add a new metadata for function section prefix
2. query against ProfileSummaryInfo in CGP to set the correct section prefix for each function
3. output the section prefix set by CGP
Reviewers: davidxl, eraman
Subscribers: vsk, llvm-commits
Differential Revision: https://reviews.llvm.org/D24989
llvm-svn: 284533
Transform `a == 0.0 ? 0.0 : x` to `a == 0.0 ? a : x` and `a != 0.0 ? x : 0.0`
to `a != 0.0 ? x : a` to avoid materializing 0.0 for FCSEL, since it does not
have to be materialized beforehand for FCMP, as it has a form that has 0.0
as an implicit operand.
Differential Revision: https://reviews.llvm.org/D24808
llvm-svn: 284531
load command that use the MachO:: linkedit_data_command
type but is not used in llvm libObject code but used in llvm tool code.
This is for the LC_CODE_SIGNATURE load command.
llvm-svn: 284529
AArch64 actually supports many 8-bit operations under the definition used by
GlobalISel: the designated information-carrying bits of a GPR32 get the right
value if you just use the normal 32-bit instruction.
llvm-svn: 284526
This doesn't cover all combines in DAGCombiner::visitSRL/visitSHL yet, but identifies several cases where we fail to combine vectors (or non-splatted) vectors
llvm-svn: 284518
load commands that use the MachO::routines_command and
and MachO::routines_command_64 types but are not used in llvm
libObject code but used in llvm tool code.
This includes the LC_ROUTINES and LC_ROUTINES_64
load commands.
llvm-svn: 284504
This doesn't cover all combines in DAGCombiner::visitSRA yet, but identifies several cases where we fail to combine vectors (or non-splatted) vectors
llvm-svn: 284498
Summary:
The RFC proposal sent to increase the minimum required GCC version
to 4.8 received a lot of support. See the following thread:
http://lists.llvm.org/pipermail/llvm-dev/2016-October/105955.html,
This patch implements that by updating the docs. I believe the
references to libstdc++ 4.7 issues can be removed as well, please
let me know if that is not the case or if they should be updated
a different way.
Reviewers: rengolin
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D25683
llvm-svn: 284497
This is a follow-up to D24816 - where we changed reciprocal estimates to be function attributes
rather than TargetOptions.
This patch is intended to be a structural, but not functional change. By moving all of the
TargetRecip functionality into TargetLowering, we can remove all of the reciprocal estimate
state, shield the callers from the string format implementation, and simplify/localize the
logic needed for a target to enable this.
If a function has a "reciprocal-estimates" attribute, those settings may override the target's
default reciprocal preferences for whatever operation and data type we're trying to optimize.
If there's no attribute string or specific setting for the op/type pair, just use the target
default settings.
As noted earlier, a better solution would be to move the reciprocal estimate settings to IR
instructions and SDNodes rather than function attributes, but that's a multi-step job that
requires infrastructure improvements. I intend to work on that, but it's not clear how long
it will take to get all the pieces in place.
Differential Revision: https://reviews.llvm.org/D25440
llvm-svn: 284495
debugger.
When bugpoint hacks at a testcase it may at one point create illegal
debug info metadata that won't even pass the Verifier. A bugpoint
*driver* built with assertions should not assert on it, but reject the
malformed intermediate step and continue to do its job.
llvm-svn: 284490
This patch teaches ias for mips to handle expressions such as
(8*4)+(8*31)($sp). Such expression typically occur from the expansion
of multiple macro definitions.
This partially resolves PR/30383.
Thanks to Sean Bruno for reporting the issue!
Reviewers: zoran.jovanovic, vkalintiris
Differential Revision: https://reviews.llvm.org/D24667
llvm-svn: 284485
The 'sync' instruction for MIPS was defined in MIPS-II as taking no operands.
MIPS32 extended the define of 'sync' as taking an optional unsigned 5 bit
immediate.
This patch correct the definition of sync so that it is accepted with an
operand of 0 or no operand for MIPS-II to MIPS-V, and a 5 bit unsigned
immediate for MIPS32 and later revisions.
Additionally a clear error is given when the MIPS32 version of sync is
used when targeting pre MIPS32.
This partially resolves PR/30714.
Thanks to Daniel Sanders for reporting this issue!
Reveiwers: vkalintiris
Differential Revision: https://reviews.llvm.org/D25672
llvm-svn: 284483
In futher patches we shall have alignment field added to DIVariable family
and switching from uint64_t to uint32_t will save 4 bytes per variable.
Differential Revision: https://reviews.llvm.org/D25620
llvm-svn: 284482
ld and sd when assembled for the O32 ABI expand to a pair of 32 bit word loads
or stores using the specified source or destination register and the next
register.
This patch does not add support for the cases where the offset is greater than
a 16 bit signed immediate as that would lead to a wrong/misleading error
message as the assembler would report "instruction requires a CPU feature
not currently enabled" for ld & sd for MIPS64 when their offset is not a signed
16 bit number.
This fixes PR/29159.
Thanks to Sean Bruno for reporting this issue!
Reviewers: vkalintiris, seanbruno, zoran.jovanovic
Differential Review: https://reviews.llvm.org/D24556
llvm-svn: 284481
Committing on behalf of Coby Tayree: After check-all and LGTM
Desc:
AVX512 allows dest operand to be followed by an op-mask register specifier ('{k<num>}', which in turn may be followed by a merging/zeroing specifier ('{z}')
Currently, the following forms are allowed:
{k<num>}
{k<num>}{z}
This patch allows the following forms:
{z}{k<num>}
and ignores the next form:
{z}
Justification would be quite simple - GCC
Differential Revision: http://reviews.llvm.org/D25013
llvm-svn: 284479
Summary:
Instead of instantiating the MipsFastISel class and checking if the
target is supported in the overriden methods, we should perform that
check before creating the class. This allows us to enable FastISel *only*
for targets that truly support it, ie. MIPS32 to MIPS32R5.
Reviewers: sdardis
Subscribers: ehostunreach, llvm-commits
Differential Revision: https://reviews.llvm.org/D24824
llvm-svn: 284475
In loops that look something like
i = n;
do {
...
} while(i++ < n+k);
where k is a constant, the maximum backedge count is k (in fact the backedge
count will be either 0 or k, depending on whether n+k wraps). More generally
for LHS < RHS if RHS-(LHS of first comparison) is a constant then the loop will
iterate either 0 or that constant number of times.
This allows for more loop unrolling with the recent upper bound loop unrolling
changes, and I'm working on a patch that will let loop unrolling additionally
make use of the loop being executed either 0 or k times (we need to retain the
loop comparison only on the first unrolled iteration).
Differential Revision: https://reviews.llvm.org/D25607
llvm-svn: 284465
This reverts commits 284436 and 284437 because they still break AArch64 bots:
Value of: format_number(-10, IntegerStyle::Integer, 1)
Actual: "-0"
Expected: "-10"
llvm-svn: 284462
This patch assigns cost of the scaling used in addressing for Cortex-R52.
On Cortex-R52 a negated register offset takes longer than a non-negated
register offset, in a register-offset addressing mode.
Differential Revision: http://reviews.llvm.org/D25670
Reviewer: jmolloy
llvm-svn: 284460
As discussed on PR28461 we currently miss the chance to lower "fptosi <2 x double> %arg to <2 x i32>" to cvttpd2dq due to its use of illegal types.
This patch adds support for fptosi to 2i32 from both 2f64 and 2f32.
It also recognises that cvttpd2dq zeroes the upper 64-bits of the xmm result (similar to D23797) - we still don't do this for the cvttpd2dq/cvttps2dq intrinsics - this can be done in a future patch.
Differential Revision: https://reviews.llvm.org/D23808
llvm-svn: 284459
This patch adds simplified support for tail calls on ARM with XRay instrumentation.
Known issue: compiled with generic flags: `-O3 -g -fxray-instrument -Wall
-std=c++14 -ffunction-sections -fdata-sections` (this list doesn't include my
specific flags like --target=armv7-linux-gnueabihf etc.), the following program
#include <cstdio>
#include <cassert>
#include <xray/xray_interface.h>
[[clang::xray_always_instrument]] void __attribute__ ((noinline)) fC() {
std::printf("In fC()\n");
}
[[clang::xray_always_instrument]] void __attribute__ ((noinline)) fB() {
std::printf("In fB()\n");
fC();
}
[[clang::xray_always_instrument]] void __attribute__ ((noinline)) fA() {
std::printf("In fA()\n");
fB();
}
// Avoid infinite recursion in case the logging function is instrumented (so calls logging
// function again).
[[clang::xray_never_instrument]] void simplyPrint(int32_t functionId, XRayEntryType xret)
{
printf("XRay: functionId=%d type=%d.\n", int(functionId), int(xret));
}
int main(int argc, char* argv[]) {
__xray_set_handler(simplyPrint);
printf("Patching...\n");
__xray_patch();
fA();
printf("Unpatching...\n");
__xray_unpatch();
fA();
return 0;
}
gives the following output:
Patching...
XRay: functionId=3 type=0.
In fA()
XRay: functionId=3 type=1.
XRay: functionId=2 type=0.
In fB()
XRay: functionId=2 type=1.
XRay: functionId=1 type=0.
XRay: functionId=1 type=1.
In fC()
Unpatching...
In fA()
In fB()
In fC()
So for function fC() the exit sled seems to be called too much before function
exit: before printing In fC().
Debugging shows that the above happens because printf from fC is also called as
a tail call. So first the exit sled of fC is executed, and only then printf is
jumped into. So it seems we can't do anything about this with the current
approach (i.e. within the simplification described in
https://reviews.llvm.org/D23988 ).
Differential Revision: https://reviews.llvm.org/D25030
llvm-svn: 284456
This is harder to do for vpermilpd as shuffle combining turns the constant vector into an immediate since all vpermilpd's inputs with constant vector can also be encoded with the immediate form.
llvm-svn: 284455
When Error was threaded through these APIs back in r265606 the
"return" was missed here, which triggers a warning if/when I add
LLVM_NODISCARD to the Error type.
llvm-svn: 284454
-debug-only=subtarget-emitter prints a lot of machine model diagnostics.
This prunes the output so that the "No machine model for XXX on processor YYY"
only appears when there is definitely no machine model for that opcode.
Previously it was printing that error even if the opcode was covered by
a more general scheduling class.
<rdar://problem/15919845> [TableGen][CodeGenSchedule] Debug output does not help spotting the missing scheduling classes
llvm-svn: 284452
Summary: This is especially important for 32-bit targets with 64-bit shuffle elements.This is similar to how PSHUFB and VPERMIL handle the same problem.
Reviewers: RKSimon
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D25666
llvm-svn: 284451
Summary:
There are differences in codegen between Linux and Windows due to:
1. Using std::sort which uses quicksort which is a non-stable sort.
2. Iterating over Set data structure where the iteration order is
non deterministic.
Reviewers: arsenm, grosbach, junbuml, zinob, MatzeB
Subscribers: MatzeB, wdng
Differential Revision: https://reviews.llvm.org/D25695
llvm-svn: 284441
This resubmits commits 284425 and r284428, which were reverted
in r284429 due to some infinite recursion caused by an incorrect
selection of function overloads. Reproduced the failure on Linux
using GCC 4.8.4, and confirmed that with the new patch the tests
path on GCC as well as MSVC. So hopefully this fixes everything.
llvm-svn: 284436
Summary:
Reclaiming the name 'CachedHashString' will let us add a type with that
name that owns its value.
Reviewers: timshen
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D25644
llvm-svn: 284434
load commands that use the MachO::sub_framework_command,
MachO::sub_umbrella_command, MachO::sub_library_command
and MachO::sub_client_command types but are not used in llvm
libObject code but used in llvm tool code.
This includes the LC_SUB_FRAMEWORK, LC_SUB_UMBRELLA,
LC_SUB_LIBRARY and LC_SUB_CLIENT load commands.
llvm-svn: 284431
raw_ostream has not afforded a lot of flexibility in terms of
how to format numbers when outputting. Wrap this all up into
a set of low level helper functions that can be used to output
numbers with arbitrary precision, alignment, format, etc and
then update raw_ostream to use these functions.
This will be useful for upcoming improvements to llvm's string
formatting libraries, but are still useful independently.
Differential Revision: https://reviews.llvm.org/D25497
llvm-svn: 284425
As noted in:
https://reviews.llvm.org/D25685
This is the next-to-smallest step needed to enable the ComputeNumSignBits fix in that patch.
In a minor attempt to keep some structure, we're pulling the FP helper over along with its
integer sibling, but clearly we can and should do more refactoring of the similar helper
functions in DAGCombiner and SelectionDAG to simplify and not duplicate functionality.
llvm-svn: 284421
If -coverage is passed, but -g is not, clang populates the PassManager
pipeline with StripSymbols(debugOnly = true).
The stripSymbol pass therefore scans the list of named metadata,
drops !llvm.dbg.cu, but leaves !llvm.gcov and !0 (the compileUnit MD)
around. The verifier runs, and finds out that there's a CU not listed
in !llvm.dbg.cu (as it was previously dropped) -> crash.
When we strip debug info, so, check if there's coverage data,
and strip it as well, in order to avoid pending metadata left around.
Differential Revision: https://reviews.llvm.org/D25689
llvm-svn: 284418
Summary: Debug info should *not* affect code generation. This patch properly handles debug info to make sure the generated code are the same with or without debug info.
Reviewers: davidxl, mzolotukhin, jmolloy
Subscribers: aprantl, llvm-commits
Differential Revision: https://reviews.llvm.org/D25286
llvm-svn: 284415