Summary:
Adds the following intrinsics:
- llvm.aarch64.sve.ldnt1
- llvm.aarch64.sve.stnt1
This patch creates masked loads and stores with the
MONonTemporal flag set when used with the intrinsics above.
Reviewers: sdesmalen, paulwalker-arm, dancgr, mgudim, efriedma, rengolin
Reviewed By: efriedma
Subscribers: tschuett, kristof.beyls, hiraditya, rkruppe, psnobl, cfe-commits, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D71000
I think this is no longer needed. The system should take care
of legalizing any new nodes that are added. I think this might
have been needed prior to r371709 or r307053.
Summary: This is a follow up of D69281, it enables the X86 backend support for the FP comparision.
Reviewers: uweigand, kpn, craig.topper, RKSimon, cameron.mcinally, andrew.w.kaylor
Subscribers: hiraditya, llvm-commits, annita.zhang, LuoYuanke, LiuChen3
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D70582
Summary:
This fixes PR44135.
The special case when we promote a bitcast from a vector to an int
needs special handling when we are on a big-endian target.
Prior to this fix, for the added vec_to_int we see the following in the
SelectionDAG printouts
Type-legalized selection DAG: %bb.1 'foo:bb.1'
SelectionDAG has 9 nodes:
t0: ch = EntryToken
t2: v8i16,ch = CopyFromReg t0, Register:v8i16 %0
t17: v4i32 = bitcast t2
t23: i32 = extract_vector_elt t17, Constant:i32<3>
t8: ch,glue = CopyToReg t0, Register:i32 $r0, t23
t9: ch = ARMISD::RET_FLAG t8, Register:i32 $r0, t8:1
and I think here the extract_vector_elt is wrong and extracts the value
from the wrong index.
The program program should return the 32 bits made up of the elements at
index 4 and 5 in the vec6 array, but with
t23: i32 = extract_vector_elt t17, Constant:i32<3>
as far as I can tell, we will extract values that originally didn't even
exist in the vec6 vectore.
If we would instead extract the element at index 2 we would get the wanted
values.
With this fix we insert a right shift after the bitcast in
DAGTypeLegalizer::PromoteIntRes_BITCAST which then gives us
Type-legalized selection DAG: %bb.1 'vec_to_int:bb.1'
SelectionDAG has 9 nodes:
t0: ch = EntryToken
t2: v8i16,ch = CopyFromReg t0, Register:v8i16 %0
t23: v4i32 = bitcast t2
t27: i32 = extract_vector_elt t23, Constant:i32<2>
t8: ch,glue = CopyToReg t0, Register:i32 $r0, t27
t9: ch = ARMISD::RET_FLAG t8, Register:i32 $r0, t8:1
So now we get
t27: i32 = extract_vector_elt t23, Constant:i32<2>
which is what we want.
Similarly, the new int_to_vec testcase exposes a bug where we cast the other
direction. Then we instead need to add a left shift before the bitcast on
big-endian targets for the bits in the input integer to end up at the exptected
place in the vector.
Reviewers: bogner, spatel, craig.topper, t.p.northover, dmgreen, efriedma, SjoerdMeijer, samparker
Reviewed By: efriedma
Subscribers: eli.friedman, bjope, kristof.beyls, hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D70942
Summary:
Split off of D67120.
Add the profile guided size optimization instrumentation / queries in the code
gen or target passes. This doesn't enable the size optimizations in those passes
yet as they are currently disabled in shouldOptimizeForSize (for non-IR pass
queries).
A second try after reverted D71072.
Reviewers: davidxl
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D71149
This adds support for constrained floating-point comparison intrinsics.
Specifically, we add:
declare <ty2>
@llvm.experimental.constrained.fcmp(<type> <op1>, <type> <op2>,
metadata <condition code>,
metadata <exception behavior>)
declare <ty2>
@llvm.experimental.constrained.fcmps(<type> <op1>, <type> <op2>,
metadata <condition code>,
metadata <exception behavior>)
The first variant implements an IEEE "quiet" comparison (i.e. we only
get an invalid FP exception if either argument is a SNaN), while the
second variant implements an IEEE "signaling" comparison (i.e. we get
an invalid FP exception if either argument is any NaN).
The condition code is implemented as a metadata string. The same set
of predicates as for the fcmp instruction is supported (except for the
"true" and "false" predicates).
These new intrinsics are mapped by SelectionDAG codegen onto two new
ISD opcodes, ISD::STRICT_FSETCC and ISD::STRICT_FSETCCS, again
representing quiet vs. signaling comparison operations. Otherwise
those nodes look like SETCC nodes, with an additional chain argument
and result as usual for strict FP nodes. The patch includes support
for the common legalization operations for those nodes.
The patch also includes full SystemZ back-end support for the new
ISD nodes, mapping them to all available SystemZ instruction to
fully implement strict semantics (scalar and vector).
Differential Revision: https://reviews.llvm.org/D69281
D53794 introduced code to perform the FP_TO_UINT expansion via FP_TO_SINT in a way that would never expose floating-point exceptions in the intermediate steps. Unfortunately, I just noticed there is still a way this can happen. As discussed in D53794, the compiler now generates this sequence:
// Sel = Src < 0x8000000000000000
// Val = select Sel, Src, Src - 0x8000000000000000
// Ofs = select Sel, 0, 0x8000000000000000
// Result = fp_to_sint(Val) ^ Ofs
The problem is with the Src - 0x8000000000000000 expression. As I mentioned in the original review, that expression can never overflow or underflow if the original value is in range for FP_TO_UINT. But I missed that we can get an Inexact exception in the case where Src is a very small positive value. (In this case the result of the sub is ignored, but that doesn't help.)
Instead, I'd suggest to use the following sequence:
// Sel = Src < 0x8000000000000000
// FltOfs = select Sel, 0, 0x8000000000000000
// IntOfs = select Sel, 0, 0x8000000000000000
// Result = fp_to_sint(Val - FltOfs) ^ IntOfs
In the case where the value is already in range of FP_TO_SINT, we now simply compute Val - 0, which now definitely cannot trap (unless Val is a NaN in which case we'd want to trap anyway).
In the case where the value is not in range of FP_TO_SINT, but still in range of FP_TO_UINT, the sub can never be inexact, as Val is between 2^(n-1) and (2^n)-1, i.e. always has the 2^(n-1) bit set, and the sub is always simply clearing that bit.
There is a slight complication in the case where Val is a constant, so we know at compile time whether Sel is true or false. In that scenario, the old code would automatically optimize the sub away, while this no longer happens with the new code. Instead, I've added extra code to check for this case and then just fall back to FP_TO_SINT directly. (This seems to catch even slightly more cases.)
Original version of the patch by Ulrich Weigand. X86 changes added by Craig Topper
Differential Revision: https://reviews.llvm.org/D67105
Summary:
Split off of D67120.
Add the profile guided size optimization instrumentation / queries in the code
gen or target passes. This doesn't enable the size optimizations in those passes
yet as they are currently disabled in shouldOptimizeForSize (for non-IR pass
queries).
Reviewers: davidxl
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D71072
This patch implements the following changes:
1) SelectionDAGBuilder::visitConstrainedFPIntrinsic currently treats
each constrained intrinsic like a global barrier (e.g. a function call)
and fully serializes all pending chains. This is actually not required;
it is allowed for constrained intrinsics to be reordered w.r.t one
another or (nonvolatile) memory accesses. The MI-level scheduler already
allows for that flexibility, so it makes sense to allow it at the DAG
level as well.
This patch therefore changes the way chains for constrained intrisincs
are created, and handles them basically like load operations are handled.
This has the effect that constrained intrinsics are no longer serialized
against one another or (nonvolatile) loads. They are still serialized
against stores, but that seems hard to change with the current DAG chain
setup, and it also doesn't seem to be a big problem preventing DAG
2) The OPC_CheckFoldableChainNode check requires that each of the
intermediate nodes in a multi-node pattern match only has a single use.
This check tends to fail if those intermediate nodes are strict operations
as those have a chain output that typically indeed has another use.
However, we don't really need to consider chains here at all, since they
will all be rewritten anyway by UpdateChains later. Other parts of the
matcher therefore already ignore chains, but this hasOneUse check doesn't.
This patch replaces hasOneUse by a custom test that verifies there is no
more than one use of any non-chain output value.
In theory, this change could affect code unrelated to strict FP nodes,
but at least on SystemZ I could not find any single instance of that
happening
3) The SystemZ back-end currently does not allow matching multiply-and-
extend operations (32x32 -> 64bit or 64x64 -> 128bit FP multiply) for
strict FP operations. This was not possible in the past due to the
problems described under 1) and 2) above.
With those issues fixed, it is now possible to fully support those
instructions in strict mode as well, and this patch does so.
Differential Revision: https://reviews.llvm.org/D70913
Summary:
This follows a previous patch that changes the X86 datalayout to represent
mixed size pointers (32-bit sext, 32-bit zext, and 64-bit) with address spaces
(https://reviews.llvm.org/D64931)
This patch implements the address space cast lowering to the corresponding
sign extension, zero extension, or truncate instructions.
Related to https://bugs.llvm.org/show_bug.cgi?id=42359
Reviewers: rnk, craig.topper, RKSimon
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D69639
InstCombine may synthesize FMINNUM/FMAXNUM nodes from fcmp+select
sequences (where the fcmp is marked nnan). Currently, if the
target does not otherwise handle these nodes, they'll get expanded
to libcalls to fmin/fmax. However, these functions may reside in
libm, which may introduce a library dependency that was not originally
present in the source code, potentially resulting in link failures.
To fix this problem, add code to TargetLowering::expandFMINNUM_FMAXNUM
to expand FMINNUM/FMAXNUM to a compare+select sequence instead of the
libcall. This is done only if the node is marked as "nnan"; in this case,
the expansion to compare+select is always correct. This also suffices to
catch all cases where FMINNUM/FMAXNUM was synthesized as above.
Differential Revision: https://reviews.llvm.org/D70965
This is an alternative to D64662 that shares more code between
strict and non-strict nodes. It's modeled after the implementation
that I did for softening.
Differential Revision: https://reviews.llvm.org/D70867
As it can be seen from accompanying cleanup, it is not unheard of
to write `~Known.Zero` meaning "what maximal value can this KnownBits
produce". But i think `~Known.Zero` isn't *that* self-explanatory,
as compared to a method with a name.
Note that not all `~Known.Zero` places were cleaned up,
only those where this arguably improves things.
These nodes have a FIXME that they only get here because a Custom
handler returned SDValue() instead of the original Op.
Even though we aren't expanding them, we should return true here to
prevent ConvertNodeToLibcall from also trying to process them until
the FIXME has been addressed.
I'm hoping to add checking to ConvertNodeToLibcall to make sure
we don't give it nodes it doesn't have support for.
The code that processes the Results vector also calls ReplaceNode
and makes ExpandNode return true.
If we don't add it to the Results node, we end up returning false
from ExpandNode. This causes ConvertNodeToLibcall to be called next.
But ConvertNodeToLibcall doesn't do anything for shifts so they
just pass through unmodified. Except for printing a debug message.
Ultimately, I'd like to add more checks to ExpandNode and
ConvertNodeToLibcall to make sure we don't have nodes marked as
Expand that don't have any Expand or libcall handling.
These will be needed for ARM fp-instrinsics.ll which is currently
XFAILed.
One of the getOperand calls in SoftenFloatRes_FP_EXTEND was not
taking strict FP into account. It only affected the call
to setTypeListBeforeSoften which only has an effect on some targets.
We would previously fallback if the type wasn't f32/f64/f128. But
I don't think any of the other floating point types ever go through
the softening code anyway. So this code is dead.
Summary: This combine showed up as needed when exploring the regression when processing the DAG in topological order.
Reviewers: craig.topper, efriedma, RKSimon, lebedev.ri
Subscribers: llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D68195
This is based on what's required for softening fp128 operations on 32-bit X86 assuming f32/f64/f80 are legal. So there could be some things missing.
Differential Revision: https://reviews.llvm.org/D70654
Summary: This will be enhanced in a follow up to add strict fp support
Reviewers: efriedma
Reviewed By: efriedma
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D70751
This has been factored out of D70654 which will add strict FP support to these functions. By making the helpers we avoid repeating even more code.
Differential Revision: https://reviews.llvm.org/D70736
MVE has a basic symmetry between it's normal loads/store operations and
the masked variants. This means that masked loads and stores can use
pre-inc and post-inc addressing modes, just like the standard loads and
stores already do.
To enable that, this patch adds all the relevant infrastructure for
treating masked loads/stores addressing modes in the same way as normal
loads/stores.
This involves:
- Adding an AddressingMode to MaskedLoadStoreSDNode, along with an extra
Offset operand that is added after the PtrBase.
- Extending the IndexedModeActions from 8bits to 16bits to store the
legality of masked operations as well as normal ones. This array is
fairly small, so doubling the size still won't make it very large.
Offset masked loads can then be controlled with
setIndexedMaskedLoadAction, similar to standard loads.
- The same methods that combine to indexed loads, such as
CombineToPostIndexedLoadStore, are adjusted to handle masked loads in
the same way.
- The ARM backend is then adjusted to make use of these indexed masked
loads/stores.
- The X86 backend is adjusted to hopefully be no functional changes.
Differential Revision: https://reviews.llvm.org/D70176
There seems to have been a misunderstanding of what ISD::FTRUNC
represents. ISD::FTRUNC is equivalent to llvm.trunc which takes
a floating point value, truncates it without changing the size
of the value and returns it.
Despite its similar name, its different than the fptrunc instruction
in IR which changes a floating point value to a smaller floating
point value. fptrunc is represented by ISD::FP_ROUND in SelectionDAG.
Since the ISD::FP_TO_FP16 node takes a floating point value and
converts it to f16 its more similar to ISD::FP_ROUND. In fact there
is identical code to what is being removed here in SoftenFloatRes_FP_ROUND.
I assume this bug was never encountered because it would require
f16 to be legalized by softening rather than the default of
promoting.
We already have this simplification at node-creation-time, but
the test from:
https://bugs.llvm.org/show_bug.cgi?id=44139
...shows that we can combine our way to an assert/crash too.
I need to be able to drop an operand for STRICT_FP_ROUND handling on X86. Merging these functions gives me the ArrayRef interface that passes the return type, operands, and debugloc instead of the Node.
Differential Revision: https://reviews.llvm.org/D70503
Summary:
This is a preparatory cleanup before i add more
of this fold to deal with comparisons with non-zero.
In essence, the current lowering is:
```
Name: (X % C1) == 0 -> X * C3 <= C4
Pre: (C1 u>> countTrailingZeros(C1)) * C3 == 1
%zz = and i8 C3, 0 ; trick alive into making C3 avaliable in precondition
%o0 = urem i8 %x, C1
%r = icmp eq i8 %o0, 0
=>
%zz = and i8 C3, 0 ; and silence it from complaining about said reg
%C4 = -1 /u C1
%n0 = mul i8 %x, C3
%n1 = lshr i8 %n0, countTrailingZeros(C1) ; rotate right
%n2 = shl i8 %n0, ((8-countTrailingZeros(C1)) %u 8) ; rotate right
%n3 = or i8 %n1, %n2 ; rotate right
%r = icmp ule i8 %n3, %C4
```
https://rise4fun.com/Alive/oqd
It kinda just works, really no weird edge-cases.
But it isn't all that great for when comparing with non-zero.
In particular, given `(X % C1) == C2`, there will be problems
in the always-false tautological case where `C2 u>= C1`:
https://rise4fun.com/Alive/pH3
That case is tautological, always-false:
```
Name: (X % Y) u>= Y
%o0 = urem i8 %x, %y
%r = icmp uge i8 %o0, %y
=>
%r = false
```
https://rise4fun.com/Alive/ofu
While we can't/shouldn't get such tautological case normally,
we do deal with non-splat vectors, so unless we want to give up
in this case, we need to fixup/short-circuit such lanes.
There are two lowering variants:
1. We can blend between whatever computed result and the correct tautological result
```
Name: (X % C1) == C2 -> X * C3 <= C4 || false
Pre: (C2 == 0 || C1 u<= C2) && (C1 u>> countTrailingZeros(C1)) * C3 == 1
%zz = and i8 C3, 0 ; trick alive into making C3 avaliable in precondition
%o0 = urem i8 %x, C1
%r = icmp eq i8 %o0, C2
=>
%zz = and i8 C3, 0 ; and silence it from complaining about said reg
%C4 = -1 /u C1
%n0 = mul i8 %x, C3
%n1 = lshr i8 %n0, countTrailingZeros(C1) ; rotate right
%n2 = shl i8 %n0, ((8-countTrailingZeros(C1)) %u 8) ; rotate right
%n3 = or i8 %n1, %n2 ; rotate right
%is_tautologically_false = icmp ule i8 C1, C2
%res = icmp ule i8 %n3, %C4
%r = select i1 %is_tautologically_false, i1 0, i1 %res
```
https://rise4fun.com/Alive/PjT5https://rise4fun.com/Alive/1KV
2. We can invert the comparison result
```
Name: (X % C1) == C2 -> X * C3 <= C4 || false
Pre: (C2 == 0 || C1 u<= C2) && (C1 u>> countTrailingZeros(C1)) * C3 == 1
%zz = and i8 C3, 0 ; trick alive into making C3 avaliable in precondition
%o0 = urem i8 %x, C1
%r = icmp eq i8 %o0, C2
=>
%zz = and i8 C3, 0 ; and silence it from complaining about said reg
%C4 = -1 /u C1
%n0 = mul i8 %x, C3
%n1 = lshr i8 %n0, countTrailingZeros(C1) ; rotate right
%n2 = shl i8 %n0, ((8-countTrailingZeros(C1)) %u 8) ; rotate right
%n3 = or i8 %n1, %n2 ; rotate right
%is_tautologically_false = icmp ule i8 C1, C2
%C4_fixed = select i1 %is_tautologically_false, i8 -1, i8 %C4
%res = icmp ule i8 %n3, %C4_fixed
%r = xor i1 %res, %is_tautologically_false
```
https://rise4fun.com/Alive/2xChttps://rise4fun.com/Alive/jpb5
3. We can expand into `and`/`or`:
https://rise4fun.com/Alive/WGnhttps://rise4fun.com/Alive/lcb5
Blend-one is likely better since we avoid having to load the
replacement from constant pool. `xor` is second best since
it's still pretty general. I'm not adding `and`/`or` variants.
Reviewers: RKSimon, craig.topper, spatel
Reviewed By: RKSimon
Subscribers: nick, hiraditya, xbolva00, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D70051
float node
This patch add an option 'disable-strictnode-mutation' to prevent strict
node mutating to an normal node.
So we can make sure that the patch which sets strict-node as legal works
correctly.
Patch by Chen Liu(LiuChen3)
Differential Revision: https://reviews.llvm.org/D70226
Summary:
Most libraries are defined in the lib/ directory but there are also a
few libraries defined in tools/ e.g. libLLVM, libLTO. I'm defining
"Component Libraries" as libraries defined in lib/ that may be included in
libLLVM.so. Explicitly marking the libraries in lib/ as component
libraries allows us to remove some fragile checks that attempt to
differentiate between lib/ libraries and tools/ libraires:
1. In tools/llvm-shlib, because
llvm_map_components_to_libnames(LIB_NAMES "all") returned a list of
all libraries defined in the whole project, there was custom code
needed to filter out libraries defined in tools/, none of which should
be included in libLLVM.so. This code assumed that any library
defined as static was from lib/ and everything else should be
excluded.
With this change, llvm_map_components_to_libnames(LIB_NAMES, "all")
only returns libraries that have been added to the LLVM_COMPONENT_LIBS
global cmake property, so this custom filtering logic can be removed.
Doing this also fixes the build with BUILD_SHARED_LIBS=ON
and LLVM_BUILD_LLVM_DYLIB=ON.
2. There was some code in llvm_add_library that assumed that
libraries defined in lib/ would not have LLVM_LINK_COMPONENTS or
ARG_LINK_COMPONENTS set. This is only true because libraries
defined lib lib/ use LLVMBuild.txt and don't set these values.
This code has been fixed now to check if the library has been
explicitly marked as a component library, which should now make it
easier to remove LLVMBuild at some point in the future.
I have tested this patch on Windows, MacOS and Linux with release builds
and the following combinations of CMake options:
- "" (No options)
- -DLLVM_BUILD_LLVM_DYLIB=ON
- -DLLVM_LINK_LLVM_DYLIB=ON
- -DBUILD_SHARED_LIBS=ON
- -DBUILD_SHARED_LIBS=ON -DLLVM_BUILD_LLVM_DYLIB=ON
- -DBUILD_SHARED_LIBS=ON -DLLVM_LINK_LLVM_DYLIB=ON
Reviewers: beanz, smeenai, compnerd, phosek
Reviewed By: beanz
Subscribers: wuzish, jholewinski, arsenm, dschuff, jyknight, dylanmckay, sdardis, nemanjai, jvesely, nhaehnle, mgorny, mehdi_amini, sbc100, jgravelle-google, hiraditya, aheejin, fedor.sergeev, asb, rbar, johnrusso, simoncook, apazos, sabuasal, niosHD, jrtc27, MaskRay, zzheng, edward-jones, atanasyan, steven_wu, rogfer01, MartinMosbeck, brucehoult, the_o, dexonsmith, PkmX, jocewei, jsji, dang, Jim, lenary, s.egerton, pzheng, sameer.abuasal, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D70179
This allows operations that are marked Custom, but have some type
combinations that are legal to get past this code.
Add custom mutation code to X86's Select function for the nodes
that don't have isel patterns yet.
Summary:
Convert (uaddo (uaddo x, y), carryIn) into addcarry x, y, carryIn if-and-only-if the carry flags of the first two uaddo are merged via OR or XOR.
Work remaining: match ADD, etc.
Reviewers: craig.topper, RKSimon, spatel, niravd, jonpa, uweigand, deadalnix, nikic, lebedev.ri, dmgreen, chfast
Reviewed By: lebedev.ri
Subscribers: chfast, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D70079
This is recommit of commit e6584b2b7b, which was reverted in
30e7ee3c4b together with af57dbf12e.
Original message is below.
Enumerations that describe rounding mode and exception behavior were
defined inside ConstrainedFPIntrinsic. It makes sense to use the same
definitions to represent the same properties in other cases, not only
in constrained intrinsics. It was however inconvenient as required to
include constrained intrinsics definitions even if they were not needed.
Also using long scope prefix reduced readability.
This change moves these definitioins to the namespace llvm::fp.
No functional changes.
Differential Revision: https://reviews.llvm.org/D69552