Without it, there is no reason for a compiler that supports it to
emit the dead static globals that the rewriter labels attribute(used).
llvm-svn: 101149
actually turned it on. If a diag is produced by a warning which
is an extension but defaults to on, and has no warning group, don't
print any option info.
llvm-svn: 101071
Remove -faccess-control from -cc1; add -fno-access-control.
Make the driver pass -fno-access-control by default.
Update a bunch of tests to be correct under access control.
llvm-svn: 100880
precompiled headers and/or when reading the contents of the file into
memory. These checks seem to be causing spurious regression-test
failures on Windows.
llvm-svn: 100866
of errors and warnings. This allows us to emit something like this:
2 warnings and 1 error generated.
instead of:
3 diagnostics generated.
This also stops counting 'notes' because they are just follow-on information
about the previous diag, not a diagnostic in themselves.
llvm-svn: 100675
presence of precompiled headers by forcibly loading all of the
methods we know about from the PCH file before constructing our
code-completion list.
llvm-svn: 100535
ASTUnit. Previously, we would end up with use-after-free errors
because the Diagnostic object would be creating in one place (say,
CIndex) and its ownership would not be transferred into the
ASTUnit. Fixes <rdar://problem/7818608>.
llvm-svn: 100464
- Rename "Diagnostics" and related to "StoredDiagnostics", to better
capture what we're actually storing.
- Move SourceManager and FileManager to the heap.
llvm-svn: 100441
This introduces FunctionType::ExtInfo to hold the calling convention and the
noreturn attribute. The next patch will extend it to include the regparm
attribute and fix the bug.
llvm-svn: 99920
ranges as part of the ASTContext. This code is not and was never used,
but contributes ~250k to the size of the Cocoa.h precompiled
header.
llvm-svn: 99007
record (which includes all macro instantiations and definitions). As
with all lay deserialization, this introduces a new external source
(here, an external preprocessing record source) that loads all of the
preprocessed entities prior to iterating over the entities.
The preprocessing record is an optional part of the precompiled header
that is disabled by default (enabled with
-detailed-preprocessing-record). When the preprocessor given to the
PCH writer has a preprocessing record, that record is written into the
PCH file. When the PCH reader is given a PCH file that contains a
preprocessing record, it will be lazily loaded (which, effectively,
implicitly adds -detailed-preprocessing-record). This is the first
case where we have sections of the precompiled header that are
added/removed based on a compilation flag, which is
unfortunate. However, this data consumes ~550k in the PCH file for
Cocoa.h (out of ~9.9MB), and there is a non-trivial cost to gathering
this detailed preprocessing information, so it's too expensive to turn
on by default. In the future, we should investigate a better encoding
of this information.
llvm-svn: 99002
the macro definitions and macro instantiations that are found
during preprocessing. Preprocessing records are *not* generated by
default; rather, we provide a PPCallbacks subclass that hooks into the
existing callback mechanism to record this activity.
The only client of preprocessing records is CIndex, which keeps track
of macro definitions and instantations so that they can be exposed via
cursors. At present, only token annotation uses these facilities, and
only for macro instantiations; both will change in the near
future. However, with this change, token annotation properly annotates
macro instantiations that do not produce any tokens and instantiations
of macros that are later undef'd, improving our consistency.
Preprocessing directives that are not macro definitions are still
handled by clang_annotateTokens() via re-lexing, so that we don't have
to track every preprocessing directive in the preprocessing record.
Performance impact of preprocessing records is still TBD, although it
is limited to CIndex and therefore out of the path of the main compiler.
llvm-svn: 98836
presence or absence of header map arguments when using the precompiled
header would cause Clang to get confused about which headers had
already been included/imported, along with their controlling
macros. The fundamental problem is that the serialization of the
header search information was relying on the UIDs of FileEntry objects
at PCH generation time and PCH load time to be equivalent, which
effectively means that we had to probe the same files in the same
order. Differing header map arguments caused an extra FileEntry
lookup, but it's easy to imagine other minor command-line arguments
triggering this problem.
Header-search information is now encoded along with the
source-location entry for a file, so that we register information
about a file's properties as a header at the same time we create the
FileEntry for that file.
Fixes <rdar://problem/7743243>.
llvm-svn: 98636
SourceManager's getBuffer() (and similar) operations. This abstract
can be used to force callers to cope with errors in getBuffer(), such
as missing files and changed files. Fix a bunch of callers to use the
new interface.
Add some very basic checks for file consistency (file size,
modification time) into ContentCache::getBuffer(), although these
checks don't help much until we've updated the main callers (e.g.,
SourceManager::getSpelling()).
llvm-svn: 98585
on unqualified declarations.
Patch by Enea Zaffanella! Minimal adjustments: allocate the ExtInfo nodes
with the ASTContext and delete them during Destroy(). I audited a bunch of
Destroy methods at the same time, to ensure that the correct teardown was
being done.
llvm-svn: 98540
injected class name of a class template or class template partial specialization.
This is a non-canonical type; the canonical type is still a template
specialization type. This becomes the TypeForDecl of the pattern declaration,
which cleans up some amount of code (and complicates some other parts, but
whatever).
Fixes PR6326 and probably a few others, primarily by re-establishing a few
invariants about TypeLoc sizes.
llvm-svn: 98134
copy the source buffers provided rather than referencing them
directly, so that the caller can free those buffers immediately after
calling clang_createTranslationUnitFromSourceFile(). Otherwise, we
risk hitting those buffers later (when building source ranges, forming
diagnostics, etc.).
llvm-svn: 97296
This is the way I would like to move the frontend function towards -- distinct
pieces of functionality should be exposed only via FrontendAction
implementations which have clean and relatively-stable APIs.
This also isolates the surface area in clang which depends on LLVM CodeGen.
llvm-svn: 97110
fixing up a few callers that thought they were propagating NoReturn
information but were in fact saying something about exception
specifications.
llvm-svn: 96766
to initializer expressions in an array allocated using ASTContext.
This plugs a memory leak when ASTContext uses a BumpPtrAllocator to
allocate memory for AST nodes.
In my mind this isn't an ideal solution; it would be nice to have
a general "vector"-like class that allocates memory using ASTContext,
but whose guts could be separated from the methods of InitListExpr
itself. I haven't gone and taken this approach yet because it isn't
clear yet if we'll eventually want an alternate solution for recylcing
memory using by InitListExprs as we are constructing the ASTs.
llvm-svn: 96642
we attach diagnostics to translation units and code-completion
results, so they can be queried at any time.
To facilitate this, the new StoredDiagnostic class stores a diagnostic
in a serializable/deserializable form, and ASTUnit knows how to
capture diagnostics in this stored form. CIndex's CXDiagnostic is a
thin wrapper around StoredDiagnostic, providing a C interface to
stored or de-serialized diagnostics.
I've XFAIL'd one test case temporarily, because currently we end up
storing diagnostics in an ASTUnit that's never returned to the user
(because it contains errors). I'll introduce a temporary fix for this
soon; the real fix will be to allow us to return and query invalid ASTs.
llvm-svn: 96592
indicate that it was enabled with -pedantic so people know
why they're getting them:
$ printf "int x;" | clang -xc - -pedantic
<stdin>:1:7: warning: no newline at end of file [-pedantic]
int x;
^
llvm-svn: 96365
of operating on each code decl. This exposes two flaws in AnalysisConsumer
that should eventually be fixed:
(1) It is not possible to associate multiple "actions" with a single
command line argument. This will require the notion of an
"analysis" group, and possibly tablegen support. (although eventually
we want to support dynamically loading analyses as well)
(2) AnalysisConsumer may not actually be scanning the declarations in namespaces.
We'll experiment first in LLVMConventionsChecker before changing the
behavior in AnalysisConsumer.
llvm-svn: 96183
Currently these checks are intended to be largely syntactical, but may get more
sophisticated over time.
As an initial foray into this brave new world, emit a static analyzer warning
when binding a temporary 'std::string' to an 'llvm::StringRef' where the
lifetime of the 'std::string' does not outlive the 'llvm::StringRef'.
llvm-svn: 96147
(1) Since CXXMethodDecl subclasses FunctionDecl (and CXXDestructorDecl
and CXXConversion subclass CXXMethodDecl), refactor switch statement
to handle them all in one spot.
(2) Use 'DeclarationName::getAsString()' to handle all functions that
don't have simple identifiers (fixing a null dereference when scanning
for specific functions).
llvm-svn: 96146
to the driver, and support it in CodeGenOptsToArgs(). Note that this changes
the default behavior of clang -cc1 to always run the verifier.
llvm-svn: 96077
worth asserting about in this code: 1) if the source range
is bogus (begin loc after end loc), and 2) if the client
is trying to highlight a range that is purely whitespace.
It is possible to just silently ignore #2, but it seems like
it is always a bug, so lets keep asserting on this condition,
but with a better assert message.
llvm-svn: 95998
order of constructor arguments (all block API specific). This was exposed only in
a large block literal expression in a large file where PtrSet container size
execceded its limit and required reallocation. Fixes radar 7638294
llvm-svn: 95936
incompatibility and show where the structural differences are. For
example:
struct1.c:36:8: warning: type 'struct S7' has incompatible definitions
in different translation units
struct S7 { int i : 8; unsigned j : 8; } x7;
^
struct1.c:36:33: note: bit-field 'j' with type 'unsigned int' and length 8 here
struct S7 { int i : 8; unsigned j : 8; } x7;
^
struct2.c:33:33: note: bit-field 'j' with type 'unsigned int' and length 16 here
struct S7 { int i : 8; unsigned j : 16; } x7;
^
There are a few changes to make this work:
- ASTImporter now has only a single Diagnostic object, not multiple
diagnostic objects. Otherwise, having a warning/error printed via
one Diagnostic and its note printed on the other Diagnostic could
cause the note to be suppressed.
- Implemented import functionality for IntegerLiteral (along with
general support for statements and expressions)
llvm-svn: 95900
Right now, it's off by default but can be tested by passing -fdump-vtable-layouts to clang -cc1. This option will cause all vtables that will normally be emitted as part of codegen to also be dumped using the new layout code.
I've also added a very simple new vtable layout test case.
llvm-svn: 95865
array associated with NonNullAttr. This fixes yet another leak when
ASTContext uses a BumpPtrAllocator.
Fixes: <rdar://problem/7637150>
llvm-svn: 95863
array allocated using the allocator in ASTContext. This addresses
these strings getting leaked when using a BumpPtrAllocator (in
ASTContext).
Fixes: <rdar://problem/7636765>
llvm-svn: 95853
merged with variables of constant array types. Also, make sure that we
call DiagnosticClient's BeginSourceFile/EndSourceFile, so that it has
a LangOptions to work with.
llvm-svn: 95782
into another AST, including their include history. Here's an example
error that involves a conflict merging a variable with different types
in two translation units (diagnosed in the third AST context into
which everything is merged).
/Volumes/Data/dgregor/Projects/llvm/tools/clang/test/ASTMerge/Inputs/var2.c:3:5:
error: external variable 'x2' declared with incompatible types in
different translation units ('int' vs. 'double')
int x2;
^
In file included from
/Volumes/Data/dgregor/Projects/llvm/tools/clang/test/ASTMerge/Inputs/var1.c:3:
/Volumes/Data/dgregor/Projects/llvm/tools/clang/test/ASTMerge/Inputs/var1.h:1:8:
note: declared here with type 'double'
double x2;
^
Although we maintain include history, we do not maintain macro
instantiation history across a merge. Instead, we map down to the
spelling location (for now!).
llvm-svn: 95732
that we get readable diagnostics such as:
error: external variable 'x1' declared with incompatible types in
different translation units ('double *' vs. 'float **')
However, there is no translation of source locations, yet.
llvm-svn: 95704
This is a non-fragile-abi feature only. Since it
breaks existing code, it is currently placed under
-fobjc-nonfragile-abi2 option for test purposes only
until further notice. WIP.
llvm-svn: 95685
live as long as the ASTUnit. This is useful for clients which want to maintain
pointers to the LangOptions object which ultimately lives in the
CompilerInvocation, although it would be nice to make all of this ownership
stuff more explicit and obvious.
llvm-svn: 94924