to reflect the new license.
We understand that people may be surprised that we're moving the header
entirely to discuss the new license. We checked this carefully with the
Foundation's lawyer and we believe this is the correct approach.
Essentially, all code in the project is now made available by the LLVM
project under our new license, so you will see that the license headers
include that license only. Some of our contributors have contributed
code under our old license, and accordingly, we have retained a copy of
our old license notice in the top-level files in each project and
repository.
llvm-svn: 351636
See r331124 for how I made a list of files missing the include.
I then ran this Python script:
for f in open('filelist.txt'):
f = f.strip()
fl = open(f).readlines()
found = False
for i in xrange(len(fl)):
p = '#include "llvm/'
if not fl[i].startswith(p):
continue
if fl[i][len(p):] > 'Config':
fl.insert(i, '#include "llvm/Config/llvm-config.h"\n')
found = True
break
if not found:
print 'not found', f
else:
open(f, 'w').write(''.join(fl))
and then looked through everything with `svn diff | diffstat -l | xargs -n 1000 gvim -p`
and tried to fix include ordering and whatnot.
No intended behavior change.
llvm-svn: 331184
Summary:
Add LLVM_FORCE_ENABLE_DUMP cmake option, and use it along with
LLVM_ENABLE_ASSERTIONS to set LLVM_ENABLE_DUMP.
Remove NDEBUG and only use LLVM_ENABLE_DUMP to enable dump methods.
Move definition of LLVM_ENABLE_DUMP from config.h to llvm-config.h so
it'll be picked up by public headers.
Differential Revision: https://reviews.llvm.org/D38406
llvm-svn: 315590
This allows MIR passes to emit optimization remarks with the same level
of functionality that is available to IR passes.
It also hooks up the greedy register allocator to report spills. This
allows for interesting use cases like increasing interleaving on a loop
until spilling of registers is observed.
I still need to experiment whether reporting every spill scales but this
demonstrates for now that the functionality works from llc
using -pass-remarks*=<pass>.
Differential Revision: https://reviews.llvm.org/D29004
llvm-svn: 293110
This adds two new utility functions findLoopControlBlock and findLoopPreheader
to MachineLoop and MachineLoopInfo. These functions are refactored and taken
from the Hexagon target as they are target independent; thus this is intendend to
be a non-functional change.
Differential Revision: https://reviews.llvm.org/D22959
llvm-svn: 278661
I missed == and != when I removed implicit conversions between iterators
and pointers in r252380 since they were defined outside ilist_iterator.
Since they depend on getNodePtrUnchecked(), they indirectly rely on UB.
This commit removes all uses of these operators. (I'll delete the
operators themselves in a separate commit so that it can be easily
reverted if necessary.)
There should be NFC here.
llvm-svn: 261498
The benefit of turning the parameter of LoopInfo::analyze() to const& is that it now can accept a rvalue.
http://reviews.llvm.org/D11250
llvm-svn: 242426
Sooooo many of these had incorrect or strange main module includes.
I have manually inspected all of these, and fixed the main module
include to be the nearest plausible thing I could find. If you own or
care about any of these source files, I encourage you to take some time
and check that these edits were sensible. I can't have broken anything
(I strictly added headers, and reordered them, never removed), but they
may not be the headers you'd really like to identify as containing the
API being implemented.
Many forward declarations and missing includes were added to a header
files to allow them to parse cleanly when included first. The main
module rule does in fact have its merits. =]
llvm-svn: 169131
The primary advantage is that loop optimizations will be applied in a
stable order. This helps debugging and unit test creation. It is also
a better overall implementation without pathologically bad performance
on deep functions.
On large functions (llvm-stress --size=200000 | opt -loops)
Before: 0.1263s
After: 0.0225s
On deep functions (after tweaking llvm-stress, thanks Nadav):
Before: 0.2281s
After: 0.0227s
See r158790 for more comments.
The loop tree is now consistently generated in forward order, but loop
passes are applied in reverse order over the program. If we have a
loop optimization that prefers forward order, that can easily be
achieved by adding a different type of LoopPassManager.
llvm-svn: 159183
-stable-loops enables a new algorithm for generating the Loop
forest. It differs from the original algorithm in a few respects:
- Not determined by use-list order.
- Initially guarantees RPO order of block and subloops.
- Linear in the number of CFG edges.
- Nonrecursive.
I didn't want to change the LoopInfo API yet, so the block lists are
still inclusive. This seems strange to me, and it means that building
LoopInfo is not strictly linear, but it may not be a problem in
practice. At least the block lists start out in RPO order now. In the
future we may add an attribute or wrapper analysis that allows other
passes to assume RPO order.
The primary motivation of this work was not to optimize LoopInfo, but
to allow reproducing performance issues by decomposing the compilation
stages. I'm often unable to do this with the current LoopInfo, because
the loop tree order determines Loop pass order. Serializing the IR
tends to invert the order, which reverses the optimization order. This
makes it nearly impossible to debug interdependent loop optimizations
such as LSR.
I also believe this will provide more stable performance results across time.
llvm-svn: 158790
The implementation only needs inclusion from LoopInfo.cpp and
MachineLoopInfo.cpp. Clients of the interface should only include the
interface. This makes the interface readable and speeds up rebuilds
after modifying the implementation.
llvm-svn: 158787
perform initialization without static constructors AND without explicit initialization
by the client. For the moment, passes are required to initialize both their
(potential) dependencies and any passes they preserve. I hope to be able to relax
the latter requirement in the future.
llvm-svn: 116334
shouldn't do AU.setPreservesCFG(), because even though CodeGen passes
don't modify the LLVM IR CFG, they may modify the MachineFunction CFG,
and passes like MachineLoop are registered with isCFGOnly set to true.
llvm-svn: 77691
failures when building assorted projects with clang.
--- Reverse-merging r77654 into '.':
U include/llvm/CodeGen/Passes.h
U include/llvm/CodeGen/MachineFunctionPass.h
U include/llvm/CodeGen/MachineFunction.h
U include/llvm/CodeGen/LazyLiveness.h
U include/llvm/CodeGen/SelectionDAGISel.h
D include/llvm/CodeGen/MachineFunctionAnalysis.h
U include/llvm/Function.h
U lib/Target/CellSPU/SPUISelDAGToDAG.cpp
U lib/Target/PowerPC/PPCISelDAGToDAG.cpp
U lib/CodeGen/LLVMTargetMachine.cpp
U lib/CodeGen/MachineVerifier.cpp
U lib/CodeGen/MachineFunction.cpp
U lib/CodeGen/PrologEpilogInserter.cpp
U lib/CodeGen/MachineLoopInfo.cpp
U lib/CodeGen/SelectionDAG/SelectionDAGISel.cpp
D lib/CodeGen/MachineFunctionAnalysis.cpp
D lib/CodeGen/MachineFunctionPass.cpp
U lib/CodeGen/LiveVariables.cpp
llvm-svn: 77661
using the Curiously Recurring Template Pattern with LoopBase.
This will help further refactoring, and future functionality for
Loop. Also, Headers can now foward-declare Loop, instead of pulling
in LoopInfo.h or doing tricks.
llvm-svn: 75519
address of the PassInfo directly instead of calling getPassInfo.
This eliminates a bunch of dynamic initializations of static data.
Also, fold RegisterPassBase into PassInfo, make a bunch of its
data members const, and rearrange some code to initialize data
members in constructors instead of using setter member functions.
llvm-svn: 51022