Commit Graph

289 Commits

Author SHA1 Message Date
Adrian Prantl 133e102b8f Remove a redundant dyn_cast.
llvm-svn: 227605
2015-01-30 19:42:59 +00:00
Adrian Prantl 3e2659eb92 Inliner: Use replaceDbgDeclareForAlloca() instead of splicing the
instruction and generalize it to optionally dereference the variable.
Follow-up to r227544.

llvm-svn: 227604
2015-01-30 19:37:48 +00:00
Adrian Prantl 4d365250ec Fix PR22386. The inliner moves static allocas to the entry basic block
so we need to move the dbg.declare intrinsics that describe them, too.

llvm-svn: 227544
2015-01-30 01:55:25 +00:00
David Blaikie df706288fb DebugInfo: Use distinct inlinedAt MDLocations to avoid separate inlined calls being coalesced
When two calls from the same MDLocation are inlined they currently get
treated as one inlined function call (creating difficulty debugging,
duplicate variables, etc).

Clang worked around this by including column information on inline calls
which doesn't address LTO inlining or calls to the same function from
the same line and column (such as through a macro). It also didn't
address ctor and member function calls.

By making the inlinedAt locations distinct, every call site has an
explicitly distinct location that cannot be coalesced with any other
call.

This can produce linearly (2x in the worst case where every call is
inlined and the call instruction has a non-call instruction at the same
location) more debug locations. Any increase beyond that are in cases
where the Clang workaround was insufficient and the new scheme is
creating necessary distinct nodes that were being erroneously coalesced
previously.

After this change to LLVM the incomplete workarounds in Clang. That
should reduce the number of debug locations (in a build without column
info, the default on Darwin, not the default on Linux) by not creating
pseudo-distinct locations for every call to an inline function.

(oh, and I made the inlined-at chain rebuilding iterative instead of
recursive because I was having trouble wrapping my head around it the
way it was - open to discussion on the right design for that function
(including going back to a recursive solution))

llvm-svn: 226736
2015-01-21 22:57:29 +00:00
Duncan P. N. Exon Smith 7d82313bcd IR: Return unique_ptr from MDNode::getTemporary()
Change `MDTuple::getTemporary()` and `MDLocation::getTemporary()` to
return (effectively) `std::unique_ptr<T, MDNode::deleteTemporary>`, and
clean up call sites.  (For now, `DIBuilder` call sites just call
`release()` immediately.)

There's an accompanying change in each of clang and polly to use the new
API.

llvm-svn: 226504
2015-01-19 21:30:18 +00:00
Duncan P. N. Exon Smith 946fdcc50c IR: Remove MDNodeFwdDecl
Remove `MDNodeFwdDecl` (as promised in r226481).  Aside from API
changes, there's no real functionality change here.
`MDNode::getTemporary()` now forwards to `MDTuple::getTemporary()`,
which returns a tuple with `isTemporary()` equal to true.

The main point is that we can now add temporaries of other `MDNode`
subclasses, needed for PR22235 (I introduced `MDNodeFwdDecl` in the
first place because I didn't recognize this need, and thought they were
only needed to handle forward references).

A few things left out of (or highlighted by) this commit:

  - I've had to remove the (few) uses of `std::unique_ptr<>` to deal
    with temporaries, since the destructor is no longer public.
    `getTemporary()` should probably return the equivalent of
    `std::unique_ptr<T, MDNode::deleteTemporary>`.
  - `MDLocation::getTemporary()` doesn't exist yet (worse, it actually
    does exist, but does the wrong thing: `MDNode::getTemporary()` is
    inherited and returns an `MDTuple`).
  - `MDNode` now only has one subclass, `UniquableMDNode`, and the
    distinction between them is actually somewhat confusing.

I'll fix those up next.

llvm-svn: 226501
2015-01-19 20:36:39 +00:00
Chandler Carruth 66b3130cda [PM] Split the AssumptionTracker immutable pass into two separate APIs:
a cache of assumptions for a single function, and an immutable pass that
manages those caches.

The motivation for this change is two fold. Immutable analyses are
really hacks around the current pass manager design and don't exist in
the new design. This is usually OK, but it requires that the core logic
of an immutable pass be reasonably partitioned off from the pass logic.
This change does precisely that. As a consequence it also paves the way
for the *many* utility functions that deal in the assumptions to live in
both pass manager worlds by creating an separate non-pass object with
its own independent API that they all rely on. Now, the only bits of the
system that deal with the actual pass mechanics are those that actually
need to deal with the pass mechanics.

Once this separation is made, several simplifications become pretty
obvious in the assumption cache itself. Rather than using a set and
callback value handles, it can just be a vector of weak value handles.
The callers can easily skip the handles that are null, and eventually we
can wrap all of this up behind a filter iterator.

For now, this adds boiler plate to the various passes, but this kind of
boiler plate will end up making it possible to port these passes to the
new pass manager, and so it will end up factored away pretty reasonably.

llvm-svn: 225131
2015-01-04 12:03:27 +00:00
Michael Kuperstein fffb6996c9 The inliner needs to fix up debug information for llvm.dbg.declare, not only for llvm.dbg.value.
Patch by Amjad Aboud

Differential Revision: http://reviews.llvm.org/D6525

llvm-svn: 224015
2014-12-11 12:41:10 +00:00
Duncan P. N. Exon Smith 5bf8fef580 IR: Split Metadata from Value
Split `Metadata` away from the `Value` class hierarchy, as part of
PR21532.  Assembly and bitcode changes are in the wings, but this is the
bulk of the change for the IR C++ API.

I have a follow-up patch prepared for `clang`.  If this breaks other
sub-projects, I apologize in advance :(.  Help me compile it on Darwin
I'll try to fix it.  FWIW, the errors should be easy to fix, so it may
be simpler to just fix it yourself.

This breaks the build for all metadata-related code that's out-of-tree.
Rest assured the transition is mechanical and the compiler should catch
almost all of the problems.

Here's a quick guide for updating your code:

  - `Metadata` is the root of a class hierarchy with three main classes:
    `MDNode`, `MDString`, and `ValueAsMetadata`.  It is distinct from
    the `Value` class hierarchy.  It is typeless -- i.e., instances do
    *not* have a `Type`.

  - `MDNode`'s operands are all `Metadata *` (instead of `Value *`).

  - `TrackingVH<MDNode>` and `WeakVH` referring to metadata can be
    replaced with `TrackingMDNodeRef` and `TrackingMDRef`, respectively.

    If you're referring solely to resolved `MDNode`s -- post graph
    construction -- just use `MDNode*`.

  - `MDNode` (and the rest of `Metadata`) have only limited support for
    `replaceAllUsesWith()`.

    As long as an `MDNode` is pointing at a forward declaration -- the
    result of `MDNode::getTemporary()` -- it maintains a side map of its
    uses and can RAUW itself.  Once the forward declarations are fully
    resolved RAUW support is dropped on the ground.  This means that
    uniquing collisions on changing operands cause nodes to become
    "distinct".  (This already happened fairly commonly, whenever an
    operand went to null.)

    If you're constructing complex (non self-reference) `MDNode` cycles,
    you need to call `MDNode::resolveCycles()` on each node (or on a
    top-level node that somehow references all of the nodes).  Also,
    don't do that.  Metadata cycles (and the RAUW machinery needed to
    construct them) are expensive.

  - An `MDNode` can only refer to a `Constant` through a bridge called
    `ConstantAsMetadata` (one of the subclasses of `ValueAsMetadata`).

    As a side effect, accessing an operand of an `MDNode` that is known
    to be, e.g., `ConstantInt`, takes three steps: first, cast from
    `Metadata` to `ConstantAsMetadata`; second, extract the `Constant`;
    third, cast down to `ConstantInt`.

    The eventual goal is to introduce `MDInt`/`MDFloat`/etc. and have
    metadata schema owners transition away from using `Constant`s when
    the type isn't important (and they don't care about referring to
    `GlobalValue`s).

    In the meantime, I've added transitional API to the `mdconst`
    namespace that matches semantics with the old code, in order to
    avoid adding the error-prone three-step equivalent to every call
    site.  If your old code was:

        MDNode *N = foo();
        bar(isa             <ConstantInt>(N->getOperand(0)));
        baz(cast            <ConstantInt>(N->getOperand(1)));
        bak(cast_or_null    <ConstantInt>(N->getOperand(2)));
        bat(dyn_cast        <ConstantInt>(N->getOperand(3)));
        bay(dyn_cast_or_null<ConstantInt>(N->getOperand(4)));

    you can trivially match its semantics with:

        MDNode *N = foo();
        bar(mdconst::hasa               <ConstantInt>(N->getOperand(0)));
        baz(mdconst::extract            <ConstantInt>(N->getOperand(1)));
        bak(mdconst::extract_or_null    <ConstantInt>(N->getOperand(2)));
        bat(mdconst::dyn_extract        <ConstantInt>(N->getOperand(3)));
        bay(mdconst::dyn_extract_or_null<ConstantInt>(N->getOperand(4)));

    and when you transition your metadata schema to `MDInt`:

        MDNode *N = foo();
        bar(isa             <MDInt>(N->getOperand(0)));
        baz(cast            <MDInt>(N->getOperand(1)));
        bak(cast_or_null    <MDInt>(N->getOperand(2)));
        bat(dyn_cast        <MDInt>(N->getOperand(3)));
        bay(dyn_cast_or_null<MDInt>(N->getOperand(4)));

  - A `CallInst` -- specifically, intrinsic instructions -- can refer to
    metadata through a bridge called `MetadataAsValue`.  This is a
    subclass of `Value` where `getType()->isMetadataTy()`.

    `MetadataAsValue` is the *only* class that can legally refer to a
    `LocalAsMetadata`, which is a bridged form of non-`Constant` values
    like `Argument` and `Instruction`.  It can also refer to any other
    `Metadata` subclass.

(I'll break all your testcases in a follow-up commit, when I propagate
this change to assembly.)

llvm-svn: 223802
2014-12-09 18:38:53 +00:00
Duncan P. N. Exon Smith de36e8040f Revert "IR: MDNode => Value"
Instead, we're going to separate metadata from the Value hierarchy.  See
PR21532.

This reverts commit r221375.
This reverts commit r221373.
This reverts commit r221359.
This reverts commit r221167.
This reverts commit r221027.
This reverts commit r221024.
This reverts commit r221023.
This reverts commit r220995.
This reverts commit r220994.

llvm-svn: 221711
2014-11-11 21:30:22 +00:00
Reid Kleckner dd3f3edafa Revert "Transforms: reapply SVN r219899"
This reverts commit r220811 and r220839. It made an incorrect change to
musttail handling.

llvm-svn: 221226
2014-11-04 02:02:14 +00:00
Duncan P. N. Exon Smith 3872d0084c IR: MDNode => Value: Instruction::getMetadata()
Change `Instruction::getMetadata()` to return `Value` as part of
PR21433.

Update most callers to use `Instruction::getMDNode()`, which wraps the
result in a `cast_or_null<MDNode>`.

llvm-svn: 221024
2014-11-01 00:10:31 +00:00
Saleem Abdulrasool d178ada55e Transforms: reapply SVN r219899
This restores the commit from SVN r219899 with an additional change to ensure
that the CodeGen is correct for the case that was identified as being incorrect
(originally PR7272).

In the case that during inlining we need to synthesize a value on the stack
(i.e. for passing a value byval), then any function involving that alloca must
be stripped of its tailness as the restriction that it does not access the
parent's stack no longer holds.  Unfortunately, a single alloca can cause a
rippling effect through out the inlining as the value may be aliased or may be
mutated through an escaped external call.  As such, we simply track if an alloca
has been introduced in the frame during inlining, and strip any tail calls.

llvm-svn: 220811
2014-10-28 18:27:37 +00:00
Paul Robinson f60e0a160f Do not attribute static allocas to the call site's DebugLoc.
When functions are inlined, instructions without debug information are
attributed to the call site's DebugLoc. After inlining, inlined static
allocas are moved to the caller's entry block, adjacent to the caller's
original static alloca instructions. By retaining the call site's
DebugLoc, these instructions could cause instructions that were
subsequently inserted at the entry block to pick up the same DebugLoc.

Patch by Wolfgang Pieb!

llvm-svn: 220255
2014-10-21 01:00:55 +00:00
Hal Finkel 68dc3c7ab2 Preserve non-byval pointer alignment attributes using @llvm.assume when inlining
For pointer-typed function arguments, enhanced alignment can be asserted using
the 'align' attribute. When inlining, if this enhanced alignment information is
not otherwise available, preserve it using @llvm.assume-based alignment
assumptions.

llvm-svn: 219876
2014-10-15 23:44:41 +00:00
Benjamin Kramer 0bd147da17 Simplify code. No functionality change.
llvm-svn: 217726
2014-09-13 12:38:49 +00:00
Hal Finkel 60db05896a Make use of @llvm.assume in ValueTracking (computeKnownBits, etc.)
This change, which allows @llvm.assume to be used from within computeKnownBits
(and other associated functions in ValueTracking), adds some (optional)
parameters to computeKnownBits and friends. These functions now (optionally)
take a "context" instruction pointer, an AssumptionTracker pointer, and also a
DomTree pointer, and most of the changes are just to pass this new information
when it is easily available from InstSimplify, InstCombine, etc.

As explained below, the significant conceptual change is that known properties
of a value might depend on the control-flow location of the use (because we
care that the @llvm.assume dominates the use because assumptions have
control-flow dependencies). This means that, when we ask if bits are known in a
value, we might get different answers for different uses.

The significant changes are all in ValueTracking. Two main changes: First, as
with the rest of the code, new parameters need to be passed around. To make
this easier, I grouped them into a structure, and I made internal static
versions of the relevant functions that take this structure as a parameter. The
new code does as you might expect, it looks for @llvm.assume calls that make
use of the value we're trying to learn something about (often indirectly),
attempts to pattern match that expression, and uses the result if successful.
By making use of the AssumptionTracker, the process of finding @llvm.assume
calls is not expensive.

Part of the structure being passed around inside ValueTracking is a set of
already-considered @llvm.assume calls. This is to prevent a query using, for
example, the assume(a == b), to recurse on itself. The context and DT params
are used to find applicable assumptions. An assumption needs to dominate the
context instruction, or come after it deterministically. In this latter case we
only handle the specific case where both the assumption and the context
instruction are in the same block, and we need to exclude assumptions from
being used to simplify their own ephemeral values (those which contribute only
to the assumption) because otherwise the assumption would prove its feeding
comparison trivial and would be removed.

This commit adds the plumbing and the logic for a simple masked-bit propagation
(just enough to write a regression test). Future commits add more patterns
(and, correspondingly, more regression tests).

llvm-svn: 217342
2014-09-07 18:57:58 +00:00
Hal Finkel 74c2f355d2 Add an Assumption-Tracking Pass
This adds an immutable pass, AssumptionTracker, which keeps a cache of
@llvm.assume call instructions within a module. It uses callback value handles
to keep stale functions and intrinsics out of the map, and it relies on any
code that creates new @llvm.assume calls to notify it of the new instructions.
The benefit is that code needing to find @llvm.assume intrinsics can do so
directly, without scanning the function, thus allowing the cost of @llvm.assume
handling to be negligible when none are present.

The current design is intended to be lightweight. We don't keep track of
anything until we need a list of assumptions in some function. The first time
this happens, we scan the function. After that, we add/remove @llvm.assume
calls from the cache in response to registration calls and ValueHandle
callbacks.

There are no new direct test cases for this pass, but because it calls it
validation function upon module finalization, we'll pick up detectable
inconsistencies from the other tests that touch @llvm.assume calls.

This pass will be used by follow-up commits that make use of @llvm.assume.

llvm-svn: 217334
2014-09-07 12:44:26 +00:00
James Molloy 6b95d8ed36 Enable noalias metadata by default and swap the order of the SLP and Loop vectorizers by default.
After some time maturing, hopefully the flags themselves will be removed.

llvm-svn: 217144
2014-09-04 13:23:08 +00:00
Hal Finkel 0c083024f0 Feed AA to the inliner and use AA->getModRefBehavior in AddAliasScopeMetadata
This feeds AA through the IFI structure into the inliner so that
AddAliasScopeMetadata can use AA->getModRefBehavior to figure out which
functions only access their arguments (instead of just hard-coding some
knowledge of memory intrinsics). Most of the information is only available from
BasicAA; this is important for preserving alias scoping information for
target-specific intrinsics when doing the noalias parameter attribute to
metadata conversion.

llvm-svn: 216866
2014-09-01 09:01:39 +00:00
Hal Finkel cbb85f249e Fix AddAliasScopeMetadata again - alias.scope must be a complete description
I thought that I had fixed this problem in r216818, but I did not do a very
good job. The underlying issue is that when we add alias.scope metadata we are
asserting that this metadata completely describes the aliasing relationships
within the current aliasing scope domain, and so in the context of translating
noalias argument attributes, the pointers must all be based on noalias
arguments (as underlying objects) and have no other kind of underlying object.
In r216818 excluding appropriate accesses from getting alias.scope metadata is
done by looking for underlying objects that are not identified function-local
objects -- but that's wrong because allocas, etc. are also function-local
objects and we need to explicitly check that all underlying objects are the
noalias arguments for which we're adding metadata aliasing scopes.

This fixes the underlying-object check for adding alias.scope metadata, and
does some refactoring of the related capture-checking eligibility logic (and
adds more comments; hopefully making everything a bit clearer).

Fixes self-hosting on x86_64 with -mllvm -enable-noalias-to-md-conversion (the
feature is still disabled by default).

llvm-svn: 216863
2014-09-01 04:26:40 +00:00
Hal Finkel a3708df41a Fix AddAliasScopeMetadata to not add scopes when deriving from unknown pointers
The previous implementation of AddAliasScopeMetadata, which adds noalias
metadata to preserve noalias parameter attribute information when inlining had
a flaw: it would add alias.scope metadata to accesses which might have been
derived from pointers other than noalias function parameters. This was
incorrect because even some access known not to alias with all noalias function
parameters could easily alias with an access derived from some other pointer.
Instead, when deriving from some unknown pointer, we cannot add alias.scope
metadata at all. This fixes a miscompile of the test-suite's tramp3d-v4.
Furthermore, we cannot add alias.scope to functions unless we know they
access only argument-derived pointers (currently, we know this only for
memory intrinsics).

Also, we fix a theoretical problem with using the NoCapture attribute to skip
the capture check. This is incorrect (as explained in the comment added), but
would not matter in any code generated by Clang because we get only inferred
nocapture attributes in Clang-generated IR.

This functionality is not yet enabled by default.

llvm-svn: 216818
2014-08-30 12:48:33 +00:00
Hal Finkel 2d3d6da44b Fix a typo in AddAliasScopeMetadata
llvm-svn: 216741
2014-08-29 16:33:41 +00:00
Craig Topper e1d1294853 Simplify creation of a bunch of ArrayRefs by using None, makeArrayRef or just letting them be implicitly created.
llvm-svn: 216525
2014-08-27 05:25:25 +00:00
Craig Topper 4627679cec Use range based for loops to avoid needing to re-mention SmallPtrSet size.
llvm-svn: 216351
2014-08-24 23:23:06 +00:00
Craig Topper 71b7b68b74 Repace SmallPtrSet with SmallPtrSetImpl in function arguments to avoid needing to mention the size.
llvm-svn: 216158
2014-08-21 05:55:13 +00:00
Craig Topper 6230691c91 Revert "Repace SmallPtrSet with SmallPtrSetImpl in function arguments to avoid needing to mention the size."
Getting a weird buildbot failure that I need to investigate.

llvm-svn: 215870
2014-08-18 00:24:38 +00:00
Craig Topper 5229cfd163 Repace SmallPtrSet with SmallPtrSetImpl in function arguments to avoid needing to mention the size.
llvm-svn: 215868
2014-08-17 23:47:00 +00:00
Hal Finkel 61c386126b Copy noalias metadata from call sites to inlined instructions
When a call site with noalias metadata is inlined, that metadata can be
propagated directly to the inlined instructions (only those that might access
memory because it is not useful on the others). Prior to inlining, the noalias
metadata could express that a call would not alias with some other memory
access, which implies that no instruction within that called function would
alias. By propagating the metadata to the inlined instructions, we preserve
that knowledge.

This should complete the enhancements requested in PR20500.

llvm-svn: 215676
2014-08-14 21:09:37 +00:00
Hal Finkel d2dee16c27 Add noalias metadata for general calls (not just memory intrinsics) during inlining
When preserving noalias function parameter attributes by adding noalias
metadata in the inliner, we should do this for general function calls (not just
memory intrinsics). The logic is very similar to what already existed (except
that we want to add this metadata even for functions taking no relevant
parameters). This metadata can be used by ModRef queries in the caller after
inlining.

This addresses the first part of PR20500. Adding noalias metadata during
inlining is still turned off by default.

llvm-svn: 215657
2014-08-14 16:44:03 +00:00
Reid Kleckner e31acf239a Move helper for getting a terminating musttail call to BasicBlock
No functional change.  To be used in future commits that need to look
for such instructions.

Reviewed By: rafael

Differential Revision: http://reviews.llvm.org/D4504

llvm-svn: 215413
2014-08-12 00:05:15 +00:00
Hal Finkel ff0bcb60c9 Convert noalias parameter attributes into noalias metadata during inlining
This functionality is currently turned off by default.

Part of the motivation for introducing scoped-noalias metadata is to enable the
preservation of noalias parameter attribute information after inlining.
Sometimes this can be inferred from the code in the caller after inlining, but
often we simply lose valuable information.

The overall process if fairly simple:
 1. Create a new unqiue scope domain.
 2. For each (used) noalias parameter, create a new alias scope.
 3. For each pointer, collect the underlying objects. Add a noalias scope for
    each noalias parameter from which we're not derived (and has not been
    captured prior to that point).
 4. Add an alias.scope for each noalias parameter from which we might be
    derived (or has been captured before that point).

Note that the capture checks apply only if one of the underlying objects is not
an identified function-local object.

llvm-svn: 213949
2014-07-25 15:50:08 +00:00
Hal Finkel 9414665a3b Add scoped-noalias metadata
This commit adds scoped noalias metadata. The primary motivations for this
feature are:
  1. To preserve noalias function attribute information when inlining
  2. To provide the ability to model block-scope C99 restrict pointers

Neither of these two abilities are added here, only the necessary
infrastructure. In fact, there should be no change to existing functionality,
only the addition of new features. The logic that converts noalias function
parameters into this metadata during inlining will come in a follow-up commit.

What is added here is the ability to generally specify noalias memory-access
sets. Regarding the metadata, alias-analysis scopes are defined similar to TBAA
nodes:

!scope0 = metadata !{ metadata !"scope of foo()" }
!scope1 = metadata !{ metadata !"scope 1", metadata !scope0 }
!scope2 = metadata !{ metadata !"scope 2", metadata !scope0 }
!scope3 = metadata !{ metadata !"scope 2.1", metadata !scope2 }
!scope4 = metadata !{ metadata !"scope 2.2", metadata !scope2 }

Loads and stores can be tagged with an alias-analysis scope, and also, with a
noalias tag for a specific scope:

... = load %ptr1, !alias.scope !{ !scope1 }
... = load %ptr2, !alias.scope !{ !scope1, !scope2 }, !noalias !{ !scope1 }

When evaluating an aliasing query, if one of the instructions is associated
with an alias.scope id that is identical to the noalias scope associated with
the other instruction, or is a descendant (in the scope hierarchy) of the
noalias scope associated with the other instruction, then the two memory
accesses are assumed not to alias.

Note that is the first element of the scope metadata is a string, then it can
be combined accross functions and translation units. The string can be replaced
by a self-reference to create globally unqiue scope identifiers.

[Note: This overview is slightly stylized, since the metadata nodes really need
to just be numbers (!0 instead of !scope0), and the scope lists are also global
unnamed metadata.]

Existing noalias metadata in a callee is "cloned" for use by the inlined code.
This is necessary because the aliasing scopes are unique to each call site
(because of possible control dependencies on the aliasing properties). For
example, consider a function: foo(noalias a, noalias b) { *a = *b; } that gets
inlined into bar() { ... if (...) foo(a1, b1); ... if (...) foo(a2, b2); } --
now just because we know that a1 does not alias with b1 at the first call site,
and a2 does not alias with b2 at the second call site, we cannot let inlining
these functons have the metadata imply that a1 does not alias with b2.

llvm-svn: 213864
2014-07-24 14:25:39 +00:00
David Blaikie 644d2eee59 DebugInfo: Preserve debug location information when transforming a call into an invoke during inlining.
This both improves basic debug info quality, but also fixes a larger
hole whenever we inline a call/invoke without a location (debug info for
the entire inlining is lost and other badness that the debug info
emission code is currently working around but shouldn't have to).

llvm-svn: 212065
2014-06-30 20:30:39 +00:00
Evgeniy Stepanov 2be29929be Fix line numbers for code inlined from __nodebug__ functions.
Instructions from __nodebug__ functions don't have file:line
information even when inlined into no-nodebug functions. As a result,
intrinsics (SSE and other) from <*intrin.h> clang headers _never_
have file:line information.

With this change, an instruction without !dbg metadata gets one from
the call instruction when inlined.

Fixes PR19001.

llvm-svn: 210459
2014-06-09 09:09:19 +00:00
Reid Kleckner 900d46ff39 Don't insert lifetime.end markers between a musttail call and ret
The allocas going out of scope are immediately killed by the return
instruction.

This is a resend of r208912, which was committed accidentally.

Reviewers: chandlerc

Differential Revision: http://reviews.llvm.org/D3792

llvm-svn: 208920
2014-05-15 21:10:46 +00:00
Reid Kleckner b16564109b Revert "Don't insert lifetime.end markers between a musttail call and ret"
This reverts commit r208912.

It was committed accidentally without review.

llvm-svn: 208914
2014-05-15 20:41:05 +00:00
Reid Kleckner 6af21245eb Remove unused variable in inliner
We have to iterate over all the calls that were inlined to find out if
any were musttail.

Sink another variable down to where its used.

llvm-svn: 208913
2014-05-15 20:39:42 +00:00
Reid Kleckner 26ab7ead45 Don't insert lifetime.end markers between a musttail call and ret
The allocas going out of scope are immediately killed by the return
instruction.

Reviewers: chandlerc

Differential Revision: http://reviews.llvm.org/D3630

llvm-svn: 208912
2014-05-15 20:39:13 +00:00
Reid Kleckner f0915aa0e6 Teach the inliner how to preserve musttail invariants
The interesting case is what happens when you inline a musttail call
through a musttail call site.  In this case, we can't break perfect
forwarding or allow any stack growth.

Instead of merging control flow from the inlined return instruction
after a musttail call into the body of the caller, leave the inlined
return instruction in the caller so that the musttail call stays in the
tail position.

More work is required in http://reviews.llvm.org/D3630 to handle the
case where the inlined function has dynamic allocas or byval arguments.

Reviewers: chandlerc

Differential Revision: http://reviews.llvm.org/D3491

llvm-svn: 208910
2014-05-15 20:11:28 +00:00
Craig Topper f40110f4d8 [C++] Use 'nullptr'. Transforms edition.
llvm-svn: 207196
2014-04-25 05:29:35 +00:00
Matt Arsenault be55888849 Remove more default address space argument usage.
These places are inconsequential in practice.

llvm-svn: 207021
2014-04-23 20:58:57 +00:00
Reid Kleckner 9b2cc647eb Fix PR7272 in -tailcallelim instead of the inliner
The -tailcallelim pass should be checking if byval or inalloca args can
be captured before marking calls as tail calls.  This was the real root
cause of PR7272.

With a better fix in place, revert the inliner change from r105255.  The
test case it introduced still passes and has been moved to
test/Transforms/Inline/byval-tail-call.ll.

Reviewers: chandlerc

Differential Revision: http://reviews.llvm.org/D3403

llvm-svn: 206789
2014-04-21 20:48:47 +00:00
Julien Lerouge be4fe32eb8 Add lifetime markers for allocas created to hold byval arguments, make them
appear in the InlineFunctionInfo.

llvm-svn: 206308
2014-04-15 18:06:46 +00:00
Julien Lerouge 957e91c4d8 Split byval argument initialization so the memcpy(s) are injected at the
beginning of the first new block after inlining.

llvm-svn: 206307
2014-04-15 18:01:54 +00:00
Chandler Carruth cdf4788401 [C++11] Add range based accessors for the Use-Def chain of a Value.
This requires a number of steps.
1) Move value_use_iterator into the Value class as an implementation
   detail
2) Change it to actually be a *Use* iterator rather than a *User*
   iterator.
3) Add an adaptor which is a User iterator that always looks through the
   Use to the User.
4) Wrap these in Value::use_iterator and Value::user_iterator typedefs.
5) Add the range adaptors as Value::uses() and Value::users().
6) Update *all* of the callers to correctly distinguish between whether
   they wanted a use_iterator (and to explicitly dig out the User when
   needed), or a user_iterator which makes the Use itself totally
   opaque.

Because #6 requires churning essentially everything that walked the
Use-Def chains, I went ahead and added all of the range adaptors and
switched them to range-based loops where appropriate. Also because the
renaming requires at least churning every line of code, it didn't make
any sense to split these up into multiple commits -- all of which would
touch all of the same lies of code.

The result is still not quite optimal. The Value::use_iterator is a nice
regular iterator, but Value::user_iterator is an iterator over User*s
rather than over the User objects themselves. As a consequence, it fits
a bit awkwardly into the range-based world and it has the weird
extra-dereferencing 'operator->' that so many of our iterators have.
I think this could be fixed by providing something which transforms
a range of T&s into a range of T*s, but that *can* be separated into
another patch, and it isn't yet 100% clear whether this is the right
move.

However, this change gets us most of the benefit and cleans up
a substantial amount of code around Use and User. =]

llvm-svn: 203364
2014-03-09 03:16:01 +00:00
Chandler Carruth 9a4c9e597b [Layering] Move DebugInfo.h into the IR library where its implementation
already lives.

llvm-svn: 203046
2014-03-06 00:46:21 +00:00
Chandler Carruth 219b89b987 [Modules] Move CallSite into the IR library where it belogs. It is
abstracting between a CallInst and an InvokeInst, both of which are IR
concepts.

llvm-svn: 202816
2014-03-04 11:01:28 +00:00
Rafael Espindola 7c68bebb9c Rename some member variables from TD to DL.
TargetData was renamed DataLayout back in r165242.

llvm-svn: 201581
2014-02-18 15:33:12 +00:00
Mark Seaborn 1b3dd3527e Fix inlining to not lose the "cleanup" clause from landingpads
This fixes PR17872.  This bug can lead to C++ destructors not being
called when they should be, when an exception is thrown.

llvm-svn: 196711
2013-12-08 00:51:21 +00:00