Commit Graph

44 Commits

Author SHA1 Message Date
River Riddle c7cae0e4fa [mlir][Attributes][NFC] Move all builtin Attribute classes to BuiltinAttributes.h
This mirrors the file structure of Types.

Differential Revision: https://reviews.llvm.org/D92499
2020-12-03 18:02:11 -08:00
River Riddle 09f7a55fad [mlir][Types][NFC] Move all of the builtin Type classes to BuiltinTypes.h
This is part of a larger refactoring the better congregates the builtin structures under the BuiltinDialect. This also removes the problematic "standard" naming that clashes with the "standard" dialect, which is not defined within IR/. A temporary forward is placed in StandardTypes.h to allow time for downstream users to replaced references.

Differential Revision: https://reviews.llvm.org/D92435
2020-12-03 18:02:10 -08:00
George 5f65c4a8e6 Use MlirStringRef in StandardAttributes.h 2020-12-03 16:12:01 -08:00
David Blaikie 0fd0f885eb [mlir] Use long rather than int to address pointer-to-int narrowing warning 2020-12-03 13:09:36 -08:00
George df9ae59928 Use MlirStringRef throughout the C API
While this makes the unit tests a bit more verbose, this simplifies the creation of bindings because only the bidirectional mapping between the host language's string type and MlirStringRef need to be implemented.

Reviewed By: mehdi_amini

Differential Revision: https://reviews.llvm.org/D91905
2020-11-23 14:07:30 -08:00
George 0c5cff300f Add userData to the diagnostic handler C API
Previously, there was no way to add context to the diagnostic engine via the C API. Adding this ability makes it much easier to reason about memory ownership, particularly in reference-counted languages such as Swift. There are more details in the review comments.

Reviewed By: ftynse, mehdi_amini

Differential Revision: https://reviews.llvm.org/D91738
2020-11-23 09:52:45 -08:00
zhanghb97 77133b29b9 [mlir] Get array from the dense elements attribute with buffer protocol.
- Add `mlirElementsAttrGetType` C API.
- Add `def_buffer` binding to PyDenseElementsAttribute.
- Implement the protocol to access the buffer.

Differential Revision: https://reviews.llvm.org/D91021
2020-11-18 15:50:59 +08:00
Stella Laurenzo 08c1a0dda4 [mlir][CAPI] Proposal: Always building a libMLIRPublicAPI.so (re-apply).
Re-applies the reverted https://reviews.llvm.org/D90824 now that the link issue on BFD has been resolved.

This reverts commit bb9b5d3971.

Differential Revision: https://reviews.llvm.org/D91044
2020-11-08 16:57:51 -08:00
Mehdi Amini e6f3ec6ebb Don't link any LLVM/MLIR library to the C API unit-test
The tests are intended to exercise the public C API and will link to a
specific shared library exposing only the C API, this library itself may
link to libMLIR.so.
If we link some LLVM library statically in the test themselves, we end
up with duplicated cl::opt registrations in LLVM. A possible setup if
these libraries were needed could be to link libMLIR.so directly when
available and link statically when it isn't available (in which case the
libary exposing the C API would be statically link and isolated from the
cl::opt registry, hopefully).

Differential Revision: https://reviews.llvm.org/D90993
2020-11-07 01:54:31 +00:00
Alex Zinenko bb9b5d3971 Revert "[mlir][CAPI] Proposal: Always building a libMLIRPublicAPI.so."
This reverts commit 80fe2f61fa.

Broke linkage with GNU ld. See original review thread for more details.
2020-11-06 18:59:58 +01:00
Stella Laurenzo 80fe2f61fa [mlir][CAPI] Proposal: Always building a libMLIRPublicAPI.so.
We were discussing on discord regarding the need for extension-based systems like Python to dynamically link against MLIR (or else you can only have one extension that depends on it). Currently, when I set that up, I piggy-backed off of the flag that enables build libLLVM.so and libMLIR.so and depended on libMLIR.so from the python extension if shared library building was enabled. However, this is less than ideal.

In the current setup, libMLIR.so exports both all symbols from the C++ API and the C-API. The former is a kitchen sink and the latter is curated. We should be splitting them and for things that are properly factored to depend on the C-API, they should have the option to *only* depend on the C-API, and we should build that shared library no matter what. Its presence isn't just an optimization: it is a key part of the system.

To do this right, I needed to:

* Introduce visibility macros into mlir-c/Support.h. These should work on both *nix and windows as-is.
* Create a new libMLIRPublicAPI.so with just the mlir-c object files.
* Compile the C-API with -fvisibility=hidden.
* Conditionally depend on the libMLIR.so from libMLIRPublicAPI.so if building libMLIR.so (otherwise, also links against the static libs and will produce a mondo libMLIRPublicAPI.so).
* Disable re-exporting of static library symbols that come in as transitive deps.

This gives us a dynamic linked C-API layer that is minimal and should work as-is on all platforms. Since we don't support libMLIR.so building on Windows yet (and it is not very DLL friendly), this will fall back to a mondo build of libMLIRPublicAPI.so, which has its uses (it is also the most size conscious way to go if you happen to know exactly what you need).

Sizes (release/stripped, Ubuntu 20.04):

Shared library build:
	libMLIRPublicAPI.so: 121Kb
	_mlir.cpython-38-x86_64-linux-gnu.so: 1.4Mb
	mlir-capi-ir-test: 135Kb
	libMLIR.so: 21Mb

Static build:
	libMLIRPublicAPI.so: 5.5Mb (since this is a "static" build, this includes the MLIR implementation as non-exported code).
	_mlir.cpython-38-x86_64-linux-gnu.so: 1.4Mb
	mlir-capi-ir-test: 44Kb

Things like npcomp and circt which bring their own dialects/transforms/etc would still need the shared library build and code that links against libMLIR.so (since it is all C++ interop stuff), but hopefully things that only depend on the public C-API can just have the one narrow dep.

I spot checked everything with nm, and it looks good in terms of what is exporting/importing from each layer.

I'm not in a hurry to land this, but if it is controversial, I'll probably split off the Support.h and API visibility macro changes, since we should set that pattern regardless.

Reviewed By: mehdi_amini, benvanik

Differential Revision: https://reviews.llvm.org/D90824
2020-11-06 09:00:56 -08:00
Alex Zinenko b715fa330d [mlir] Restructure C API tests for IR
The test file is a long list of functions, followed by equally long FileCheck
comments inside "main". Distribute FileCheck comments closer to the functions
that produce the output we are checking.

Reviewed By: mehdi_amini, stellaraccident

Differential Revision: https://reviews.llvm.org/D90743
2020-11-05 10:12:46 +01:00
Mehdi Amini c7994bd939 Switch from C-style comments `/* ... */` to C++ style `//` (NFC)
This is mostly a scripted update, it may not be perfect.

function replace() {
  FROM=$1
  TO=$2
  git grep "$FROM" $REPO_PATH |cut -f 1 -d : | sort -u | \
    while read file; do
      sed -i "s#$FROM#$TO#" $file ;
    done
}

replace '|\*===----------------------------------------------------------------------===\*|$' '//===----------------------------------------------------------------------===//'
replace '^/\* =' '//=='
replace '^/\*=' '//='
replace '^\\\*=' '//='
replace '^|\*' '//'
replace ' \*|$' ''
replace '=\*\\$' '=//'
replace '== \*/$' '===//'
replace '==\*/$' '==//'
replace '^/\*\*\(.*\)\*/$' '///\1'
replace '^/\*\(.*\)\*/$' '//\1'
replace '//============================================================================//' '//===----------------------------------------------------------------------===//'

Differential Revision: https://reviews.llvm.org/D90732
2020-11-04 18:11:13 +00:00
Mehdi Amini aeb4b1a9d8 Add facilities to print/parse a pass pipeline through the C API
This also includes and exercise a register function for individual
passes.

Differential Revision: https://reviews.llvm.org/D90728
2020-11-04 17:29:49 +00:00
Mehdi Amini f61d1028fa Add a basic C API for the MLIR PassManager as well as a basic TableGen backend for creating passes
This is exposing the basic functionalities (create, nest, addPass, run) of
the PassManager through the C API in the new header: `include/mlir-c/Pass.h`.

In order to exercise it in the unit-test, a basic TableGen backend is
also provided to generate a simple C wrapper around the pass
constructor. It is used to expose the libTransforms passes to the C API.

Reviewed By: stellaraccident, ftynse

Differential Revision: https://reviews.llvm.org/D90667
2020-11-04 06:36:31 +00:00
Stella Laurenzo b85f2f5c5f [mlir][CAPI] Add APIs for mlirOperationGetName and Identifier.
Reviewed By: ftynse

Differential Revision: https://reviews.llvm.org/D90583
2020-11-02 18:52:13 +00:00
Stella Laurenzo c645ea5e29 Add InsertionPoint and context managers to the Python API.
* Removes index based insertion. All insertion now happens through the insertion point.
* Introduces thread local context managers for implicit creation relative to an insertion point.
* Introduces (but does not yet use) binding the Context to the thread local context stack. Intent is to refactor all methods to take context optionally and have them use the default if available.
* Adds C APIs for mlirOperationGetParentOperation(), mlirOperationGetBlock() and mlirBlockGetTerminator().
* Removes an assert in PyOperation creation that was incorrectly constraining. There is already a TODO to rework the keepAlive field that it was guarding and without the assert, it is no worse than the current state.

Differential Revision: https://reviews.llvm.org/D90368
2020-10-29 17:50:13 -07:00
Kazuaki Ishizaki 41b09f4eff [mlir] NFC: fix trivial typos
fix typos in comments and documents

Reviewed By: jpienaar

Differential Revision: https://reviews.llvm.org/D90089
2020-10-29 04:05:22 +09:00
Mehdi Amini 72023442c1 Add a `mlirModuleGetBody()` accessor to the C API and bind it in Python
Getting the body of a Module is a common need which justifies a
dedicated accessor instead of forcing users to go through the
region->blocks->front unwrapping manually.

Differential Revision: https://reviews.llvm.org/D90287
2020-10-28 17:53:52 +00:00
zhanghb97 448f25c86b [mlir] Expose affine expression to C API
This patch provides C API for MLIR affine expression.
- Implement C API for methods of AffineExpr class.
- Implement C API for methods of derived classes (AffineBinaryOpExpr, AffineDimExpr, AffineSymbolExpr, and AffineConstantExpr).

Differential Revision: https://reviews.llvm.org/D89856
2020-10-23 20:06:32 +08:00
Stella Laurenzo 74a58ec9c2 [mlir][CAPI][Python] Plumb OpPrintingFlags to C and Python APIs.
* Adds a new MlirOpPrintingFlags type and supporting accessors.
* Adds a new mlirOperationPrintWithFlags function.
* Adds a full featured python Operation.print method with all options and the ability to print directly to files/stdout in text or binary.
* Adds an Operation.get_asm which delegates to print and returns a str or bytes.
* Reworks Operation.__str__ to be based on get_asm.

Differential Revision: https://reviews.llvm.org/D89848
2020-10-21 12:14:06 -07:00
Alex Zinenko 39613c2cbc [mlir] Expose Value hierarchy to C API
The Value hierarchy consists of BlockArgument and OpResult, both of which
derive Value. Introduce IsA functions and functions specific to each class,
similarly to other class hierarchies. Also, introduce functions for
pointer-comparison of Block and Operation that are necessary for testing and
are generally useful.

Reviewed By: stellaraccident, mehdi_amini

Differential Revision: https://reviews.llvm.org/D89714
2020-10-20 09:39:08 +02:00
Stella Laurenzo 6771b98c4e [mlir][CAPI] Add mlirAttributeGetType function.
* Also fixes the const-ness of the various DenseElementsAttr construction functions.
* Both issues identified when trying to use the DenseElementsAttr functions.

Differential Revision: https://reviews.llvm.org/D89517
2020-10-15 18:33:50 -07:00
Stella Laurenzo 4aa217160e [mlir][CAPI] Attribute set/remove on operations.
* New functions: mlirOperationSetAttributeByName, mlirOperationRemoveAttributeByName
* Also adds some *IsNull checks and standardizes the rest to use "static inline" form, which makes them all non-opaque and not part of the ABI (which is desirable).
* Changes needed to resolve TODOs in npcomp PyTorch capture.

Differential Revision: https://reviews.llvm.org/D88946
2020-10-07 10:03:23 -07:00
Alex Zinenko 7b5dfb400a [mlir] Add support for diagnostics in C API.
Add basic support for registering diagnostic handlers with the context
(actually, the diagnostic engine contained in the context) and processing
diagnostic messages from the C API.

Reviewed By: stellaraccident

Differential Revision: https://reviews.llvm.org/D88736
2020-10-07 14:42:02 +02:00
Alex Zinenko 64c0c9f015 [mlir] Expose Dialect class and registration/loading to C API
- Add a minimalist C API for mlir::Dialect.
- Allow one to query the context about registered and loaded dialects.
- Add API for loading dialects.
- Provide functions to register the Standard dialect.

When used naively, this will require to separately register each dialect. When
we have more than one exposed, we can add variadic macros that expand to
individual calls.

Reviewed By: mehdi_amini

Differential Revision: https://reviews.llvm.org/D88162
2020-09-29 16:30:08 +02:00
Stella Laurenzo 76753a597b Add FunctionType to MLIR C and Python bindings.
Differential Revision: https://reviews.llvm.org/D88416
2020-09-28 09:56:48 -07:00
Alex Zinenko c538169ee9 [mlir] Add insert before/after to list-like constructs in C API
Blocks in a region and operations in a block are organized in a linked list.
The C API only provides functions to append or to insert elements at the
specified numeric position in the list. The latter is expensive since it
requires to traverse the list. Add insert before/after functionality with low
cost that relies on the iplist elements being convertible to iterators.

Reviewed By: stellaraccident

Differential Revision: https://reviews.llvm.org/D88148
2020-09-23 17:29:30 +02:00
Alex Zinenko 68cfb02668 [mlir] turn clang-format back on in C API test
C API test uses FileCheck comments inside C code and needs to
temporarily switch off clang-format to prevent it from messing with
FileCheck directives. A recently landed commit forgot to turn it back on
after a block of FileCheck comments. Fix that.
2020-09-17 12:59:57 +02:00
zhanghb97 b76f523be6 [mlir] expose affine map to C API
This patch provides C API for MLIR affine map.
- Implement C API for AffineMap class.
- Add Utils.h to include/mlir/CAPI/, and move the definition of the CallbackOstream to Utils.h to make sure mlirAffineMapPrint work correct.
- Add TODO for exposing the C API related to AffineExpr and mutable affine map.

Differential Revision: https://reviews.llvm.org/D87617
2020-09-17 09:50:45 +08:00
Alex Zinenko 855ec517a3 [mlir] Model StringRef in C API
Numerous MLIR functions return instances of `StringRef` to refer to a
non-owning fragment of a string (usually owned by the context). This is a
relatively simple class that is defined in LLVM. Provide a simple wrapper in
the MLIR C API that contains the pointer and length of the string fragment and
use it for Standard attribute functions that return StringRef instead of the
previous, callback-based mechanism.

Reviewed By: stellaraccident

Differential Revision: https://reviews.llvm.org/D87677
2020-09-16 16:04:36 +02:00
Alex Zinenko da56297462 [mlir] expose standard attributes to C API
Provide C API for MLIR standard attributes. Since standard attributes live
under lib/IR in core MLIR, place the C APIs in the IR library as well (standard
ops will go in a separate library).

Affine map and integer set attributes are only exposed as placeholder types
with IsA support due to the lack of C APIs for the corresponding types.

Integer and floating point attribute APIs expecting APInt and APFloat are not
exposed pending decision on how to support APInt and APFloat.

Reviewed By: stellaraccident

Differential Revision: https://reviews.llvm.org/D86143
2020-08-19 18:50:19 +02:00
Mehdi Amini f9dc2b7079 Separate the Registration from Loading dialects in the Context
This changes the behavior of constructing MLIRContext to no longer load globally
registered dialects on construction. Instead Dialects are only loaded explicitly
on demand:
- the Parser is lazily loading Dialects in the context as it encounters them
during parsing. This is the only purpose for registering dialects and not load
them in the context.
- Passes are expected to declare the dialects they will create entity from
(Operations, Attributes, or Types), and the PassManager is loading Dialects into
the Context when starting a pipeline.

This changes simplifies the configuration of the registration: a compiler only
need to load the dialect for the IR it will emit, and the optimizer is
self-contained and load the required Dialects. For example in the Toy tutorial,
the compiler only needs to load the Toy dialect in the Context, all the others
(linalg, affine, std, LLVM, ...) are automatically loaded depending on the
optimization pipeline enabled.

To adjust to this change, stop using the existing dialect registration: the
global registry will be removed soon.

1) For passes, you need to override the method:

virtual void getDependentDialects(DialectRegistry &registry) const {}

and registery on the provided registry any dialect that this pass can produce.
Passes defined in TableGen can provide this list in the dependentDialects list
field.

2) For dialects, on construction you can register dependent dialects using the
provided MLIRContext: `context.getOrLoadDialect<DialectName>()`
This is useful if a dialect may canonicalize or have interfaces involving
another dialect.

3) For loading IR, dialect that can be in the input file must be explicitly
registered with the context. `MlirOptMain()` is taking an explicit registry for
this purpose. See how the standalone-opt.cpp example is setup:

  mlir::DialectRegistry registry;
  registry.insert<mlir::standalone::StandaloneDialect>();
  registry.insert<mlir::StandardOpsDialect>();

Only operations from these two dialects can be in the input file. To include all
of the dialects in MLIR Core, you can populate the registry this way:

  mlir::registerAllDialects(registry);

4) For `mlir-translate` callback, as well as frontend, Dialects can be loaded in
the context before emitting the IR: context.getOrLoadDialect<ToyDialect>()

Differential Revision: https://reviews.llvm.org/D85622
2020-08-19 01:19:03 +00:00
Mehdi Amini e75bc5c791 Revert "Separate the Registration from Loading dialects in the Context"
This reverts commit d14cf45735.
The build is broken with GCC-5.
2020-08-19 01:19:03 +00:00
Mehdi Amini d14cf45735 Separate the Registration from Loading dialects in the Context
This changes the behavior of constructing MLIRContext to no longer load globally
registered dialects on construction. Instead Dialects are only loaded explicitly
on demand:
- the Parser is lazily loading Dialects in the context as it encounters them
during parsing. This is the only purpose for registering dialects and not load
them in the context.
- Passes are expected to declare the dialects they will create entity from
(Operations, Attributes, or Types), and the PassManager is loading Dialects into
the Context when starting a pipeline.

This changes simplifies the configuration of the registration: a compiler only
need to load the dialect for the IR it will emit, and the optimizer is
self-contained and load the required Dialects. For example in the Toy tutorial,
the compiler only needs to load the Toy dialect in the Context, all the others
(linalg, affine, std, LLVM, ...) are automatically loaded depending on the
optimization pipeline enabled.

To adjust to this change, stop using the existing dialect registration: the
global registry will be removed soon.

1) For passes, you need to override the method:

virtual void getDependentDialects(DialectRegistry &registry) const {}

and registery on the provided registry any dialect that this pass can produce.
Passes defined in TableGen can provide this list in the dependentDialects list
field.

2) For dialects, on construction you can register dependent dialects using the
provided MLIRContext: `context.getOrLoadDialect<DialectName>()`
This is useful if a dialect may canonicalize or have interfaces involving
another dialect.

3) For loading IR, dialect that can be in the input file must be explicitly
registered with the context. `MlirOptMain()` is taking an explicit registry for
this purpose. See how the standalone-opt.cpp example is setup:

  mlir::DialectRegistry registry;
  registry.insert<mlir::standalone::StandaloneDialect>();
  registry.insert<mlir::StandardOpsDialect>();

Only operations from these two dialects can be in the input file. To include all
of the dialects in MLIR Core, you can populate the registry this way:

  mlir::registerAllDialects(registry);

4) For `mlir-translate` callback, as well as frontend, Dialects can be loaded in
the context before emitting the IR: context.getOrLoadDialect<ToyDialect>()

Differential Revision: https://reviews.llvm.org/D85622
2020-08-18 23:23:56 +00:00
Mehdi Amini d84fe55e0d Revert "Separate the Registration from Loading dialects in the Context"
This reverts commit e1de2b7550.
Broke a build bot.
2020-08-18 22:16:34 +00:00
Mehdi Amini e1de2b7550 Separate the Registration from Loading dialects in the Context
This changes the behavior of constructing MLIRContext to no longer load globally
registered dialects on construction. Instead Dialects are only loaded explicitly
on demand:
- the Parser is lazily loading Dialects in the context as it encounters them
during parsing. This is the only purpose for registering dialects and not load
them in the context.
- Passes are expected to declare the dialects they will create entity from
(Operations, Attributes, or Types), and the PassManager is loading Dialects into
the Context when starting a pipeline.

This changes simplifies the configuration of the registration: a compiler only
need to load the dialect for the IR it will emit, and the optimizer is
self-contained and load the required Dialects. For example in the Toy tutorial,
the compiler only needs to load the Toy dialect in the Context, all the others
(linalg, affine, std, LLVM, ...) are automatically loaded depending on the
optimization pipeline enabled.

To adjust to this change, stop using the existing dialect registration: the
global registry will be removed soon.

1) For passes, you need to override the method:

virtual void getDependentDialects(DialectRegistry &registry) const {}

and registery on the provided registry any dialect that this pass can produce.
Passes defined in TableGen can provide this list in the dependentDialects list
field.

2) For dialects, on construction you can register dependent dialects using the
provided MLIRContext: `context.getOrLoadDialect<DialectName>()`
This is useful if a dialect may canonicalize or have interfaces involving
another dialect.

3) For loading IR, dialect that can be in the input file must be explicitly
registered with the context. `MlirOptMain()` is taking an explicit registry for
this purpose. See how the standalone-opt.cpp example is setup:

  mlir::DialectRegistry registry;
  mlir::registerDialect<mlir::standalone::StandaloneDialect>();
  mlir::registerDialect<mlir::StandardOpsDialect>();

Only operations from these two dialects can be in the input file. To include all
of the dialects in MLIR Core, you can populate the registry this way:

  mlir::registerAllDialects(registry);

4) For `mlir-translate` callback, as well as frontend, Dialects can be loaded in
the context before emitting the IR: context.getOrLoadDialect<ToyDialect>()
2020-08-18 21:14:39 +00:00
Alex Zinenko 74f577845e [mlir] expose standard types to C API
Provide C API for MLIR standard types. Since standard types live under lib/IR
in core MLIR, place the C APIs in the IR library as well (standard ops will go
into a separate library). This also defines a placeholder for affine maps that
are necessary to construct a memref, but are not yet exposed to the C API.

Reviewed By: stellaraccident

Differential Revision: https://reviews.llvm.org/D86094
2020-08-18 13:11:37 +02:00
Mehdi Amini 25ee851746 Revert "Separate the Registration from Loading dialects in the Context"
This reverts commit 2056393387.

Build is broken on a few bots
2020-08-15 09:21:47 +00:00
Mehdi Amini 2056393387 Separate the Registration from Loading dialects in the Context
This changes the behavior of constructing MLIRContext to no longer load globally registered dialects on construction. Instead Dialects are only loaded explicitly on demand:
- the Parser is lazily loading Dialects in the context as it encounters them during parsing. This is the only purpose for registering dialects and not load them in the context.
- Passes are expected to declare the dialects they will create entity from (Operations, Attributes, or Types), and the PassManager is loading Dialects into the Context when starting a pipeline.

This changes simplifies the configuration of the registration: a compiler only need to load the dialect for the IR it will emit, and the optimizer is self-contained and load the required Dialects. For example in the Toy tutorial, the compiler only needs to load the Toy dialect in the Context, all the others (linalg, affine, std, LLVM, ...) are automatically loaded depending on the optimization pipeline enabled.

Differential Revision: https://reviews.llvm.org/D85622
2020-08-15 08:07:31 +00:00
Mehdi Amini ba92dadf05 Revert "Separate the Registration from Loading dialects in the Context"
This was landed by accident, will reland with the right comments
addressed from the reviews.
Also revert dependent build fixes.
2020-08-15 07:35:10 +00:00
Mehdi Amini ebf521e784 Separate the Registration from Loading dialects in the Context
This changes the behavior of constructing MLIRContext to no longer load globally registered dialects on construction. Instead Dialects are only loaded explicitly on demand:
- the Parser is lazily loading Dialects in the context as it encounters them during parsing. This is the only purpose for registering dialects and not load them in the context.
- Passes are expected to declare the dialects they will create entity from (Operations, Attributes, or Types), and the PassManager is loading Dialects into the Context when starting a pipeline.

This changes simplifies the configuration of the registration: a compiler only need to load the dialect for the IR it will emit, and the optimizer is self-contained and load the required Dialects. For example in the Toy tutorial, the compiler only needs to load the Toy dialect in the Context, all the others (linalg, affine, std, LLVM, ...) are automatically loaded depending on the optimization pipeline enabled.
2020-08-14 09:40:27 +00:00
Alex Zinenko 321aa19ec8 [mlir] Expose printing functions in C API
Provide printing functions for most IR objects in C API (except Region that
does not have a `print` function, and Module that is expected to be printed as
Operation instead). The printing is based on a callback that is called with
chunks of the string representation and forwarded user-defined data.

Reviewed By: stellaraccident, Jing, mehdi_amini

Differential Revision: https://reviews.llvm.org/D85748
2020-08-12 13:07:34 +02:00
Alex Zinenko 75f239e975 [mlir] Initial version of C APIs
Introduce an initial version of C API for MLIR core IR components: Value, Type,
    Attribute, Operation, Region, Block, Location. These APIs allow for both
    inspection and creation of the IR in the generic form and intended for wrapping
    in high-level library- and language-specific constructs. At this point, there
    is no stability guarantee provided for the API.

Reviewed By: stellaraccident, lattner

Differential Revision: https://reviews.llvm.org/D83310
2020-08-05 15:04:08 +02:00