The FunctionType of the callee is always available, even if the Function
of the callee is not. Use that to get the number of fixed parameters.
llvm-svn: 325259
Changed identifier names (especially function parameters) to not clash with type names and to follow the proper naming conventions. Use of explicit type names changed to use auto where appropriate. Removed unused parameters that should have never been added in the first place. Minor formatting cleanups.
The changes were mostly mechanical and should have no functional impact.
llvm-svn: 325256
The variable name 'AllowReassociate' is a lie at this point because
it's set to 'isFast()' which is more than the 'reassoc' FMF after
rL317488.
In D41286, we showed that this transform may be valid even with strict
math by brute force checking every 32-bit float result.
There's a potential problem here because we're replacing with a tan()
libcall rather than a hypothetical LLVM tan intrinsic. So we might
set errno when we should be guaranteed not to do that. But that's
independent of this change.
llvm-svn: 325247
NetBSD ships now with netbsd_syscall_hooks.h and requires support
for TSan specific features to be enabled.
This is follow up of:
D42048: Add NetBSD syscall hooks skeleton in sanitizers
Sponsored by <The NetBSD Foundation>
llvm-svn: 325245
Summary:
In LLVM, 't' selects a floating-point/SIMD register and only supports
32-bit values. This is appropriately documented in the LLVM Language
Reference Manual. However, this behaviour diverges from that of GCC, where
't' selects the s0-s31 registers and its qX and dX variants depending on
additional operand modifiers (q/P).
For example, the following C code:
#include <arm_neon.h>
float32x4_t a, b, x;
asm("vadd.f32 %0, %1, %2" : "=t" (x) : "t" (a), "t" (b))
results in the following assembly if compiled with GCC:
vadd.f32 s0, s0, s1
whereas LLVM will show "error: couldn't allocate output register for
constraint 't'", since a, b, x are 128-bit variables, not 32-bit.
This patch extends the use of 't' to mean that of GCC, thus allowing
selection of the lower Q vector regs and their D/S variants. For example,
the earlier code will now compile as:
vadd.f32 q0, q0, q1
This behaviour still differs from that of GCC but I think it is actually
more correct, since LLVM picks up the right register type based on the
datatype of x, while GCC would need an extra operand modifier to achieve
the same result, as follows:
asm("vadd.f32 %q0, %q1, %q2" : "=t" (x) : "t" (a), "t" (b))
Since this is only an extension of functionality, existing code should not
be affected by this change. Note that operand modifiers q/P are already
supported by LLVM, so this patch should suffice to support inline
assembly with constraint 't' originally built for GCC.
Reviewers: grosbach, rengolin
Reviewed By: rengolin
Subscribers: rogfer01, efriedma, olista01, aemerson, javed.absar, eraman, kristof.beyls, llvm-commits
Differential Revision: https://reviews.llvm.org/D42962
llvm-svn: 325244
Summary:
- Enabling the build.
- Using assembly for the cpuid parts.
- Using thr_self FreeBSD call to get the thread id
Patch by: David CARLIER
Reviewers: dberris, rnk, krytarowski
Reviewed By: dberris, krytarowski
Subscribers: emaste, stevecheckoway, nglevin, srhines, kubamracek, dberris, mgorny, krytarowski, llvm-commits, #sanitizers
Differential Revision: https://reviews.llvm.org/D43278
llvm-svn: 325240
We can use PACKSS to saturate each stage of the chain: PACKSSDW down to [-32768,32767] and then PACKSSWB to [-128,127].
PACKUS is a little trickier and will be handled in a separate patch.
llvm-svn: 325235
Summary:
As a consequence, all LSP operations are now handled asynchronously,
i.e. they never block the main processing thread. However, if
-run-synchronously flag is specified, clangd still runs everything on
the main thread.
Reviewers: sammccall, ioeric, hokein
Reviewed By: sammccall, ioeric
Subscribers: klimek, jkorous-apple, cfe-commits
Differential Revision: https://reviews.llvm.org/D43227
llvm-svn: 325233
This is mainly a move of simplifyShuffleOperands from DAGCombiner::visitVECTOR_SHUFFLE to create a more general purpose TargetLowering::SimplifyDemandedVectorElts implementation.
Further features can be moved/added in future patches.
Differential Revision: https://reviews.llvm.org/D42896
llvm-svn: 325232
Analysis of fails in the case of out of memory errors can be tricky on
Windows. Such error emerges at the point where memory allocation function
fails, but manifests itself when null pointer is used. These two points
may be distant from each other. Besides, next runs may not exhibit
allocation error.
Usual programming practice does not require checking result of 'operator
new' because it throws 'std::bad_alloc' in the case of allocation error.
However, LLVM is usually built with exceptions turned off, so 'new' can
return null pointer. This change installs custom new handler, which causes
fatal error in the case of out of memory. The handler is installed
automatically prior to call to 'main' during construction of a static
object defined in 'lib/Support/ErrorHandling.cpp'. If the application does
not use this file, the handler may be installed manually by a call to
'llvm::install_out_of_memory_new_handler', declared in
'include/llvm/Support/ErrorHandling.h".
There are calls to C allocation functions, malloc, calloc and realloc.
They are used for interoperability with C code, when allocated object has
variable size and when it is necessary to avoid call of constructors. In
many calls the result is not checked against null pointer. To simplify
checks, new functions are defined in the namespace 'llvm' with the
same names as these C function. These functions produce fatal error if
allocation fails. User should use 'llvm::malloc' instead of 'std::malloc'
in order to use the safe variant. This change replaces 'std::malloc'
in the cases when the result of allocation function is not checked against
null pointer.
Finally, there are plain C code, that uses malloc and similar functions. If
the result is not checked, assert statements are added.
Differential Revision: https://reviews.llvm.org/D43010
llvm-svn: 325224
Summary:
The chrome trace viewer requires events within a thread to strictly nest.
So we need to record the lifetime of the Span objects, not the contexts.
But we still want to show the relationship between spans where a context crosses
threads, so do this with flow events (i.e. arrows).
Before: https://photos.app.goo.gl/q4Dd9u9xtelaXk1v1
After: https://photos.app.goo.gl/5RNLmAMLZR3unvY83
(This could stand some further improvement, in particular I think we want a
container span whenever we schedule work on a thread. But that's another patch)
Reviewers: ioeric
Subscribers: klimek, ilya-biryukov, jkorous-apple, cfe-commits
Differential Revision: https://reviews.llvm.org/D43272
llvm-svn: 325220
GlobalISel doesn't yet implement blockaddress and falls back to
SelectionDAG. This results in additional branch instruction to
the next basic block which breaks the OMPT tests.
Disable GlobalISel for now when compiling the tests because fixing
them is not easily possible. See http://llvm.org/PR36313 for full
discussion history.
Differential Revision: https://reviews.llvm.org/D43195
llvm-svn: 325218
There is a more powerful but still simple function `isKnownViaSimpleReasoning ` that
does constant range check and few more additional checks. We use it some places (e.g.
when proving implications) and in some other places we only check constant ranges.
Currently, indvar simplifier fails to remove the check in following loop:
int inc = ...;
for (int i = inc, j = inc - 1; i < 200; ++i, ++j)
if (i > j) { ... }
This patch replaces all usages of `isKnownPredicateViaConstantRanges` with
`isKnownViaSimpleReasoning` to have smarter proofs. In particular, it fixes the
case above.
Reviewed-By: sanjoy
Differential Revision: https://reviews.llvm.org/D43175
llvm-svn: 325214
Summary:
Introduce handling of 1200 NetBSD specific ioctl(2) calls.
Over 100 operations are disabled as unavailable or conflicting
with the existing ones (the same operation number).
Add a script that generates the rules to detect ioctls on NetBSD.
The generate_netbsd_ioctls.awk script has been written
in NetBSD awk(1) (patched nawk) and is compatible with gawk.
Generate lib/sanitizer_common/sanitizer_interceptors_ioctl_netbsd.inc
with the awk(1) script.
Update sanitizer_platform_limits_netbsd accordingly to add the needed
definitions.
Sponsored by <The NetBSD Foundation>
Reviewers: joerg, vitalybuka, eugenis, dvyukov
Reviewed By: vitalybuka
Subscribers: kubamracek, llvm-commits, mgorny, fedor.sergeev, #sanitizers
Tags: #sanitizers
Differential Revision: https://reviews.llvm.org/D41636
llvm-svn: 325212
Since r325210, in cfg-temporary-dtors mode, we can rely on the CFG to tell us
that we're indeed constructing a temporary, so we can trivially construct a
temporary region and inline the constructor.
Much like r325202, this is only done under the off-by-default
cfg-temporary-dtors flag because the temporary destructor, even if available,
will not be inlined and won't have the correct object value (target region).
Unless this is fixed, it is quite unsafe to inline the constructor.
If the temporary is lifetime-extended, the destructor would be an automatic
destructor, which would be evaluated with a "correct" target region - modulo
the series of incorrect relocations performed during the lifetime extension.
It means that at least, values within the object are guaranteed to be properly
escaped or invalidated.
Differential Revision: https://reviews.llvm.org/D43062
llvm-svn: 325211
Constructors of C++ temporary objects that have destructors now can be queried
to discover that they're indeed constructing temporary objects.
The respective CXXBindTemporaryExpr, which is also repsonsible for destroying
the temporary at the end of full-expression, is now available at the
construction site in the CFG. This is all the context we need to provide for
temporary objects that are not lifetime extended. For lifetime-extended
temporaries, more context is necessary.
Differential Revision: https://reviews.llvm.org/D43056
llvm-svn: 325210
EvalCallOptions were introduced in r324018 for allowing various parts of
ExprEngine to notify the inlining mechanism, while preparing for evaluating a
function call, of possible difficulties with evaluating the call that they
foresee. Then mayInlineCall() would still be a single place for making the
decision.
Use that mechanism for destructors as well - pass the necessary flags from the
CFG-element-specific destructor handlers.
Part of this patch accidentally leaked into r324018, which led into a change in
tests; this change is reverted now, because even though the change looked
correct, the underlying behavior wasn't. Both of these commits were not intended
to introduce any function changes otherwise.
Differential Revision: https://reviews.llvm.org/D42991
llvm-svn: 325209
Summary:
Implement the skeleton of NetBSD syscall hooks for use with sanitizers.
Add a script that generates the rules to handle syscalls
on NetBSD: generate_netbsd_syscalls.awk. It has been written
in NetBSD awk(1) (patched nawk) and is compatible with gawk.
Generate lib/sanitizer_common/sanitizer_platform_limits_netbsd.h
that is a public header for applications, and included as:
<sanitizer_common/sanitizer_platform_limits_netbsd.h>.
Generate sanitizer_syscalls_netbsd.inc that defines all the
syscall rules for NetBSD. This file is modeled after the Linux
specific file: sanitizer_common_syscalls.inc.
Start recognizing NetBSD syscalls with existing sanitizers:
ASan, ESan, HWASan, TSan, MSan.
Sponsored by <The NetBSD Foundation>
Reviewers: joerg, vitalybuka, kcc, dvyukov, eugenis
Reviewed By: vitalybuka
Subscribers: hintonda, kubamracek, mgorny, llvm-commits, #sanitizers
Tags: #sanitizers
Differential Revision: https://reviews.llvm.org/D42048
llvm-svn: 325206