Currently, there are many instances where `SourceLocation` objects are
converted to raw representation to be stored in structs that are
used as fields of tagged unions.
This is done to make the corresponding structs trivial.
Triviality allows avoiding undefined behavior when implicitly changing
the active member of the union.
However, in most cases, we can explicitly construct an active member
using placement new. This patch adds the required active member
selections and replaces `SourceLocation`-s represented as
`unsigned int` with proper `SourceLocation`-s.
One notable exception is `DeclarationNameLoc`: the objects of this class
are often not properly initialized (so the code currently relies on
its default constructor which uses memset). This class will be fixed
in a separate patch.
Reviewed By: dblaikie
Differential Revision: https://reviews.llvm.org/D94237
This patch adds support for two new variants of the vectorize_width
pragma:
1. vectorize_width(X[, fixed|scalable]) where an optional second
parameter is passed to the vectorize_width pragma, which indicates if
the user wishes to use fixed width or scalable vectorization. For
example the user can now write something like:
#pragma clang loop vectorize_width(4, fixed)
or
#pragma clang loop vectorize_width(4, scalable)
In the absence of a second parameter it is assumed the user wants
fixed width vectorization, in order to maintain compatibility with
existing code.
2. vectorize_width(fixed|scalable) where the width is left unspecified,
but the user hints what type of vectorization they prefer, either
fixed width or scalable.
I have implemented this by making use of the LLVM loop hint attribute:
llvm.loop.vectorize.scalable.enable
Tests were added to
clang/test/CodeGenCXX/pragma-loop.cpp
for both the 'fixed' and 'scalable' optional parameter.
See this thread for context: http://lists.llvm.org/pipermail/cfe-dev/2020-November/067262.html
Differential Revision: https://reviews.llvm.org/D89031
The new clang internal extension '__cl_clang_function_pointers'
allows use of function pointers and other features that have
the same functionality:
- Use of member function pointers;
- Unrestricted use of references to functions;
- Virtual member functions.
This not a vendor extension and therefore it doesn't require any
special target support. Exposing this functionality fully
will require vendor or Khronos extension.
Tags: #clang
Differential Revision: https://reviews.llvm.org/D94021
Part of the <=> changes in C++20 make certain patterns of writing equality
operators ambiguous with themselves (sorry!).
This patch goes through and adjusts all the comparison operators such that
they should work in both C++17 and C++20 modes. It also makes two other small
C++20-specific changes (adding a constructor to a type that cases to be an
aggregate, and adding casts from u8 literals which no longer have type
const char*).
There were four categories of errors that this review fixes.
Here are canonical examples of them, ordered from most to least common:
// 1) Missing const
namespace missing_const {
struct A {
#ifndef FIXED
bool operator==(A const&);
#else
bool operator==(A const&) const;
#endif
};
bool a = A{} == A{}; // error
}
// 2) Type mismatch on CRTP
namespace crtp_mismatch {
template <typename Derived>
struct Base {
#ifndef FIXED
bool operator==(Derived const&) const;
#else
// in one case changed to taking Base const&
friend bool operator==(Derived const&, Derived const&);
#endif
};
struct D : Base<D> { };
bool b = D{} == D{}; // error
}
// 3) iterator/const_iterator with only mixed comparison
namespace iter_const_iter {
template <bool Const>
struct iterator {
using const_iterator = iterator<true>;
iterator();
template <bool B, std::enable_if_t<(Const && !B), int> = 0>
iterator(iterator<B> const&);
#ifndef FIXED
bool operator==(const_iterator const&) const;
#else
friend bool operator==(iterator const&, iterator const&);
#endif
};
bool c = iterator<false>{} == iterator<false>{} // error
|| iterator<false>{} == iterator<true>{}
|| iterator<true>{} == iterator<false>{}
|| iterator<true>{} == iterator<true>{};
}
// 4) Same-type comparison but only have mixed-type operator
namespace ambiguous_choice {
enum Color { Red };
struct C {
C();
C(Color);
operator Color() const;
bool operator==(Color) const;
friend bool operator==(C, C);
};
bool c = C{} == C{}; // error
bool d = C{} == Red;
}
Differential revision: https://reviews.llvm.org/D78938
The `assumes` directive is an OpenMP 5.1 feature that allows the user to
provide assumptions to the optimizer. Assumptions can refer to
directives (`absent` and `contains` clauses), expressions (`holds`
clause), or generic properties (`no_openmp_routines`, `ext_ABCD`, ...).
The `assumes` spelling is used for assumptions in the global scope while
`assume` is used for executable contexts with an associated structured
block.
This patch only implements the global spellings. While clauses with
arguments are "accepted" by the parser, they will simply be ignored for
now. The implementation lowers the assumptions directly to the
`AssumptionAttr`.
Reviewed By: ABataev
Differential Revision: https://reviews.llvm.org/D91980
Given the following code:
```
void Foo(int);
void Baz()
{
Bar(sizeof int);
}
```
The error message which is printed today is this:
```
error: expected parentheses around type name in sizeof expression
```
There is no source location printed whatsoever, so fixing a compile break like this becomes extremely hard in a large codebase.
My change improves the error message. But it doesn't output a FixItHint because I wasn't able to figure out how to get the locations for left and right parens. So any tips would be appreciated.
```
<source>:7:6: error: expected parentheses around type name in sizeof expression
Bar(sizeof int);
^
```
Reviewed By: rsmith
Differential Revision: https://reviews.llvm.org/D91129
The `assumes` directive is an OpenMP 5.1 feature that allows the user to
provide assumptions to the optimizer. Assumptions can refer to
directives (`absent` and `contains` clauses), expressions (`holds`
clause), or generic properties (`no_openmp_routines`, `ext_ABCD`, ...).
The `assumes` spelling is used for assumptions in the global scope while
`assume` is used for executable contexts with an associated structured
block.
This patch only implements the global spellings. While clauses with
arguments are "accepted" by the parser, they will simply be ignored for
now. The implementation lowers the assumptions directly to the
`AssumptionAttr`.
Reviewed By: ABataev
Differential Revision: https://reviews.llvm.org/D91980
Function Parser::ParseAvailabilityAttribute checks that the message string of
an availability attribute is not a wide string literal. Test case
clang/test/Parser/attr-availability.c specifies that a string literal is
expected.
The code checked that the first token in a string concatenation is a string
literal, and then that the concatenated string consists of 1-byte characters.
On a target where wide character is 1 byte, a string concatenation "a" L"b"
passes both those checks, but L"b" alone is rejected. More generally, "a" u8"b"
passes the checks, but u8"b" alone is rejected.
So check isAscii() instead of character size.
_Nullable_result generally like _Nullable, except when being imported into a
swift async method. rdar://70106409
Differential revision: https://reviews.llvm.org/D92495
552c6c2 removed support for promoting VLAs to constant arrays when the bounds
isn't an ICE, since this can result in miscompiling a conforming program that
assumes that the array is a VLA. Promoting VLAs for fields is still supported,
since clang doesn't support VLAs in fields, so no conforming program could have
a field VLA.
This change is really disruptive, so this commit carves out two more cases
where we promote VLAs which can't miscompile a conforming program:
- When the VLA appears in an ivar -- this seems like a corollary to the field thing
- When the VLA has an initializer -- VLAs can't have an initializer
Differential revision: https://reviews.llvm.org/D90871
template-parameter-list in a lambda.
This implements one of the missing parts of P0857R0. Mark it as not done
on the cxx_status page given that it's still incomplete.
PreferedType were not set when parsing compound literals, hence
designated initializers were not available as code completion suggestions.
This patch sets the preferedtype to parsed type for the following initializer
list.
Fixes https://github.com/clangd/clangd/issues/142.
Differential Revision: https://reviews.llvm.org/D92370
Reviewed by aaron.ballman, rsmith, wchilders
Highlights of review:
- avoid specifying an underlying type (unless such an enum is stored (or part of an abi?))
- avoid using enums as bit-fields, preferring unsigned bit-fields that we static_cast enumerators to. (MS's abi laysout enum bit-fields differently).
- clang-format, clang-format, clang-format.
https://reviews.llvm.org/D91035
Thank you!
Reviewed here: https://reviews.llvm.org/D91409 by Aaron.
Highlights of the review:
- avoid an underlying type for enums
- avoid enum bit fields (MSVC packing anomalies) and favor static_casts to unsigned bit-fields
Patch by Thorsten Schuett <schuett@gmail.com> w some minor fixes in SemaType.cpp where a couple asserts had to be repaired to deal with lack of implicit coversion to int.
Thanks Thorsten!
Since these are scoped enumerators, they have to be prefixed by DeclaratorContext, so lets remove Context from the name, and return some characters to the multiverse.
Patch was reviewed here: https://reviews.llvm.org/D91011
Thank you to aaron, bruno, wyatt and barry for indulging me.
Pragma 'clang fp' is extended to support a new option, 'exceptions'. It
allows to specify floating point exception behavior more flexibly.
Differential Revision: https://reviews.llvm.org/D89849
ParseOpenMP.cpp was pretty much clang-formatted except a few minor
locations. Let's make it a clang formatted file.
Reviewed By: JonChesterfield
Differential Revision: https://reviews.llvm.org/D90440
We collect the source location of a trailing return type in the parser,
improving the location for regular functions and providing a location
for lambdas, where previously there was none.
Fixes PR47732.
Reviewed By: aaron.ballman
Differential Revision: https://reviews.llvm.org/D90129
Given the following VarTemplateDecl AST,
```
VarTemplateDecl col:26 X
|-TemplateTypeParmDecl typename depth 0 index 0
`-VarDecl X 'bool' cinit
`-CXXBoolLiteralExpr 'bool' true
```
previously, we returned the VarDecl as the top-level decl, which was not
correct, the top-level decl should be VarTemplateDecl.
Differential Revision: https://reviews.llvm.org/D89098
The current C++ grammar allows an anonymous bit-field with an attribute,
but this is ambiguous (the attribute in that case could appertain to the
type instead of the bit-field). The current thinking in the Core Working
Group is that it's better to disallow attributes in that position at the
grammar level so that the ambiguity resolves in favor of applying to the
type.
During discussions about the behavior of the attribute, the Core Working
Group also felt it was better to disallow anonymous bit-fields from
specifying a default member initializer.
This implements both sets of related grammar changes.
Add the `swift_newtype` attribute which allows a type definition to be
imported into Swift as a new type. The imported type must be either an
enumerated type (enum) or an object type (struct).
This is based on the work of the original changes in
8afaf3aad2
Differential Revision: https://reviews.llvm.org/D87652
Reviewed By: Aaron Ballman
With this extension the effects of `omp begin declare variant` will be
applied to template function declarations. The behavior is opt-in and
controlled by the `extension(allow_templates)` trait. While generally
useful, this will enable us to implement complex math function calls by
overloading the templates of the standard library with the ones in
libc++.
Reviewed By: JonChesterfield
Differential Revision: https://reviews.llvm.org/D85735
This extension allows to declare variants in between `omp begin/end
declare variant` that do not match the type of the existing function
with that name. Without this extension we would not find a base function
(with a compatible type), therefore create a new one, which would
cause conflicting declarations. With this extension we will not create
"missing" base functions, which basically renders these specializations
harmless. They will be generated but never called.
Reviewed By: JonChesterfield
Differential Revision: https://reviews.llvm.org/D85878
Due to `omp begin/end declare variant`, OpenMP context selectors can be
nested. This patch adds initial support for this so we can use it for
target math variants. We should improve the detection of "equivalent"
scores and user conditions, we should also revisit the data structures
of the OMPTraitInfo object, however, both are not pressing issues right
now.
Reviewed By: JonChesterfield
Differential Revision: https://reviews.llvm.org/D85877
This is the initial part of the implementation of the C++20 likelihood
attributes. It handles the attributes in an if statement.
Differential Revision: https://reviews.llvm.org/D85091
This change implements pragma STDC FENV_ROUND, which is introduced by
the extension to standard (TS 18661-1). The pragma is implemented only
in frontend, it sets apprpriate state of FPOptions stored in Sema. Use
of these bits in constant evaluation adn/or code generator is not in the
scope of this change.
Parser issues warning on unsuppored pragma when it encounteres pragma
STDC FENV_ROUND, however it makes syntax checks and updates Sema state
as if the pragma were supported.
Primary purpose of the partial implementation is to facilitate
development of non-default floating poin environment. Previously a
developer cannot set non-default rounding mode in sources, this mades
preparing tests for say constant evaluation substantially complicated.
Differential Revision: https://reviews.llvm.org/D86921
-frewrite-includes.
Remove the special-case (and highly implausible) diagnostic for a
compound token that crosses a file boundary, and instead model that case
the same as a compound token separated by whitespace, so that file
transitions and presumed file transitions behave the same way.
For example:
#define FOO(x) (x)
FOO({});
... forms a statement-expression after macro expansion. This warning
applies to '({' and '})' delimiting statement-expressions, '[[' and ']]'
delimiting attributes, and '::*' introducing a pointer-to-member.
The warning for forming these compound tokens across macro expansions
(or across files!) is enabled by default; the warning for whitespace
within the tokens is not, but is included in -Wall.
Differential Revision: https://reviews.llvm.org/D86751
This is motivated by tooling (clangd, libclang etc) - headers without
declarations are legitimate even if they're not valid TUs.
The other use -x c-header cases (PCH/modules) are nonstandard anyway and this
warning doesn't seem necessary there either.
Differential Revision: https://reviews.llvm.org/D85789
Summary:
Introduced OMPChildren class to handle all associated clauses, statement
and child expressions/statements. It allows to represent some directives
more correctly (like flush, depobj etc. with pseudo clauses, ordered
depend directives, which are standalone, and target data directives).
Also, it will make easier to avoid using of CapturedStmt in directives,
if required (atomic, tile etc. directives).
Also, it simplifies serialization/deserialization of the
executable/declarative directives.
Reduces number of allocation operations for mapper declarations.
Reviewers: jdoerfert
Subscribers: yaxunl, guansong, jfb, cfe-commits, sstefan1, aaron.ballman, caomhin
Tags: #clang
Differential Revision: https://reviews.llvm.org/D83261
This patch implements Clang front end support for the OpenMP TR8
`present` motion modifier for `omp target update` directives. The
next patch in this series implements OpenMP runtime support.
Reviewed By: ABataev
Differential Revision: https://reviews.llvm.org/D84711
It was unclear what `isa` was supposed to mean so we did not provide any
traits for this context selector. With this patch we will allow *any*
string or identifier. We use the target attribute and target info to
determine if the trait matches. In other words, we will check if the
provided value is a target feature that is available (at the call site).
Fixes PR46338
Reviewed By: ABataev
Differential Revision: https://reviews.llvm.org/D83281