This patch stops unconditionally transforming FSUB(-0, X) into an FNEG(X) while building the MIR.
This corresponds with the SelectionDAGISel change in D84056.
Differential Revision: https://reviews.llvm.org/D85139
Upstream the code for dealing with TCC introduced in macOS Mojave. This
will make the debuggee instead of the debugger responsible for the
privileges it needs.
Differential revision: https://reviews.llvm.org/D85217
There seems to be an unrelated CSEMIRBuilder bug that was causing
expensive checks failures in this case. Hack the test to avoid this
problem for now until that's fixed.
for the advantage outlined by D83639 ([OptTable] Support grouped short options)
Some behavior changes:
* -i={0,false} is removed. Use --no-inlines instead.
* --demangle={0,false} is removed. Use --no-demangle instead
* -untag-addresses={0,false} is removed. Use --no-untag-addresses instead
Added a higher level API OptTable::parseArgs which handles optional
initial options populated from an environment variable, expands response
files recursively, and parses options.
Reviewed By: jhenderson
Differential Revision: https://reviews.llvm.org/D83530
This patch added the following additional compile-once
run-everywhere (CO-RE) relocations:
- existence/size of typedef, struct/union or enum type
- enum value and enum value existence
These additional relocations will make CO-RE bpf programs more
adaptive for potential kernel internal data structure changes.
For existence/size relocations, the following two code patterns
are supported:
1. uint32_t __builtin_preserve_type_info(*(<type> *)0, flag);
2. <type> var;
uint32_t __builtin_preserve_field_info(var, flag);
flag = 0 for existence relocation and flag = 1 for size relocation.
For enum value existence and enum value relocations, the following code
pattern is supported:
uint64_t __builtin_preserve_enum_value(*(<enum_type> *)<enum_value>,
flag);
flag = 0 means existence relocation and flag = 1 for enum value.
relocation. In the above <enum_type> can be an enum type or
a typedef to enum type. The <enum_value> needs to be an enumerator
value from the same enum type. The return type is uint64_t to
permit potential 64bit enumerator values.
Differential Revision: https://reviews.llvm.org/D83242
The swap removal pass looks to remove swaps when a loaded value is swapped, some
number of lane-insensitive operations are performed and then the value is
swapped again and stored.
However, in a situation where we load the value, swap it and then store it
without swapping again, the pass erroneously removes the single swap. The
reason is that both checks in the same equivalence class:
- load feeds a swap
- swap feeds a store
pass. However, there is no check that the two swaps are actually a single swap.
This patch just fixes that.
Differential revision: https://reviews.llvm.org/D84785
The custom lowering saves an instruction over the generic expansion, by
taking advantage of the fact that PowerPC shift instructions are well
defined in the shift-by-bitwidth case.
Differential Revision: https://reviews.llvm.org/D83948
In these two cases, use of `os.path.realpath` is problematic:
- The name of the compiler is significant [1] . For testing purposes, we might
provide a compiler called "clang" which is actually a symlink to some build
script (which does some flag processing before invoking the real clang). The
destination the symlink may not be called "clang", but we still want it to be
treated as such.
- When using a build system that puts build artifacts in an arbitrary build
location, and later creates a symlink for it (e.g. creates a
"<lldb root>/lldbsuite/test/dotest.py" symlinks that points to
"/build/artifact/<hash>/dotest.py"), looking at the realpath will not match
the "test" convention required here.
[1] See `Makefile.rules` in the lldb tree, e.g. we use different flags if the compiler is named "clang"
Reviewed By: JDevlieghere
Differential Revision: https://reviews.llvm.org/D85175
Now that rG47cea9e82dda941e lets us aggressively decode multi-use shuffles for the OR(SHUFFLE(),SHUFFLE()) case we don't need the computeKnownBits variant any more.
Since we permit using SOME attributes (at the moment, just 1) with
multiversioning, we should improve the message as it still implies that
no attributes should be combined with multiversioning.
The `splitFullAndPartialTransferPrecondition` has a restrictive condition to
prevent the pattern to be applied recursively if it is nested under an scf.IfOp.
Relaxing the condition to the immediate parent op must not be an scf.IfOp lets
the pattern be applied more generally while still preventing recursion.
Differential Revision: https://reviews.llvm.org/D85209
We use inheritance to model the grammar's disjunction rule:
literal:
integer-literal
character-literal
floating-point-literal
string-literal
boolean-literal
pointer-literal
user-defined-literal
Differential Revision: https://reviews.llvm.org/D85186
Commit https://reviews.llvm.org/rGcd53ded557c3 attempts to fix the
computation in computeHostNumPhysicalCores() to respect Affinity.
However, the GLIBC wrapper of the affinity system call fails with
a default size of cpu_set_t on systems that have more than 1024 CPUs.
This just fixes the computation on such large machines.
Permit lane-crossing post shuffles on AVX1 targets as long as every element comes from the same source lane, which for v8f32/v4f64 cases can be efficiently lowered with the LowerShuffleAsLanePermuteAnd* style methods.
This produces a chrome://tracing compatible trace file in the same way
as -ftime-trace.
This can be useful in optimising test time where one long test is causing
long overall test time on a wide machine.
This also helped in finding tests which have side effects on others
(e.g. https://reviews.llvm.org/D84885).
Differential Revision: https://reviews.llvm.org/D84931
This revision adds a transformation and a pattern that rewrites a "maybe masked" `vector.transfer_read %view[...], %pad `into a pattern resembling:
```
%1:3 = scf.if (%inBounds) {
scf.yield %view : memref<A...>, index, index
} else {
%2 = linalg.fill(%extra_alloc, %pad)
%3 = subview %view [...][...][...]
linalg.copy(%3, %alloc)
memref_cast %extra_alloc: memref<B...> to memref<A...>
scf.yield %4 : memref<A...>, index, index
}
%res= vector.transfer_read %1#0[%1#1, %1#2] {masked = [false ... false]}
```
where `extra_alloc` is a top of the function alloca'ed buffer of one vector.
This rewrite makes it possible to realize the "always full tile" abstraction where vector.transfer_read operations are guaranteed to read from a padded full buffer.
The extra work only occurs on the boundary tiles.
This is based on the existing code for the non-intrinsic idioms
in InstCombine.
The vector constant constraint is non-obvious: undefs should be
ok in the outer call, but they can't propagate safely from the
inner call in all cases. Example:
https://alive2.llvm.org/ce/z/-2bVbM
define <2 x i8> @src(<2 x i8> %x) {
%0:
%m = umin <2 x i8> %x, { 7, undef }
%m2 = umin <2 x i8> { 9, 9 }, %m
ret <2 x i8> %m2
}
=>
define <2 x i8> @tgt(<2 x i8> %x) {
%0:
%m = umin <2 x i8> %x, { 7, undef }
ret <2 x i8> %m
}
Transformation doesn't verify!
ERROR: Value mismatch
Example:
<2 x i8> %x = < undef, undef >
Source:
<2 x i8> %m = < #x00 (0) [based on undef value], #x00 (0) >
<2 x i8> %m2 = < #x00 (0), #x00 (0) >
Target:
<2 x i8> %m = < #x07 (7), #x10 (16) >
Source value: < #x00 (0), #x00 (0) >
Target value: < #x07 (7), #x10 (16) >
A new first-party modeling for LLVM IR types in the LLVM dialect has been
developed in parallel to the existing modeling based on wrapping LLVM `Type *`
instances. It resolves the long-standing problem of modeling identified
structure types, including recursive structures, and enables future removal of
LLVMContext and related locking mechanisms from LLVMDialect.
This commit only switches the modeling by (a) renaming LLVMTypeNew to LLVMType,
(b) removing the old implementaiton of LLVMType, and (c) updating the tests. It
is intentionally minimal. Separate commits will remove the infrastructure built
for the transition and update API uses where appropriate.
Depends On D85020
Reviewed By: rriddle
Differential Revision: https://reviews.llvm.org/D85021
These are intended to smoothen the transition and may be removed in the future
in favor of more MLIR-compatible APIs. They intentionally have the same
semantics as the existing functions, which must remain stable until the
transition is complete.
Depends On D85019
Reviewed By: nicolasvasilache
Differential Revision: https://reviews.llvm.org/D85020
With new LLVM dialect type modeling, the dialect types no longer wrap LLVM IR
types. Therefore, they need to be translated to and from LLVM IR during export
and import. Introduce the relevant functionality for translating types. It is
currently exercised by an ad-hoc type translation roundtripping test that will
be subsumed by the actual translation test when the type system transition is
complete.
Depends On D84339
Reviewed By: herhut
Differential Revision: https://reviews.llvm.org/D85019
The bug was not noticed because we didn't have a lot of custom type conversions
directly to LLVM dialect.
Differential Revision: https://reviews.llvm.org/D85192
This is a first patch that sweeps over tests to fix
indentation (tabs to spaces). It also adds label checks and
removes redundant matching of `%{{.*}} = `.
The following tests have been fixed:
- arithmetic-ops-to-llvm
- bitwise-ops-to-llvm
- cast-ops-to-llvm
- comparison-ops-to-llvm
- logical-ops-to-llvm (renamed to match the rest)
Reviewed By: ftynse
Differential Revision: https://reviews.llvm.org/D85181
This patch adds a CFI entry for each SVE callee saved register
that needs unwind info at an offset from the CFA. The offset is
a DWARF expression because the offset is partly scalable.
The CFI entries only cover a subset of the SVE callee-saves and
only encodes the lower 64-bits, thus implementing the lowest
common denominator ABI. Existing unwinders may support VG but
only restore the lower 64-bits.
Reviewed By: efriedma
Differential Revision: https://reviews.llvm.org/D84044
The CFA is calculated as (SP/FP + offset), but when there are
SVE objects on the stack the SP offset is partly scalable and
should instead be expressed as the DWARF expression:
SP + offset + scalable_offset * VG
where VG is the Vector Granule register, containing the
number of 64bits 'granules' in a scalable vector.
Reviewed By: efriedma
Differential Revision: https://reviews.llvm.org/D84043
When mapping an optional value, if the value is <none> and followed
by comments, there will be a parsing error. This patch helps fix this
issue.
e.g.,
When mapping the following YAML,
```
Sections:
- Name: blah
Type: SHT_foo
Flags: [[FLAGS=<none>]] ## some comments.
```
the raw value of `ScalarNode` is "<none> " rather than "<none>". We need
to remove the spaces.
Differential Revision: https://reviews.llvm.org/D85180
This is the final bit of work to relax the register allocation
requirements when code generating normal LLVM IR, which rarely
care about the result of inactive lanes. By using _PRED nodes
we can make better use of SVE's reversed instructions.
Also removes a redundant parameter from the min/max tests.
Differential Revision: https://reviews.llvm.org/D85142
As discussed in D84949, this removes the constraint to cast since it does not
cause compile time degradation.
Reviewed By: lebedev.ri
Differential Revision: https://reviews.llvm.org/D85188
http://lab.llvm.org:8011/builders/clang-cmake-x86_64-avx2-linux/builds/15718/steps/build%20stage%201/logs/stdio:
FAILED: /usr/bin/c++ -DGTEST_HAS_RTTI=0 -D_DEBUG -D_GNU_SOURCE -D__STDC_CONSTANT_MACROS -D__STDC_FORMAT_MACROS -D__STDC_LIMIT_MACROS -Itools/llvm-readobj -I/home/ssglocal/clang-cmake-x86_64-avx2-linux/clang-cmake-x86_64-avx2-linux/llvm/llvm/tools/llvm-readobj -Iinclude -I/home/ssglocal/clang-cmake-x86_64-avx2-linux/clang-cmake-x86_64-avx2-linux/llvm/llvm/include -march=broadwell -fPIC -fvisibility-inlines-hidden -Werror=date-time -Wall -Wextra -Wno-unused-parameter -Wwrite-strings -Wcast-qual -Wno-missing-field-initializers -pedantic -Wno-long-long -Wno-maybe-uninitialized -Wdelete-non-virtual-dtor -Wno-comment -fdiagnostics-color -ffunction-sections -fdata-sections -O3 -fno-exceptions -fno-rtti -UNDEBUG -std=c++14 -MD -MT tools/llvm-readobj/CMakeFiles/llvm-readobj.dir/ELFDumper.cpp.o -MF tools/llvm-readobj/CMakeFiles/llvm-readobj.dir/ELFDumper.cpp.o.d -o tools/llvm-readobj/CMakeFiles/llvm-readobj.dir/ELFDumper.cpp.o -c /home/ssglocal/clang-cmake-x86_64-avx2-linux/clang-cmake-x86_64-avx2-linux/llvm/llvm/tools/llvm-readobj/ELFDumper.cpp
/home/ssglocal/clang-cmake-x86_64-avx2-linux/clang-cmake-x86_64-avx2-linux/llvm/llvm/tools/llvm-readobj/ELFDumper.cpp: In function ‘llvm::Expected<const llvm::object::Elf_Mips_Options<ELFT>*> readMipsOptions(const uint8_t*, llvm::ArrayRef<unsigned char>&, bool&)’:
/home/ssglocal/clang-cmake-x86_64-avx2-linux/clang-cmake-x86_64-avx2-linux/llvm/llvm/tools/llvm-readobj/ELFDumper.cpp:3374:12: error: parse error in template argument list
if (O->size < ExpectedSize)
Note: I played with godbolt.org and was able to catch the similar "error in template argument list" error when used gcc 4.9.0 with this code.
Fix: try to introduce a variable to store `O->size`, it helped to me in godbolt.
This option was added a while back, to help improve AA around pointer
phi loops. It looks for phi(gep(phi, const), x) loops, checking if x can
then prove more precise aliasing info.
Differential Revision: https://reviews.llvm.org/D82998
Added patterns so that both SSAT and USAT instructions are generated with shifts. Added corresponding regression tests.
Differential Review: https://reviews.llvm.org/D85120
[X86][SSE] Shuffle combine blends to OR(X,Y) if the relevant elements are known zero (REAPPLIED)
This allows us to remove the (depth violating) code in getFauxShuffleMask where we were combining the OR(SHUFFLE,SHUFFLE) shuffle inputs as well, and not just the OR().
This is a minor step toward being able to shuffle combine from/to SELECT/BLENDV as a faux shuffle.
Reapplied with fixed signed/unsigned comparisons.