Commit Graph

120 Commits

Author SHA1 Message Date
Andrew Dona-Couch 1fedd90cc7 [AVR] fix interrupt stack pointer restoration
This patch fixes a corruption of the stack pointer and several registers in any AVR interrupt with non-empty stack frame.  Previously, the callee-saved registers were popped before restoring the stack pointer, causing the pointer math to use the wrong base value while also corrupting the caller's register.  This change fixes the code to restore the stack pointer last before exiting the interrupt service routine.

https://bugs.llvm.org/show_bug.cgi?id=47253

Reviewed By: dylanmckay

Differential Revision: https://reviews.llvm.org/D87735

Patch by Andrew Dona-Couch.
2020-10-01 18:52:13 +13:00
Dylan McKay b9c26a9cfe [AVR] Rewrite the function calling convention.
Summary:
The previous version relied on the standard calling convention using
std::reverse() to try to force the AVR ABI. But this only works for
simple cases, it fails for example with aggregate types.

This patch rewrites the calling convention with custom C++ code, that
implements the ABI defined in https://gcc.gnu.org/wiki/avr-gcc.

To do that it adds a few 16-bit pseudo registers for unaligned argument
passing, such as R24R23. For example this function:

    define void @fun({ i8, i16 } %a)

will pass %a.0 in R22 and %a.1 in R24R23.

There are no instructions that can use these pseudo registers, so a new
register class, DREGSMOVW, is defined to make them apart.

Also the ArgCC_AVR_BUILTIN_DIV is no longer necessary, as it is
identical to the C++ behavior (actually the clobber list is more strict
for __div* functions, but that is currently unimplemented).

Reviewers: dylanmckay

Subscribers: Gaelan, Sh4rK, indirect, jwagen, efriedma, dsprenkels, hiraditya, Jim, llvm-commits

Tags: #llvm

Differential Revision: https://reviews.llvm.org/D68524

Patch by Rodrigo Rivas Costa.
2020-06-23 21:36:18 +12:00
Ayke van Laethem ff4817ec2a
[AVR] Don't adjust for instruction size
I'm not entirely sure why this was ever needed, but when I remove both
adjustments all tests still pass.

This fixes a bug where a long branch (using the `jmp` instead of the
`rjmp` instruction) was incorrectly adjusted by 2 because it jumps to an
absolute address instead of a PC-relative address. I could have added
AVR::fixup_call to the list of exceptions, but it seemed more sensible
to me to just remove this code.

Differential Revision: https://reviews.llvm.org/D78459
2020-06-23 02:15:42 +02:00
Ayke van Laethem b4c91462e8
[AVR] Fix miscompilation of zext + add
Code like the following:

    define i32 @foo(i32 %a, i1 zeroext %b) addrspace(1) {
    entry:
      %conv = zext i1 %b to i32
      %add = add nsw i32 %conv, %a
      ret i32 %add
    }

Would compile to the following (incorrect) code:

    foo:
        mov     r18, r20
        clr     r19
        add     r22, r18
        adc     r23, r19
        sbci    r24, 0
        sbci    r25, 0
        ret

Those sbci instructions are clearly wrong, they should have been adc
instructions.

This commit improves codegen to use adc instead:

    foo:
        mov     r18, r20
        clr     r19
        ldi     r20, 0
        ldi     r21, 0
        add     r22, r18
        adc     r23, r19
        adc     r24, r20
        adc     r25, r21
        ret

This code is not optimal (it could be just 5 instructions instead of the
current 9) but at least it doesn't miscompile.

Differential Revision: https://reviews.llvm.org/D78439
2020-06-18 16:51:37 +02:00
Ayke van Laethem 5aa8014ca8
[AVR] Remove faulty stack pushing behavior
An instruction like this will need to allocate some stack space for the
last parameter:

  %x = call addrspace(1) i16 @bar(i64 undef, i64 undef, i16 undef, i16 0)

This worked fine when passing an actual value (in this case 0). However,
when passing undef, no value was pushed to the stack and therefore no
push instructions were created. This caused an unbalanced stack leading
to interesting results.

This commit fixes that by replacing the push logic with a regular stack
adjustment and stack-relative load/stores. This is less efficient but at
least it correctly compiles the code.

I can think of a few improvements in the future:

  * The stack should have been adjusted in the function prologue when
    there are no allocas in the function.
  * Many (if not most) stack adjustments can be replaced by
    pushing/popping the values directly. Exactly like the previous code
    attempted but didn't do correctly.
  * Small stack adjustments can be done more efficiently with a few
    push/pop instructions (pushing/popping bogus values), both for code
    size and for speed.

All in all, as long as there are no allocas in the function I think that
it is almost always more efficient to emit regular push/pop
instructions. This is however left for future optimizations.

Differential Revision: https://reviews.llvm.org/D78581
2020-06-16 13:53:32 +02:00
Ayke van Laethem 3ab1c97e35
[AVR] Fix stack size in functions with a frame pointer
This patch fixes a bug in stack save/restore code. Because the frame
pointer was saved/restored manually (not by marking it as clobbered) the
StackSize variable was not updated accordingly. Most code still worked,
but code that tried to load a parameter passed on the stack did not.

This commit fixes this by marking the frame pointer as a
callee-clobbered register. This will let it be saved without any effort
in prolog/epilog code and will make sure the correct address is
calculated for loading parameters that are passed on the stack.

This approach is used by most other targets (such as X86, AArch64 and
RISC-V).

Differential Revision: https://reviews.llvm.org/D78579
2020-06-16 13:53:32 +02:00
Simon Wallis 0645c4d34f [AVR][test] Remove test for naked function containing a return.
Summary:
Remove an old test for an explicit return in a naked function from test/CodeGen/AVR/return.ll

clang no longer allows a C return in a naked function.

This test is causing failure of the patch https://reviews.llvm.org/D80715

Reviewers: llvm-commits, dylanmckay

Reviewed By: dylanmckay

Subscribers: Jim

Tags: #llvm

Differential Revision: https://reviews.llvm.org/D81099

Change-Id: Id218027e520247ae480b92e7801a660fbe0cf29b
2020-06-09 09:06:47 +01:00
Dylan McKay 1420f4efbe [AVR] Fix I/O instructions on XMEGA
Summary:
On XMEGA, I/O address space is same as data address space - there is no 0x20 offset,
because CPU General Purpose Registers are not mapped in data address space.

From https://en.wikipedia.org/wiki/AVR_microcontrollers
> In the XMEGA variant, the working register file is not mapped into the data address space; as such, it is not possible to treat any of the XMEGA's working registers as though they were SRAM. Instead, the I/O registers are mapped into the data address space starting at the very beginning of the address space.

Reviewers: dylanmckay

Reviewed By: dylanmckay

Subscribers: hiraditya, Jim, llvm-commits

Tags: #llvm

Differential Revision: https://reviews.llvm.org/D77207

Patch by Vlastimil Labsky.
2020-05-17 19:46:09 +12:00
Eli Friedman 4532a50899 Infer alignment of unmarked loads in IR/bitcode parsing.
For IR generated by a compiler, this is really simple: you just take the
datalayout from the beginning of the file, and apply it to all the IR
later in the file. For optimization testcases that don't care about the
datalayout, this is also really simple: we just use the default
datalayout.

The complexity here comes from the fact that some LLVM tools allow
overriding the datalayout: some tools have an explicit flag for this,
some tools will infer a datalayout based on the code generation target.
Supporting this properly required plumbing through a bunch of new
machinery: we want to allow overriding the datalayout after the
datalayout is parsed from the file, but before we use any information
from it. Therefore, IR/bitcode parsing now has a callback to allow tools
to compute the datalayout at the appropriate time.

Not sure if I covered all the LLVM tools that want to use the callback.
(clang? lli? Misc IR manipulation tools like llvm-link?). But this is at
least enough for all the LLVM regression tests, and IR without a
datalayout is not something frontends should generate.

This change had some sort of weird effects for certain CodeGen
regression tests: if the datalayout is overridden with a datalayout with
a different program or stack address space, we now parse IR based on the
overridden datalayout, instead of the one written in the file (or the
default one, if none is specified). This broke a few AVR tests, and one
AMDGPU test.

Outside the CodeGen tests I mentioned, the test changes are all just
fixing CHECK lines and moving around datalayout lines in weird places.

Differential Revision: https://reviews.llvm.org/D78403
2020-05-14 13:03:50 -07:00
Ayke van Laethem 8aad119d93
[AVR] Do not place functions in .progmem.data
Previously, the AVR backend would put functions in .progmem.data. This
is probably a regression from when functions still lived in address
space 0. With this change, only global constants are placed in
.progmem.data.

This is not complete: avr-gcc additionally respects -fdata-sections for
progmem global constants, which LLVM doesn't yet do. But fixing that is
a bit more complicated (and I believe other backends such as RISC-V
might also have similar issues).

Differential Revision: https://reviews.llvm.org/D78212
2020-04-20 13:56:38 +02:00
Ayke van Laethem 9505b5cb66
[AVR] Do not use divmod calls for bigger integers
The avr-libc provides *divmodqi4, *divmodhi4, and *divmodsi4 functions,
but does not provide a *divmoddi4. Instead it provides regular *divdi3
and *moddi3 functions.

Note that avr-libc doesn't support *divti3 or *modti3 for 128-bit
integer manipulation.

Source:
https://github.com/gcc-mirror/gcc/blob/releases/gcc-5.4.0/libgcc/config/avr/lib1funcs.S

Differential Revision: https://reviews.llvm.org/D78437
2020-04-20 13:56:38 +02:00
Dylan McKay 7b808b105f [AVR] Generalize the previous interrupt bugfix to signal handlers too 2020-03-31 19:33:34 +13:00
Dylan McKay 339b34266c [AVR] Respect the 'interrupt' function attribute
In the past, AVR functions were only lowered with interrupt-specific
machine code if the function was defined with the "avr-interrupt" or
"avr-signal" calling conventions.

This patch modifies the backend so that if the function does not have a
special calling convention, but does have an "interrupt" attribute,
that function is interpreted as a function with interrupts.

This also extracts the "is this function an interrupt" logic from
several disparate places in the backend into one AVRMachineFunctionInfo
attribute.

Bug found by Wilhelm Meier.
2020-03-31 19:00:18 +13:00
Jim Lin 4e3b037665 [AVR] Fix incorrect register state for LDRdPtr
Summary:
LDRdPtr expanded from LDWRdPtr shouldn't define its second operand(SrcReg).
The second operand is its source register.
Add -verify-machineinstrs into command line of testcases can trigger this error.

Reviewers: dylanmckay

Reviewed By: dylanmckay

Subscribers: hiraditya, llvm-commits

Tags: #llvm

Differential Revision: https://reviews.llvm.org/D75437
2020-03-03 17:34:54 +08:00
Ayke van Laethem 6afc3de42f
[AVR] Fix private label prefix
This is a small pet peeve from me. This change makes sure the AVR backend uses
the correct private label prefix (.L) so that private labels are hidden in
avr-objdump.

Example code:

    define i8 @foo(i1 %cond) {
      br i1 %cond, label %then, label %else
    then:
      ret i8 3
    else:
      ret i8 5
    }

When compiling this:
  llc -march=avr -filetype=obj -o test.o test.ll
and then dumping it:
  avr-objdump -d test.o
You would previously get an ugly temporary label:

    00000000 <foo>:
       0:        81 70       andi       r24, 0x01    ; 1
       2:        80 30       cpi        r24, 0x00    ; 0
       4:        f9 f3       breq       .-2          ; 0x4 <foo+0x4>
       6:        83 e0       ldi        r24, 0x03    ; 3
       8:        08 95       ret

    0000000a <LBB0_2>:
       a:        85 e0       ldi        r24, 0x05    ; 5
       c:        08 95       ret

This patch fixes that, the output is now:

    00000000 <foo>:
       0:        81 70       andi       r24, 0x01    ; 1
       2:        80 30       cpi        r24, 0x00    ; 0
       4:        01 f0       breq       .+0          ; 0x6 <foo+0x6>
       6:        83 e0       ldi        r24, 0x03    ; 3
       8:        08 95       ret
       a:        85 e0       ldi        r24, 0x05    ; 5
       c:        08 95       ret

Note that as you can see the breq operand is different. However it is
still the same after linking:

       4:        11 f0       breq       .+4

Differential Revision: https://reviews.llvm.org/D75124
2020-02-26 20:32:25 +01:00
Jim Lin da0fe5db99 [AVR] Fix codegen for rotate instructions
Summary:
    This patch introduces the ROLBRd and RORBRd pseudo-instructions,
    which implemenent the "traditional" rotate operations; instead of
    the AVR rotate instructions that use the carry bit.

    The code is not optimized at all. Especially when dealing with
    loops of rotate instructions, this codegen should be improved some
    day.

Related bug: 41358 <https://bugs.llvm.org/show_bug.cgi?id=41358>

//Note//: This is my first submitted patch.

Reviewers: dylanmckay, Jim

Reviewed By: dylanmckay

Subscribers: hiraditya, llvm-commits, dylanmckay, dsprenkels

Tags: #llvm

Patched by dsprenkels (Daan Sprenkels)

Differential Revision: https://reviews.llvm.org/D60365
2019-12-23 11:41:28 +08:00
Dylan McKay 80728d1d75 [AVR] Fix tests after r363757
r363757 renamed ExpandISelPseudo to FinalizeISel, so the RUN line in
select-must-add-unconditional-jump.mir needed updating to refer to finalize-isel.

llvm-svn: 365108
2019-07-04 06:12:47 +00:00
Fangrui Song ac14f7b10c [lit] Delete empty lines at the end of lit.local.cfg NFC
llvm-svn: 363538
2019-06-17 09:51:07 +00:00
Dylan McKay f8b4e60c7f [AVR] Fix the 'avr-tiny.ll' and 'avr25.ll' subtarget feature tests
When these tests were originally written, the middle end would introduce
an unnecessary copy from r24:r23->GPR16->r24:r23, and these tests
mistakenly relied on it.

The most optimal codegen for the functions in the test cases before this patch
would be NOPs. This is because the first i16 argument always gets the same register
allocation as an i16 return value in the AVR calling convention.

These tests broke in r362963 when the codegen was improved and the
redundant copy was eliminated. After this, the test functions
were lowered to their optimal form - a 'ret' and nothing else.

This patch prepends an extra i16 operand to each of the test functions
so that a 16-bit copy must be inserted for the program to be correct.

llvm-svn: 363131
2019-06-12 08:31:07 +00:00
Dylan McKay 3c82c57d2b [AVR] Fix the 'load.ll' test after r362351
In that commit, the 'load.ll' test was modified, but still failed.

This commit updates the test so that it now passes.

llvm-svn: 362684
2019-06-06 08:06:50 +00:00
Jim Lin 20b14dacbb [AVR] Fix incorrect source regclass of LDWRdPtr
Summary:
LDWRdPtr would be expanded to ld+ldd. ldd only accepts the pointer register is Y or Z.
So the register class of pointer of LDWRdPtr should be PTRDISPREGS instead of PTRREGS.

Reviewers: dylanmckay

Reviewed By: dylanmckay

Subscribers: dylanmckay, llvm-commits

Tags: #llvm

Differential Revision: https://reviews.llvm.org/D62300

llvm-svn: 362351
2019-06-03 02:31:07 +00:00
Dylan McKay 45eb4c7e55 [AVR] Disable register coalescing to the PTRDISPREGS class
If we would allow register coalescing on PTRDISPREGS class then register
allocator can lock Z register to some virtual register. Larger instructions
requiring a memory acces then fail during the register allocation phase since
there is no available register to hold a pointer if Y register was already
taken for a stack frame. This patch prevents it by keeping Z register
spillable. It does it by not allowing coalescer to lock it.

Original discussion on https://github.com/avr-rust/rust/issues/128.

llvm-svn: 362298
2019-06-01 12:38:56 +00:00
Dylan McKay e967308da4 Add TargetLoweringInfo hook for explicitly setting the ABI calling convention endianess
Summary:
The endianess used in the calling convention does not always match the
endianess of the target on all architectures, namely AVR.

When an argument is too large to be legalised by the architecture and is
split for the ABI, a new hook TargetLoweringInfo::shouldSplitFunctionArgumentsAsLittleEndian
is queried to find the endianess that function arguments must be laid
out in.

This approach was recommended by Eli Friedman.

Originally reported in https://github.com/avr-rust/rust/issues/129.

Patch by Carl Peto.

Reviewers: bogner, t.p.northover, RKSimon, niravd, efriedma

Reviewed By: efriedma

Subscribers: JDevlieghere, llvm-commits

Tags: #llvm

Differential Revision: https://reviews.llvm.org/D62003

llvm-svn: 361222
2019-05-21 06:38:02 +00:00
Nirav Dave d6351340bb [DAGCombiner] If a TokenFactor would be merged into its user, consider the user later.
Summary:
A number of optimizations are inhibited by single-use TokenFactors not
being merged into the TokenFactor using it. This makes we consider if
we can do the merge immediately.

Most tests changes here are due to the change in visitation causing
minor reorderings and associated reassociation of paired memory
operations.

CodeGen tests with non-reordering changes:

  X86/aligned-variadic.ll -- memory-based add folded into stored leaq
  value.

  X86/constant-combiners.ll -- Optimizes out overlap between stores.

  X86/pr40631_deadstore_elision -- folds constant byte store into
  preceding quad word constant store.

Reviewers: RKSimon, craig.topper, spatel, efriedma, courbet

Reviewed By: courbet

Subscribers: dylanmckay, sdardis, nemanjai, jvesely, nhaehnle, javed.absar, eraman, hiraditya, kbarton, jrtc27, atanasyan, jsji, llvm-commits

Tags: #llvm

Differential Revision: https://reviews.llvm.org/D59260

llvm-svn: 356068
2019-03-13 17:07:09 +00:00
Dylan McKay 5c23410fdf [AVR] Insert unconditional branch when inserting MBBs between blocks with fallthrough
This updates the AVR Select8/Select16 expansion code so that, when
inserting the two basic blocks for true and false conditions, any
existing fallthrough on the previous block is preserved.

Prior to this patch, if the block before the Select pseudo fell through
to the subsequent block, two new basic blocks would be inserted at the
prior fallthrough point, changing the fallthrough destination.

The predecessor or successor lists were not updated, causing the
BranchFolding pass at -O1 and above the rearrange basic blocks, causing
an infinite loop. Not to mention the unconditional fallthrough to the
true block is incorrect in of itself.

This patch modifies the Select8/16 expansion so that, if inserting true
and false basic blocks at a fallthrough point, the implicit branch is
preserved by means of an explicit, unconditional branch to the previous
fallthrough destination.

Thanks to Carl Peto for reporting this bug.

This fixes avr-rust bug https://github.com/avr-rust/rust/issues/123.

llvm-svn: 351721
2019-01-21 04:32:02 +00:00
Dylan McKay ce0ab06353 Revert "[AVR] Insert unconditional branch when inserting MBBs between blocks with fallthrough"
This reverts commit r351718.

Carl pointed out that the unit test could be improved.

This patch will be recommitted once the test is made more resilient.

llvm-svn: 351719
2019-01-21 02:46:13 +00:00
Dylan McKay 33acba43f0 [AVR] Insert unconditional branch when inserting MBBs between blocks with fallthrough
This updates the AVR Select8/Select16 expansion code so that, when
inserting the two basic blocks for true and false conditions, any
existing fallthrough on the previous block is preserved.

Prior to this patch, if the block before the Select pseudo fell through
to the subsequent block, two new basic blocks would be inserted at the
prior fallthrough point, changing the fallthrough destination.

The predecessor or successor lists were not updated, causing the
BranchFolding pass at -O1 and above the rearrange basic blocks, causing
an infinite loop. Not to mention the unconditional fallthrough to the
true block is incorrect in of itself.

This patch modifies the Select8/16 expansion so that, if inserting true
and false basic blocks at a fallthrough point, the implicit branch is
preserved by means of an explicit, unconditional branch to the previous
fallthrough destination.

Thanks to Carl Peto for reporting this bug.

This fixes avr-rust bug https://github.com/avr-rust/rust/issues/123.

llvm-svn: 351718
2019-01-21 02:44:09 +00:00
Dylan McKay 6afef286d9 [AVR] Fix codegen bug in 16-bit loads
Prior to this patch, the AVR::LDWRdPtr instruction was always lowered to
instructions of this pattern:

    ld  $GPR8, [PTR:XYZ]+
    ld  $GPR8, [PTR]+1

This has a problem; the [PTR] is incremented in-place once, but never
decremented.

Future uses of the same pointer will use the now clobbered value,
leading to the pointer being incorrect by an offset of one.

This patch modifies the expansion code of the LDWRdPtr pseudo
instruction so that the pointer variable is not silently clobbered in
future uses in the same live range.

Bug first reported by Keshav Kini.

Patch by Kaushik Phatak.

llvm-svn: 351673
2019-01-20 03:41:08 +00:00
Dylan McKay 52846ab09a Revert "[AVR] Fix codegen bug in 16-bit loads"
This reverts commit r351544.

In that commit, I had mistakenly misattributed the issue submitter as
the patch author, Kaushik Phatak.

The patch will be recommitted immediately with the correct attribution.

llvm-svn: 351672
2019-01-20 03:41:00 +00:00
Dylan McKay 77364be497 [AVR] Fix codegen bug in 16-bit loads
Prior to this patch, the AVR::LDWRdPtr instruction was always lowered to
instructions of this pattern:

    ld  $GPR8, [PTR:XYZ]+
    ld  $GPR8, [PTR]+1

This has a problem; the [PTR] is incremented in-place once, but never
decremented.

Future uses of the same pointer will use the now clobbered value,
leading to the pointer being incorrect by an offset of one.

This patch modifies the expansion code of the LDWRdPtr pseudo
instruction so that the pointer variable is not silently clobbered in
future uses in the same live range.

Patch by Keshav Kini.

llvm-svn: 351544
2019-01-18 11:27:38 +00:00
Shiva Chen e84c729aca [ScheduleDAGRRList] Do not preschedule the node has ADJCALLSTACKDOWN parent
We should not pre-scheduled the node has ADJCALLSTACKDOWN parent,
or else, when bottom-up scheduling, ADJCALLSTACKDOWN and
ADJCALLSTACKUP may hold CallResource too long and make other
calls can't be scheduled. If there's no other available node
to schedule, the scheduler will try to rename the register by
creating copy to avoid the conflict which will fail because
CallResource is not a real physical register.

llvm-svn: 351527
2019-01-18 08:36:06 +00:00
Dylan McKay 7203e00b5e [AVR] Expand 8/16-bit multiplication to libcalls on MCUs that don't have hardware MUL
This change modifies the LLVM ISel lowering settings so that
8-bit/16-bit multiplication is expanded to calls into the compiler
runtime library if the MCU being targeted does not support
multiplication in hardware.

Before this, MUL instructions would be generated on CPUs like the
ATtiny85, triggering a CPU reset due to an illegal instruction at
runtime.

First raised in https://github.com/avr-rust/rust/issues/124.

llvm-svn: 351523
2019-01-18 06:10:41 +00:00
Nirav Dave 667838f034 [AVR] Update integration/blink.ll as we now generate sbi/cbi instructions.
Silence long standing test failure.

llvm-svn: 350353
2019-01-03 21:25:39 +00:00
Dylan McKay 6fddb53685 [AVR] Reorder the CHECK lines in directmem.ll to match current trunk
In r346432 ("[DAGCombine] Improve alias analysis for chain of independent stores"),
the order of ldi/sts blocks changed.

The new IR is equivalent to the old IR.

This patch updates the test to fix the test suite.

llvm-svn: 346565
2018-11-09 23:17:59 +00:00
Dylan McKay 4c5a5c8db6 [AVR] Fix a backend bug that left extraneous operands after expansion
This patch fixes a bug in the AVR FRMIDX expansion logic.

The expansion would leave a leftover operand from the original FRMIDX,
but now attached to a MOVWRdRr instruction. The MOVWRdRr instruction
did not expect this operand and so LLVM rejected the machine
instruction.

This would trigger an assertion:

    Assertion failed: ((isImpReg || Op.isRegMask() || MCID->isVariadic() ||
                        OpNo < MCID->getNumOperands() || isMetaDataOp) &&
                        "Trying to add an operand to a machine instr that is already done!"),
    function addOperand, file llvm/lib/CodeGen/MachineInstr.cpp

Tim fixed this so that now the FRMIDX is expanded correctly into
a well-formed MOVWRdRr.

Patch by Tim Neumann

llvm-svn: 346117
2018-11-05 05:49:04 +00:00
Dylan McKay 9a9ae99b30 [AVR] Disallow the LDDWRdPtrQ instruction with Z as the destination
This is an AVR-specific workaround for a limitation of the register
allocator that only exposes itself on targets with high register
contention like AVR, which only has three pointer registers.

The three pointer registers are X, Y, and Z.
In most nontrivial functions, Y is reserved for the frame pointer,
as per the calling convention. This leaves X and Z. Some instructions,
such as LPM ("load program memory"), are only defined for the Z
register. Sometimes this just leaves X.

When the backend generates a LDDWRdPtrQ instruction with Z as the
destination pointer, it usually trips up the register allocator
with this error message:

  LLVM ERROR: ran out of registers during register allocation

This patch is a hacky workaround. We ban the LDDWRdPtrQ instruction
from ever using the Z register as an operand. This gives the
register allocator a bit more space to allocate, fixing the
regalloc exhaustion error.

Here is a description from the patch author Peter Nimmervoll

  As far as I understand the problem occurs when LDDWRdPtrQ uses
  the ptrdispregs register class as target register. This should work, but
  the allocator can't deal with this for some reason. So from my testing,
  it seams like (and I might be totally wrong on this) the allocator reserves
  the Z register for the ICALL instruction and then the register class
  ptrdispregs only has 1 register left and we can't use Y for source and
  destination. Removing the Z register from DREGS fixes the problem but
  removing Y register does not.

More information about the bug can be found on the avr-rust issue
tracker at https://github.com/avr-rust/rust/issues/37.

A bug has raised to track the removal of this workaround and a proper
fix; PR39553 at https://bugs.llvm.org/show_bug.cgi?id=39553.

Patch by Peter Nimmervoll

llvm-svn: 346114
2018-11-05 05:00:44 +00:00
Dylan McKay 30ef1d60f9 [AVR] Fix the 'call.ll' CodeGen test
Commit r343851 changed the format of the generated instructions.

An unnecessary load has been removed. Previously, a value would be moved
from r24 into a temporary register just to be copied into r30 before the
indirect call. Now, codegen immediately loads r24 into r30, saving a
MOVW instruction.

llvm-svn: 344111
2018-10-10 03:21:42 +00:00
Dylan McKay 454258671d [AVR] Redefine the 'LSL' instruction as an alias of 'ADD'
The 'LSL Rd' instruction is equivalent to 'ADD Rd, Rd'.

llvm-svn: 341278
2018-09-01 12:23:00 +00:00
Dylan McKay 8b0f9d2e58 [AVR] Define the ROL instruction as an alias of ADC
The 'rol Rd' instruction is equivalent to 'adc Rd'.

This caused compile warnings from tablegen because of conflicting bits
shared between each instruction.

llvm-svn: 341275
2018-09-01 12:22:07 +00:00
Dylan McKay d011869c82 [AVR] Set trackLivenessAfterRegAlloc
This sets trackLivenessAfterRegAlloc on AVRRegisterInfo.

Most existing targets set this flag. Without it, specific IR inputs
cause LLVM to fail with:

Assertion failed: (getParent()->getProperties().hasProperty( MachineFunctionProperties::Property::TracksLiveness) &&
                   "Liveness information is accurate"), function livein_begin
file MachineBasicBlock.cpp, line 1354.

With this commit, this no longer happens.

Patch by Peter Nimmervoll.

llvm-svn: 334409
2018-06-11 14:46:48 +00:00
Dylan McKay 212841b7ad [AVR] Add a regression test for struct return lowering
The test is taken from
https://github.com/avr-rust/rust/issues/57

The originally implementation of struct return lowering was made in
r325474.

Patch by Peter Nimmervoll

llvm-svn: 327967
2018-03-20 11:23:03 +00:00
Dylan McKay a35ee70641 [AVR] Lower i128 divisions to runtime library calls
This patch adds i128 division support by instruction LLVM to lower
128-bit divisions to the __udivmodti4 and __divmodti4 rtlib functions.

This also adds test for 64-bit division and 128-bit division.

Patch by Peter Nimmervoll.

llvm-svn: 327814
2018-03-19 00:55:50 +00:00
Dylan McKay 8f46486c65 [AVR] Remove the earlyclobber flag from LDDWRdYQ
Before I started maintaining the AVR backend, this instruction
never originally used to have an earlyclobber flag.

Some time afterwards (years ago), I must've added it back in, not realising that it
was left out for a reason.

This pseudo instrction exists solely to work around a long standing bug
in the register allocator.

Before this commit, the LDDWRdYQ pseudo was not actually working around
any bug. With the earlyclobber flag removed again, the LDDWRdYQ pseudo
now correctly works around PR13375 again.

llvm-svn: 326774
2018-03-06 11:20:25 +00:00
Dylan McKay 6119b79a88 [AVR] Fix the test suite after r326500.
r326500 subtly changed the way the instructions are printed.

llvm-svn: 326742
2018-03-05 20:56:25 +00:00
Francis Visoiu Mistrih 39ec2e95ae [CodeGen] Unify the syntax of MBB successors in MIR and -debug output
Instead of:

Successors according to CFG: %bb.6(0x12492492 / 0x80000000 = 14.29%)

print:

successors: %bb.6(0x12492492); %bb.6(14.29%)
llvm-svn: 324685
2018-02-09 00:10:31 +00:00
Dylan McKay 820553fdb1 [AVR] Fix the testsuite after '%' changed to '$' in MIR
llvm-svn: 324583
2018-02-08 09:17:11 +00:00
Francis Visoiu Mistrih da89d1812a [CodeGen] Print MachineBasicBlock labels using MIR syntax in -debug output
Instead of:

%bb.1: derived from LLVM BB %for.body

print:

bb.1.for.body:

Also use MIR syntax for MBB attributes like "align", "landing-pad", etc.

llvm-svn: 324563
2018-02-08 05:02:00 +00:00
Daniel Neilson 1e68724d24 Remove alignment argument from memcpy/memmove/memset in favour of alignment attributes (Step 1)
Summary:
 This is a resurrection of work first proposed and discussed in Aug 2015:
   http://lists.llvm.org/pipermail/llvm-dev/2015-August/089384.html
and initially landed (but then backed out) in Nov 2015:
   http://lists.llvm.org/pipermail/llvm-commits/Week-of-Mon-20151109/312083.html

 The @llvm.memcpy/memmove/memset intrinsics currently have an explicit argument
which is required to be a constant integer. It represents the alignment of the
dest (and source), and so must be the minimum of the actual alignment of the
two.

 This change is the first in a series that allows source and dest to each
have their own alignments by using the alignment attribute on their arguments.

 In this change we:
1) Remove the alignment argument.
2) Add alignment attributes to the source & dest arguments. We, temporarily,
   require that the alignments for source & dest be equal.

 For example, code which used to read:
  call void @llvm.memcpy.p0i8.p0i8.i32(i8* %dest, i8* %src, i32 100, i32 4, i1 false)
will now read
  call void @llvm.memcpy.p0i8.p0i8.i32(i8* align 4 %dest, i8* align 4 %src, i32 100, i1 false)

 Downstream users may have to update their lit tests that check for
@llvm.memcpy/memmove/memset call/declaration patterns. The following extended sed script
may help with updating the majority of your tests, but it does not catch all possible
patterns so some manual checking and updating will be required.

s~declare void @llvm\.mem(set|cpy|move)\.p([^(]*)\((.*), i32, i1\)~declare void @llvm.mem\1.p\2(\3, i1)~g
s~call void @llvm\.memset\.p([^(]*)i8\(i8([^*]*)\* (.*), i8 (.*), i8 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.memset.p\1i8(i8\2* \3, i8 \4, i8 \5, i1 \6)~g
s~call void @llvm\.memset\.p([^(]*)i16\(i8([^*]*)\* (.*), i8 (.*), i16 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.memset.p\1i16(i8\2* \3, i8 \4, i16 \5, i1 \6)~g
s~call void @llvm\.memset\.p([^(]*)i32\(i8([^*]*)\* (.*), i8 (.*), i32 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.memset.p\1i32(i8\2* \3, i8 \4, i32 \5, i1 \6)~g
s~call void @llvm\.memset\.p([^(]*)i64\(i8([^*]*)\* (.*), i8 (.*), i64 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.memset.p\1i64(i8\2* \3, i8 \4, i64 \5, i1 \6)~g
s~call void @llvm\.memset\.p([^(]*)i128\(i8([^*]*)\* (.*), i8 (.*), i128 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.memset.p\1i128(i8\2* \3, i8 \4, i128 \5, i1 \6)~g
s~call void @llvm\.memset\.p([^(]*)i8\(i8([^*]*)\* (.*), i8 (.*), i8 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.memset.p\1i8(i8\2* align \6 \3, i8 \4, i8 \5, i1 \7)~g
s~call void @llvm\.memset\.p([^(]*)i16\(i8([^*]*)\* (.*), i8 (.*), i16 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.memset.p\1i16(i8\2* align \6 \3, i8 \4, i16 \5, i1 \7)~g
s~call void @llvm\.memset\.p([^(]*)i32\(i8([^*]*)\* (.*), i8 (.*), i32 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.memset.p\1i32(i8\2* align \6 \3, i8 \4, i32 \5, i1 \7)~g
s~call void @llvm\.memset\.p([^(]*)i64\(i8([^*]*)\* (.*), i8 (.*), i64 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.memset.p\1i64(i8\2* align \6 \3, i8 \4, i64 \5, i1 \7)~g
s~call void @llvm\.memset\.p([^(]*)i128\(i8([^*]*)\* (.*), i8 (.*), i128 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.memset.p\1i128(i8\2* align \6 \3, i8 \4, i128 \5, i1 \7)~g
s~call void @llvm\.mem(cpy|move)\.p([^(]*)i8\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i8 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.mem\1.p\2i8(i8\3* \4, i8\5* \6, i8 \7, i1 \8)~g
s~call void @llvm\.mem(cpy|move)\.p([^(]*)i16\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i16 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.mem\1.p\2i16(i8\3* \4, i8\5* \6, i16 \7, i1 \8)~g
s~call void @llvm\.mem(cpy|move)\.p([^(]*)i32\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i32 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.mem\1.p\2i32(i8\3* \4, i8\5* \6, i32 \7, i1 \8)~g
s~call void @llvm\.mem(cpy|move)\.p([^(]*)i64\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i64 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.mem\1.p\2i64(i8\3* \4, i8\5* \6, i64 \7, i1 \8)~g
s~call void @llvm\.mem(cpy|move)\.p([^(]*)i128\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i128 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.mem\1.p\2i128(i8\3* \4, i8\5* \6, i128 \7, i1 \8)~g
s~call void @llvm\.mem(cpy|move)\.p([^(]*)i8\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i8 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.mem\1.p\2i8(i8\3* align \8 \4, i8\5* align \8 \6, i8 \7, i1 \9)~g
s~call void @llvm\.mem(cpy|move)\.p([^(]*)i16\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i16 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.mem\1.p\2i16(i8\3* align \8 \4, i8\5* align \8 \6, i16 \7, i1 \9)~g
s~call void @llvm\.mem(cpy|move)\.p([^(]*)i32\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i32 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.mem\1.p\2i32(i8\3* align \8 \4, i8\5* align \8 \6, i32 \7, i1 \9)~g
s~call void @llvm\.mem(cpy|move)\.p([^(]*)i64\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i64 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.mem\1.p\2i64(i8\3* align \8 \4, i8\5* align \8 \6, i64 \7, i1 \9)~g
s~call void @llvm\.mem(cpy|move)\.p([^(]*)i128\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i128 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.mem\1.p\2i128(i8\3* align \8 \4, i8\5* align \8 \6, i128 \7, i1 \9)~g

 The remaining changes in the series will:
Step 2) Expand the IRBuilder API to allow creation of memcpy/memmove with differing
   source and dest alignments.
Step 3) Update Clang to use the new IRBuilder API.
Step 4) Update Polly to use the new IRBuilder API.
Step 5) Update LLVM passes that create memcpy/memmove calls to use the new IRBuilder API,
        and those that use use MemIntrinsicInst::[get|set]Alignment() to use
        getDestAlignment() and getSourceAlignment() instead.
Step 6) Remove the single-alignment IRBuilder API for memcpy/memmove, and the
        MemIntrinsicInst::[get|set]Alignment() methods.

Reviewers: pete, hfinkel, lhames, reames, bollu

Reviewed By: reames

Subscribers: niosHD, reames, jholewinski, qcolombet, jfb, sanjoy, arsenm, dschuff, dylanmckay, mehdi_amini, sdardis, nemanjai, david2050, nhaehnle, javed.absar, sbc100, jgravelle-google, eraman, aheejin, kbarton, JDevlieghere, asb, rbar, johnrusso, simoncook, jordy.potman.lists, apazos, sabuasal, llvm-commits

Differential Revision: https://reviews.llvm.org/D41675

llvm-svn: 322965
2018-01-19 17:13:12 +00:00
Dylan McKay f7e8ec1348 [AVR] Fix two CodeGen tests
These were broken because of various printing format changes.

llvm-svn: 320246
2017-12-09 07:51:43 +00:00
Dylan McKay 80463fe64d Relax unaligned access assertion when type is byte aligned
Summary:
This relaxes an assertion inside SelectionDAGBuilder which is overly
restrictive on targets which have no concept of alignment (such as AVR).

In these architectures, all types are aligned to 8-bits.

After this, LLVM will only assert that accesses are aligned on targets
which actually require alignment.

This patch follows from a discussion on llvm-dev a few months ago
http://llvm.1065342.n5.nabble.com/llvm-dev-Unaligned-atomic-load-store-td112815.html

Reviewers: bogner, nemanjai, joerg, efriedma

Reviewed By: efriedma

Subscribers: efriedma, cactus, llvm-commits

Differential Revision: https://reviews.llvm.org/D39946

llvm-svn: 320243
2017-12-09 06:45:36 +00:00