Commit Graph

6 Commits

Author SHA1 Message Date
Michael Kruse beffdb9daa [ScopDetect] Reject loop with multiple exit blocks.
The current statement domain derivation algorithm does not (always)
consider that different exit blocks of a loop can have different
conditions to be reached.

From the code

      for (int i = n; ; i-=2) {
        if (i <= 0) goto even;
        if (i <= 1) goto odd;
        A[i] = i;
      }
    even:
      A[0] = 42;
      return;
    odd:
      A[1] = 21;
      return;

Polly currently derives the following domains:

        Stmt_even_critedge
            Domain :=
                [n] -> { Stmt_even_critedge[] };
        Stmt_odd
            Domain :=
                [n] -> { Stmt_odd[] : (1 + n) mod 2 = 0 and n > 0 };

while the domain for the odd case is correct, Stmt_even is assumed to be
executed unconditionally, which is obviously wrong. While projecting out
the loop dimension in `adjustDomainDimensions`, it does not consider
that there are other exit condition that have matched before.

I don't know a how to fix this without changing a lot of code. Therefore
This patch rejects loops with multiple exist blocks to fix the
miscompile of test-suite's uuencode.

The odd condition is transformed by LLVM to

    %cmp1 = icmp eq i64 %indvars.iv, 1

such that the project_out in adjustDomainDimensions() indeed only
matches for odd n (using this condition only, we'd have an infinite loop
otherwise).

The even condition manifests as

    %cmp = icmp slt i64 %indvars.iv, 3

Because buildDomainsWithBranchConstraints() does not consider other exit
conditions, it has to assume that the induction variable will eventually
be lower than 3 and taking this exit.

IMHO we need to reuse the algorithm that determines the number of
iterations (addLoopBoundsToHeaderDomain) to determine which exit
condition applies first. It has to happen in
buildDomainsWithBranchConstraints() because the result will need to
propagate to successor BBs. Currently addLoopBoundsToHeaderDomain() just
look for union of all backedge conditions (which means leaving not the
loop here). The patch in llvm.org/PR35465 changes it to look for exit
conditions instead. This is required because there might be other exit
conditions that do not alternatively go back to the loop header.

Differential Revision: https://reviews.llvm.org/D45649

llvm-svn: 330858
2018-04-25 18:53:33 +00:00
Michael Kruse 959a8dc39f Update to ISL 0.16.1
llvm-svn: 257898
2016-01-15 15:54:45 +00:00
Tobias Grosser f4ee371e60 tests: Drop -polly-detect-unprofitable and -polly-no-early-exit
These flags are now always passed to all tests and need to be disabled if
not needed. Disabling these flags, rather than passing them to almost all
tests, significantly simplfies our RUN: lines.

llvm-svn: 249422
2015-10-06 15:36:44 +00:00
Johannes Doerfert f2cc86edae Simplify domain generation
We now add loop carried information during the second traversal of the
  region instead of in a intermediate step in-between. This makes the
  generation simpler, removes code and should even be faster.

llvm-svn: 248125
2015-09-20 16:15:32 +00:00
Johannes Doerfert ca1e38fa43 Propagate exit conditions as described in the PET paper
At some point we build loop trip counts using this method. It was replaced by
  a simpler trick that works only for affine (e.g., not modulo) constraints and
  relies on the removal of unbounded parts. In order to allow modulo constrains
  again we go back to the former, more accurate method.

llvm-svn: 247540
2015-09-14 11:12:52 +00:00
Johannes Doerfert b68cffb5df Allow general loops with one latch
As we do not rely on ScalarEvolution any more we do not need to get
  the backedge taken count. Additionally, our domain generation handles
  everything that is affine and has one latch and our ScopDetection will
  over-approximate everything else.

  This change will therefor allow loops with:
    - one latch
    - exiting conditions that are affine

  Additionally, it will not check for structured control flow anymore.
  Hence, loops and conditionals are not necessarily single entry single
  exit regions any more.

Differential Version: http://reviews.llvm.org/D12758

llvm-svn: 247289
2015-09-10 15:27:46 +00:00