armv9-a, armv9.1-a and armv9.2-a can be targeted using the -march option
both in ARM and AArch64.
- Armv9-A maps to Armv8.5-A.
- Armv9.1-A maps to Armv8.6-A.
- Armv9.2-A maps to Armv8.7-A.
- The SVE2 extension is enabled by default on these architectures.
- The cryptographic extensions are disabled by default on these
architectures.
The Armv9-A architecture is described in the Arm® Architecture Reference
Manual Supplement Armv9, for Armv9-A architecture profile
(https://developer.arm.com/documentation/ddi0608/latest).
Reviewed By: SjoerdMeijer
Differential Revision: https://reviews.llvm.org/D109517
These calls were left out of 4d7cea3d2e. In the InPlaceDispatcher test case
the operation is a no-op, but it's good form to include it. In the
DynamicThreadPoolTaskDispatcher test the shutdown call is required to ensure
that we don't exit the test (and tear down the dispatcher) before the thread
running the dispatch has completed.
Summary: This patch improves the error message context of the
XCOFF interfaces by providing more details.
Reviewed By: jhenderson
Differential Revision: https://reviews.llvm.org/D110320
ExecutorProcessControl objects will now have a TaskDispatcher member which
should be used to dispatch work (in particular, handling incoming packets in
the implementation of remote EPC implementations like SimpleRemoteEPC).
The GenericNamedTask template can be used to wrap function objects that are
callable as 'void()' (along with an optional name to describe the task).
The makeGenericNamedTask functions can be used to create GenericNamedTask
instances without having to name the function object type.
In a future patch ExecutionSession will be updated to use the
ExecutorProcessControl's dispatcher, instead of its DispatchTaskFunction.
The callee address is now the first parameter and the 'SendResult' function
the second. This change improves consistentency with the non-async functions
where the callee is the first address and the return value the second.
This moves the registry higher in the LLVM library dependency stack.
Every client of the target registry needs to link against MC anyway to
actually use the target, so we might as well move this out of Support.
This allows us to ensure that Support doesn't have includes from MC/*.
Differential Revision: https://reviews.llvm.org/D111454
The following tests are failing due to missing DWARF sections. This patch sets these tests as XFAIL/DISABLED on AIX until a more permanent solution is implemented.
Reviewed By: shchenz
Differential Revision: https://reviews.llvm.org/D111336
In order to not generate an unnecessary G_CTLZ, I extended the constant folder
in the CSEMIRBuilder to handle G_CTLZ. I also added some extra handing of
vector constants too. It seems we don't have any support for doing constant
folding of vector constants, so the tests show some other useless G_SUB
instructions too.
Differential Revision: https://reviews.llvm.org/D111036
Based on the reasoning of D53903, register operands of DBG_VALUE are
invariably treated as RegState::Debug operands. This change enforces
this invariant as part of MachineInstr::addOperand so that all passes
emit this flag consistently.
RegState::Debug is inconsistently set on DBG_VALUE registers throughout
LLVM. This runs the risk of a filtering iterator like
MachineRegisterInfo::reg_nodbg_iterator to process these operands
erroneously when not parsed from MIR sources.
This issue was observed in the development of the llvm-mos fork which
adds a backend that relies on physical register operands much more than
existing targets. Physical RegUnit 0 has the same numeric encoding as
$noreg (indicating an undef for DBG_VALUE). Allowing debug operands into
the machine scheduler correlates $noreg with RegUnit 0 (i.e. a collision
of register numbers with different zero semantics). Eventually, this
causes an assert where DBG_VALUE instructions are prohibited from
participating in live register ranges.
Reviewed By: MatzeB, StephenTozer
Differential Revision: https://reviews.llvm.org/D110105
Currently when creating tail predicated loops, we need to validate that
all the live-outs of a loop will be equivalent with and without tail
predication, and if they are not we cannot legally create a
tail-predicated loop, leaving expensive vctp and vpst instructions in
the loop. These notably can include register-allocation instructions
like stack loads and stores, and copys lowered from COPYs to MVE_VORRs.
Instead of trying to prove this is valid late in the pipeline, this
patch introduces a MQPRCopy pseudo instruction that COPY is lowered to.
This can then either be converted to a MVE_VORR where possible, or to a
couple of VMOVD instructions if not. This way they do not behave
differently within and outside of tail-predications regions, and we can
know by construction that they are always valid. The idea is that we can
do the same with stack load and stores, converting them to VLDR/VSTR or
VLDM/VSTM where required to prove tail predication is always valid.
This does unfortunately mean inserting multiple VMOVD instructions,
instead of a single MVE_VORR, but my experiments show it to be an
improvement in general.
Differential Revision: https://reviews.llvm.org/D111048
Currently the max alignment representable is 1GB, see D108661.
Setting the align of an object to 4GB is desirable in some cases to make sure the lower 32 bits are clear which can be used for some optimizations, e.g. https://crbug.com/1016945.
This uses an extra bit in instructions that carry an alignment. We can store 15 bits of "free" information, and with this change some instructions (e.g. AtomicCmpXchgInst) use 14 bits.
We can increase the max alignment representable above 4GB (up to 2^62) since we're only using 33 of the 64 values, but I've just limited it to 4GB for now.
The one place we have to update the bitcode format is for the alloca instruction. It stores its alignment into 5 bits of a 32 bit bitfield. I've added another field which is 8 bits and should be future proof for a while. For backward compatibility, we check if the old field has a value and use that, otherwise use the new field.
Updating clang's max allowed alignment will come in a future patch.
Reviewed By: hans
Differential Revision: https://reviews.llvm.org/D110451
isAllOnes() should return true for zero bit values because
there are no zeros in it.
Thanks to Jay Foad for pointing this out.
Differential Revision: https://reviews.llvm.org/D111241
Currently the max alignment representable is 1GB, see D108661.
Setting the align of an object to 4GB is desirable in some cases to make sure the lower 32 bits are clear which can be used for some optimizations, e.g. https://crbug.com/1016945.
This uses an extra bit in instructions that carry an alignment. We can store 15 bits of "free" information, and with this change some instructions (e.g. AtomicCmpXchgInst) use 14 bits.
We can increase the max alignment representable above 4GB (up to 2^62) since we're only using 33 of the 64 values, but I've just limited it to 4GB for now.
The one place we have to update the bitcode format is for the alloca instruction. It stores its alignment into 5 bits of a 32 bit bitfield. I've added another field which is 8 bits and should be future proof for a while. For backward compatibility, we check if the old field has a value and use that, otherwise use the new field.
Updating clang's max allowed alignment will come in a future patch.
Reviewed By: hans
Differential Revision: https://reviews.llvm.org/D110451
Currently the max alignment representable is 1GB, see D108661.
Setting the align of an object to 4GB is desirable in some cases to make sure the lower 32 bits are clear which can be used for some optimizations, e.g. https://crbug.com/1016945.
This uses an extra bit in instructions that carry an alignment. We can store 15 bits of "free" information, and with this change some instructions (e.g. AtomicCmpXchgInst) use 14 bits.
We can increase the max alignment representable above 4GB (up to 2^62) since we're only using 33 of the 64 values, but I've just limited it to 4GB for now.
The one place we have to update the bitcode format is for the alloca instruction. It stores its alignment into 5 bits of a 32 bit bitfield. I've added another field which is 8 bits and should be future proof for a while. For backward compatibility, we check if the old field has a value and use that, otherwise use the new field.
Updating clang's max allowed alignment will come in a future patch.
Reviewed By: hans
Differential Revision: https://reviews.llvm.org/D110451
As described on D111049, we're trying to remove the <string> dependency from error handling and replace uses of report_fatal_error(const std::string&) with the Twine() variant which can be forward declared.
We can use the raw_string_ostream::str() method to perform the implicit flush() and return a reference to the std::string container that we can then wrap inside Twine().
These should both clearly work with our current model for zero width
integers, but don't until now!
Differential Revision: https://reviews.llvm.org/D111113
Deriving NoAlias based on having the same index in two BaseIndexOffset
expressions seemed weird (and as shown in the added unittest the
correctness of doing so depended on undocumented pre-conditions that
the user of BaseIndexOffset::computeAliasing would need to take care
of.
This patch removes the code that dereived NoAlias based on indices
being the same. As a compensation, to avoid regressions/diffs in
various lit test, we also add a new check. The new check derives
NoAlias in case the two base pointers are based on two different
GlobalValue:s (neither of them being a GlobalAlias).
Reviewed By: niravd
Differential Revision: https://reviews.llvm.org/D110256
This fixes a bug detected in DAGCombiner when using global alias
variables. Here is an example:
@foo = global i16 0, align 1
@aliasFoo = alias i16, i16 * @foo
define i16 @bar() {
...
store i16 7, i16 * @foo, align 1
store i16 8, i16 * @aliasFoo, align 1
...
}
BaseIndexOffset::computeAliasing would incorrectly derive NoAlias
for the two accesses in the example above, resulting in DAGCombiner
miscompiles.
This patch fixes the problem by a defensive approach letting
BaseIndexOffset::computeAliasing return false, i.e. that the aliasing
couldn't be determined, when comparing two global values and at least
one is a GlobalAlias. In the future we might improve this with a
deeper analysis to look at the aliasee for the GlobalAlias etc. But
that is a bit more complicated considering that we could have
'local_unnamed_addr' and situations with several 'alias' variables.
Fixes PR51878.
Differential Revision: https://reviews.llvm.org/D110064
The delayed stack protector feature which is currently used for SDAG (and thus
allows for more commonly generating tail calls) depends on being able to extract
the tail call into a separate return block. To do this it also has to extract
the vreg->physreg copies that set up the call's arguments, since if it doesn't
then the call inst ends up using undefined physregs in it's new spliced block.
SelectionDAG implementations can do this because they delay emitting register
copies until *after* the stack arguments are set up. GISel however just
processes and emits the arguments in IR order, so stack arguments always end up
last, and thus this breaks the code that looks for any register arg copies that
precede the call instruction.
This patch adds a thunk argument to the assignValueToReg() and custom assignment
hooks. For outgoing arguments, register assignments use this return param to
return a thunk that does the actual generating of the copies. We collect these
until all the outgoing stack assignments have been done and then execute them,
so that the copies (and perhaps some artifacts like G_SEXTs) are placed after
any stores.
Differential Revision: https://reviews.llvm.org/D110610
Stop using APInt constructors and methods that were soft-deprecated in
D109483. This fixes all the uses I found in llvm, except for the APInt
unit tests which should still test the deprecated methods.
Differential Revision: https://reviews.llvm.org/D110807
This patch adds the functionalities to print MDNode in tree shape. For
example, instead of printing a MDNode like this:
```
<0x5643e1166888> = !DILocalVariable(name: "foo", arg: 2, scope: <0x5643e11c9740>, file: <0x5643e11c6ec0>, line: 8, type: <0x5643e11ca8e0>, flags: DIFlagPublic | DIFlagFwdDecl, align: 8)
```
The printTree/dumpTree functions can give you:
```
<0x5643e1166888> = !DILocalVariable(name: "foo", arg: 2, scope: <0x5643e11c9740>, file: <0x5643e11c6ec0>, line: 8, type: <0x5643e11ca8e0>, flags: DIFlagPublic | DIFlagFwdDecl, align: 8)
<0x5643e11c9740> = distinct !DISubprogram(scope: null, spFlags: 0)
<0x5643e11c6ec0> = distinct !DIFile(filename: "file.c", directory: "/path/to/dir")
<0x5643e11ca8e0> = distinct !DIDerivedType(tag: DW_TAG_pointer_type, baseType: <0x5643e11668d8>, size: 1, align: 2)
<0x5643e11668d8> = !DIBasicType(tag: DW_TAG_unspecified_type, name: "basictype")
```
Which is useful when using it in debugger. Where sometimes printing the
whole module to see all MDNodes is too expensive.
Differential Revision: https://reviews.llvm.org/D110113
This patch implements suggestion done while reviewing D102634. It adds two fields:
ParentIdx and SiblingIdx. These fields allow fast navigation to die parent and
die sibling. These fields are set at the moment when dies are loaded.
dsymutil works 2% faster with this patch(run on clang binary).
Differential Revision: https://reviews.llvm.org/D110363
Rust allows use of non-ASCII identifiers, which in Rust mangling scheme
are encoded using Punycode.
The encoding deviates from the standard by using an underscore as the
separator between ASCII part and a base-36 encoding of non-ASCII
characters (avoiding hypen-minus in the symbol name). Other than that,
the encoding follows the standard, and the decoder implemented here in
turn follows the one given in RFC 3492.
To avoid an extra intermediate memory allocation while decoding
Punycode, the interface of OutputStream is extended with an insert
method.
Reviewed By: dblaikie
Differential Revision: https://reviews.llvm.org/D104366
With the removal of OrcRPCExecutorProcessControl and OrcRPCTPCServer in
6aeed7b19c the ORC RPC library no longer has any in-tree users.
Clients needing serialization for ORC should move to Simple Packed
Serialization (usually by adopting SimpleRemoteEPC for remote JITing).
- Introduce a skeleton outline for the GOFFAsmParser
- Before instantiating AsmParser/HLASMAsmParser, target specific asm parsers are attempted to be initialized first before proceeding. If it doesn't exist for a particular file type, we report a fatal error.
- This patch allows to properly instantiate the HLASMAsmParser on z/OS, and ensures we can write lit tests and unit tests which will involve the instantiation of asm parsers, without an assert / fatal error.
Reviewed By: uweigand, Kai
Differential Revision: https://reviews.llvm.org/D110730
Add MCDwarfLineStr class to the public API.
Note that MCDwarfLineTableHeader::Emit(), takes MCDwarfLineStr as
an Optional<> parameter making it impossible to use the API if the class
is not publicly defined.
Reviewed By: alexander-shaposhnikov
Differential Revision: https://reviews.llvm.org/D109412
This ensures that re-creating "the same" FS results in the same UIDs for files.
In turn, this means that creating a clang module (preamble) using one in-memory
filesystem and consuming it using another doesn't create duplicate FileEntrys
for files that are the same in both FSes.
It's tempting to give the creator control over the UIDs instead. However that
requires fiddly API changes, e.g. what should the UIDs of intermediate
directories be?
This change is more "magic" but seems safe given:
- InMemoryFilesystem is used in testing more than production
- comparing UIDs across filesystems is unusual
- files with the same path and content are usually logically equivalent
(The usual reason for re-creating virtual filesystems rather than reusing them
is that typical use involves mutating their CWD and so is not threadsafe).
Differential Revision: https://reviews.llvm.org/D110711
This patch introduces the vector-predicated version of the
experimental_vector_splice intrinsic [1] at the IR level. It considers
the active vector length for both vectors and and uses a vector mask to
disable certain lanes in the result.
[1] https://reviews.llvm.org/D94708
Change originally authored by Vineet Kumar <vineet.kumar@bsc.es>
Reviewed By: simoll
Differential Revision: https://reviews.llvm.org/D103898
When using a datalayout that has pointer index width != pointer size this
code triggers an assertion in Value::stripAndAccumulateConstantOffsets().
I encountered this this while compiling FreeBSD for CHERI-RISC-V.
Also update LoadsTest.cpp to use a DataLayout with index width != pointer
width to ensure this case is tested.
Reviewed By: nikic
Differential Revision: https://reviews.llvm.org/D110406
This patch is for fixing potential insertElement-related bugs like D93818.
```
V = UndefValue::get(VecTy);
for(...)
V = Builder.CreateInsertElementy(V, Elt, Idx);
=>
V = PoisonValue::get(VecTy);
for(...)
V = Builder.CreateInsertElementy(V, Elt, Idx);
```
Like above, this patch changes the placeholder V to poison.
The patch will be separated into several commits.
Reviewed By: aqjune
Differential Revision: https://reviews.llvm.org/D110311
With improved analysis in determining CFG equivalence that does
not require strict dominance and post-dominance conditions, we
now relax isSafeToMoveBefore() such that an instruction I can
be moved before InsertPoint even if they do not strictly dominate
each other, as long as they follow the same control flow path.
For example, we can move Instruction 0 before Instruction 1,
and vice versa.
```
if (cond1)
// Instruction 0: %add = add i32 1, 2
if (cond1)
// Instruction 1: %add2 = add i32 2, 1
```
Reviewed By: Whitney
Differential Revision: https://reviews.llvm.org/D110456
Add a llvm::Split() implementation that can be used via range-for loop,
e.g.:
for (StringRef x : llvm::Split("foo,bar,baz", ','))
...
The implementation uses an additional SplittingIterator class that
uses StringRef::split() internally.
Differential Revision: https://reviews.llvm.org/D110496
This is a followup to D109844 (and alternative to D109907), which
integrates the new "earliest escape" tracking into AliasAnalysis.
This is done by replacing the pre-existing context-free capture
cache in AAQueryInfo with a replaceable (virtual) object with two
implementations: The SimpleCaptureInfo implements the previous
behavior (check whether object is captured at all), while
EarliestEscapeInfo implements the new behavior from DSE.
This combines the "earliest escape" analysis with the full power of
BasicAA: It subsumes the call handling from D109907, considers a
wider range of escape sources, and works with AA recursion. The
compile-time cost is slightly higher than with D109907.
Differential Revision: https://reviews.llvm.org/D110368
- This patch adds in the GOFFMCAsmInfo interfaces for the z/OS target.
- This patch decouples the previously existing SystemZMCAsmInfo interface for the ELF target and the z/OS target.
- This patch also removes a small test in the SystemZAsmLexerTest.cpp. The reason for this is because, the test is set up for the s390x-ibm-linux (SystemZ ELF triple), and the test checks a function which is overridden only for the z/OS target. The reason we can't change the test to use a z/OS triple outright is because there is still missing support which prevents the successful running of a test (assert in AsmParser.cpp due to missing GOFFAsmParser support)
Reviewed By: uweigand, abhina.sreeskantharajan
Differential Revision: https://reviews.llvm.org/D110077
- This patch adds in the GOFF mangling support to the LLVM data layout string. A corresponding additional line has been added into the data layout section in the language reference documentation.
- Furthermore, this patch also sets the right data layout string for the z/OS target in the SystemZ backend.
Reviewed By: uweigand, Kai, abhina.sreeskantharajan, MaskRay
Differential Revision: https://reviews.llvm.org/D109362
There are several places in the code that are currently broken where
we assume an Instruction is always a member of a BasicBlock that
lives in a Function. This is a problem specifically when
attempting to get the vscale_range attribute. This patch adds checks
that an Instruction's parent also has a parent!
I've added a test for a function-less @llvm.vscale intrinsic call here:
unittests/Analysis/ValueTrackingTest.cpp
When moving an entire basic block BB before InsertPoint, currently
we check for all instructions whether the operands dominates
InsertPoint, however, this can be improved such that even an
operand does not dominate InsertPoint, as long as it appears as
a previous instruction in the same BB, it is safe to move.
Reviewed By: Whitney
Differential Revision: https://reviews.llvm.org/D110378
There are several places in the code that are currently broken as
they assume an Instruction always has a parent Function when
attempting to get the vscale_range attribute. This patch adds checks
that an Instruction has a parent.
I've added a test for a parentless @llvm.vscale intrinsic call here:
unittests/Analysis/ValueTrackingTest.cpp
Differential Revision: https://reviews.llvm.org/D110158
Removing the 'ess' suffix improves the ergonomics without sacrificing clarity.
Since this class is likely to be used more frequently in the future it's worth
some short term pain to fix this now.
The closing namespace comment prevents clang-format from dropping a
blank line after the final test. Also add in a blank line (which
simplifies merging/rebasing/etc. WIP patches).
This allows VMOVL in tail predicated loops so long as the the vector
size the VMOVL is extending into is less than or equal to the size of
the VCTP in the tail predicated loop. These cases represent a
sign-extend-inreg (or zero-extend-inreg), which needn't block tail
predication as in https://godbolt.org/z/hdTsEbx8Y.
For this a vecsize has been added to the TSFlag bits of MVE
instructions, which stores the size of the elements that the MVE
instruction operates on. In the case of multiple size (such as a
MVE_VMOVLs8bh that extends from i8 to i16, the largest size was be
chosen). The sizes are encoded as 00 = i8, 01 = i16, 10 = i32 and 11 =
i64, which often (but not always) comes from the instruction encoding
directly. A unit test was added, and although only a subset of the
vecsizes are currently used, the rest should be useful for other cases.
Differential Revision: https://reviews.llvm.org/D109706
isValidAssumeForContext can provide better results with access to the
dominator tree in some cases. This patch adjusts computeConstantRange to
allow passing through a dominator tree.
The use VectorCombine is updated to pass through the DT to enable
additional scalarization.
Note that similar APIs like computeKnownBits already accept optional dominator
tree arguments.
Reviewed By: lebedev.ri
Differential Revision: https://reviews.llvm.org/D110175
Add generic helper function that matches constant splat. It has option to
match constant splat with undef (some elements can be undef but not all).
Add util function and matcher for G_FCONSTANT splat.
Differential Revision: https://reviews.llvm.org/D104410
Rework getConstantstVRegValWithLookThrough in order to make it clear if we
are matching integer/float constant only or any constant(default).
Add helper functions that get DefVReg and APInt/APFloat from constant instr
getIConstantVRegValWithLookThrough: integer constant, only G_CONSTANT
getFConstantVRegValWithLookThrough: float constant, only G_FCONSTANT
getAnyConstantVRegValWithLookThrough: either G_CONSTANT or G_FCONSTANT
Rename getConstantVRegVal and getConstantVRegSExtVal to getIConstantVRegVal
and getIConstantVRegSExtVal. These now only match G_CONSTANT as described
in comment.
Relevant matchers now return both DefVReg and APInt/APFloat.
Replace existing uses of getConstantstVRegValWithLookThrough and
getConstantVRegVal with new helper functions. Any constant match is
only required in:
ConstantFoldBinOp: for constant argument that was bit-cast of float to int
getAArch64VectorSplat: AArch64::G_DUP operands can be any constant
amdgpu select for G_BUILD_VECTOR_TRUNC: operands can be any constant
In other places use integer only constant match.
Differential Revision: https://reviews.llvm.org/D104409
Finalization and deallocation actions are a key part of the upcoming
JITLinkMemoryManager redesign: They generalize the existing finalization and
deallocate concepts (basically "copy-and-mprotect", and "munmap") to include
support for arbitrary registration and deregistration of parts of JIT linked
code. This allows us to register and deregister eh-frames, TLV sections,
language metadata, etc. using regular memory management calls with no additional
IPC/RPC overhead, which should both improve JIT performance and simplify
interactions between ORC and the ORC runtime.
The SimpleExecutorMemoryManager class provides executor-side support for memory
management operations, including finalization and deallocation actions.
This support is being added in advance of the rest of the memory manager
redesign as it will simplify the introduction of an EPC based
RuntimeDyld::MemoryManager (since eh-frame registration/deregistration will be
expressible as actions). The new RuntimeDyld::MemoryManager will in turn allow
us to remove older remote allocators that are blocking the rest of the memory
manager changes.
Most PDB fields on disk are 32-bit but describe the file in terms of MSF
blocks, which are 4 kiB by default.
So PDB files can be a bit larger than 4 GiB, and much larger if you create them
with a block size > 4 kiB.
This is a first (necessary, but by far not not sufficient) step towards
supporting such PDB files. Now we don't truncate in-memory file offsets (which
are in terms of bytes, not in terms of blocks).
No effective behavior change. lld-link will still error out if it were to
produce PDBs > 4 GiB.
Differential Revision: https://reviews.llvm.org/D109923
Summary:
add a new API seek for the Cursor class in the DataExtractor.cpp
Reviewers: James Henderson, Fangrui Song
Differential Revision: https://reviews.llvm.org/D109603
New field `elements` is added to '!DIImportedEntity', representing
list of aliased entities.
This is needed to dump optimized debugging information where all names
in a module are imported, but a few names are imported with overriding
aliases.
Reviewed By: dblaikie
Differential Revision: https://reviews.llvm.org/D109343
MethodWrapperHandler removes some of the boilerplate when writing wrapper
functions to wrap method calls. It can be used as a handler for wrapper
functions whose first argument is an ExecutorAddress: the address is cast to a
pointer of the given class type, then the given method function pointer is
called on that object pointer (passing the rest of the arguments).
E.g.
class MyClass {
public:
void myMethod(uint32_t, bool) { ... }
};
// SPS Method signature for myMethod -- note MyClass object address as first
// argument.
using SPSMyMethodWrapperSignature =
SPSTuple<SPSExecutorAddress, uint32_t, bool>;
// Wrapper function for myMethod.
WrapperFunctionResult
myMethodCallWrapper(const char *ArgData, size_t ArgSize) {
return WrapperFunction<SPSMyMethodWrapperSignature>::handle(
ArgData, ArgSize, makeMethodWrapperHandler(&MyClass::myMethod));
}
When moving a Symbol between Blocks that are in different Sections,
update the symbol tables for each Section. Otherwise
symbol.getBlock().getSection() will not match the contents of
Section::symbols(), which asserts during linking.
Differential Revision: https://reviews.llvm.org/D109724
Three unrelated changes:
1) Add a concat method as a convenience to help write bitvector
use cases in a nicer way.
2) Use LLVM_UNLIKELY as suggested by @xbolva00 in a previous patch.
3) Fix casing of some "slow" methods to follow naming standards.
Differential Revision: https://reviews.llvm.org/D109620
This is a small first step towards reorganization of the ORC libraries:
Declarations for types and function names (as strings) to be found in the
"ORC runtime bootstrap" set are moved into OrcRTBridge.h / OrcRTBridge.cpp.
The current implementation of the "ORC runtime bootstrap" functions is moved
into OrcRTBootstrap.h and OrcRTBootstrap.cpp. It is likely that this code will
eventually be moved into ORT-RT proper (in compiler RT).
The immediate goal of this change is to make these bootstrap functions usable
for clients other than SimpleRemoteEPC/SimpleRemoteEPCServer. The first planned
client is a new RuntimeDyld::MemoryManager that will run over EPC, which will
allow us to remove the old OrcRemoteTarget code.
std::is_convertible has no defined behavior when its arguments
are incomplete, even if they are equal. In practice, it returns false.
Adding std::is_same allows us to use the constructor using a callable,
even if the return value is incomplete. We also check the case where
we convert a T into a const T.
Reviewed By: DaniilSuchkov
Differential Revision: https://reviews.llvm.org/D104703
Committer: Daniil Suchkov <dsuchkov@azul.com>
APInt is used to describe a bit mask in a variety of value tracking and demanded bits/elts functions.
When traversing through dst/src operands, we have a number of places where these masks need to widened/narrowed to translate through bitcasts, reductions etc. to a different type.
This patch add a APIntOps::ScaleBitMask common helper, adds unit test coverage, and updates a number of cases to use the the helper instead of their own implementation.
This came up on D109065 where we currently have to add yet another implementation of the same code.
Differential Revision: https://reviews.llvm.org/D109683
This patch makes it possible to query callbase reachability
(Can a callbase reach a function Fn transitively).
The patch moves the reachability query handling logic to a member class,
this class will have more users within the AA once we add other function
reachability queries.
Reviewed By: jdoerfert
Differential Revision: https://reviews.llvm.org/D106402
Currently, opaque pointers are supported in two forms: The
-force-opaque-pointers mode, where all pointers are opaque and
typed pointers do not exist. And as a simple ptr type that can
coexist with typed pointers.
This patch removes support for the mixed mode. You either get
typed pointers, or you get opaque pointers, but not both. In the
(current) default mode, using ptr is forbidden. In -opaque-pointers
mode, all pointers are opaque.
The motivation here is that the mixed mode introduces additional
issues that don't exist in fully opaque mode. D105155 is an example
of a design problem. Looking at D109259, it would probably need
additional work to support mixed mode (e.g. to generate GEPs for
typed base but opaque result). Mixed mode will also end up
inserting many casts between i8* and ptr, which would require
significant additional work to consistently avoid.
I don't think the mixed mode is particularly valuable, as it
doesn't align with our end goal. The only thing I've found it to
be moderately useful for is adding some opaque pointer tests in
between typed pointer tests, but I think we can live without that.
Differential Revision: https://reviews.llvm.org/D109290
Motivation: APInt not supporting zero bit values leads to
a lot of special cases in various bits of code, particularly
when using APInt as a bit vector (where you want to start with
zero bits and then concat on more. This is particularly
challenging in the CIRCT project, where the absence of zero-bit
ConstantOp forces duplication of ops and makes instcombine-like
logic far more complicated.
Approach: zero bit integers are weird. There are two reasonable
approaches: either make it illegal to do general arithmetic on
them (e.g. sign extends), or treat them as as implicitly having
a zero value. This patch takes the conservative approach, which
enables their use in bitvector applications.
Differential Revision: https://reviews.llvm.org/D109555
This renames the primary methods for creating a zero value to `getZero`
instead of `getNullValue` and renames predicates like `isAllOnesValue`
to simply `isAllOnes`. This achieves two things:
1) This starts standardizing predicates across the LLVM codebase,
following (in this case) ConstantInt. The word "Value" doesn't
convey anything of merit, and is missing in some of the other things.
2) Calling an integer "null" doesn't make any sense. The original sin
here is mine and I've regretted it for years. This moves us to calling
it "zero" instead, which is correct!
APInt is widely used and I don't think anyone is keen to take massive source
breakage on anything so core, at least not all in one go. As such, this
doesn't actually delete any entrypoints, it "soft deprecates" them with a
comment.
Included in this patch are changes to a bunch of the codebase, but there are
more. We should normalize SelectionDAG and other APIs as well, which would
make the API change more mechanical.
Differential Revision: https://reviews.llvm.org/D109483
This moves one mid-size function out of line, inlines the
trivial tcAnd/tcOr/tcXor/tcComplement methods into their only
caller, and moves the magic/umagic functions into SelectionDAG
since they are implementation details of its algorithm. This
also removes the unit tests for magic, but these are already
tested in the divide lowering logic for various targets.
This also upgrades some C style comments to C++.
Differential Revision: https://reviews.llvm.org/D109476
This ensures error messages from gtest includes the raw text of both
sides of the comparison - otherwise all gtest can report is the text of
the expression source, without any information about the values or how
they differ.
It's a common error in an API - to try to open an empty file, so it
seems like a reasonable FileError to produce "hey, you tried to open an
empty file" and to handle it the same way as any other file error.
Previously the CodeExtractor created exit stubs, and the subsequent return value of the outlined function based on the order of out-of-region blocks after splitting any phi nodes, and collecting the blocks to be outlined. This could cause differences in order if there was a difference of exit block phi nodes between the two regions. This patch moves the collection of the output target blocks to be before this occurs, so that the assignment of target block to output value will be the same, regardless of the contents of the output block.
Reviewers: paquette, roelofs
Differential Revision: https://reviews.llvm.org/D108657
The implementation is mostly copied from MemDepAnalysis. We want to look
at all loads and stores to the same pointer operand. Bitcasts and zero
GEPs of a pointer are considered the same pointer value. We choose the
most dominating instruction.
Since updating MemorySSA with invariant.group is non-trivial, for now
handling of invariant.group is not cached in any way, so it's part of
the walker. The number of loads/stores with invariant.group is small for
now anyway. We can revisit if this actually noticeably affects compile
times.
To avoid invariant.group affecting optimized uses, we need to have
optimizeUsesInBlock() not use invariant.group in any way.
Co-authored-by: Piotr Padlewski <prazek@google.com>
Reviewed By: asbirlea, nikic, Prazek
Differential Revision: https://reviews.llvm.org/D109134
Use the `HBuilder` interface to provide default implementations of `llvm::hash_value`.
Reviewed By: dexonsmith
Differential Revision: https://reviews.llvm.org/D109024
On some architectures such as Arm and X86 the encoding for a nop may
change depending on the subtarget in operation at the time of
encoding. This change replaces the per module MCSubtargetInfo retained
by the targets AsmBackend in favour of passing through the local
MCSubtargetInfo in operation at the time.
On Arm using the architectural NOP instruction can have a performance
benefit on some implementations.
For Arm I've deleted the copy of the AsmBackend's MCSubtargetInfo to
limit the chances of this causing problems in the future. I've not
done this for other targets such as X86 as there is more frequent use
of the MCSubtargetInfo and it looks to be for stable properties that
we would not expect to vary per function.
This change required threading STI through MCNopsFragment and
MCBoundaryAlignFragment.
I've attempted to take into account the in tree experimental backends.
Differential Revision: https://reviews.llvm.org/D45962
In preparation for passing the MCSubtargetInfo (STI) through to writeNops
so that it can use the STI in operation at the time, we need to record the
STI in operation when a MCAlignFragment may write nops as padding. The
STI is currently unused, a further patch will pass it through to
writeNops.
There are many places that can create an MCAlignFragment, in most cases
we can find out the STI in operation at the time. In a few places this
isn't possible as we are in initialisation or finalisation, or are
emitting constant pools. When possible I've tried to find the most
appropriate existing fragment to obtain the STI from, when none is
available use the per module STI.
For constant pools we don't actually need to use EmitCodeAlign as the
constant pools are data anyway so falling through into it via an
executable NOP is no better than falling through into data padding.
This is a prerequisite for D45962 which uses the STI to emit the
appropriate NOP for the STI. Which can differ per fragment.
Note that involves an interface change to InitSections. It is now
called initSections and requires a SubtargetInfo as a parameter.
Differential Revision: https://reviews.llvm.org/D45961
Add KnownBits handling and unit tests for X*X self-multiplication cases which guarantee that bit1 of their results will be zero - see PR48683.
https://alive2.llvm.org/ce/z/NN_eaR
The next step will be to add suitable test coverage so this can be enabled in ValueTracking/DAG/GlobalISel - currently only a single Analysis/ScalarEvolution test is affected.
Differential Revision: https://reviews.llvm.org/D108992
In the case of no tied variables, we pick random defs, and then random uses that don't alias with defs we just picked.
Sounds good, except that an X86 instruction may have implicit reg uses,
e.g. for `MULX` it's `EDX`/`RDX`: `Intel SDM, 4-162 Vol. 2B MULX — Unsigned Multiply Without Affecting Flags`
> Performs an unsigned multiplication of the implicit source operand (EDX/RDX) and the specified source operand
> (the third operand) and stores the low half of the result in the second destination (second operand), the high half
> of the result in the first destination operand (first operand), without reading or writing the arithmetic flags.
And indeed, every once in a while `llvm-exegesis` happened to pick EDX as a def while measuring throughput,
and producing garbage output:
```
$ ./bin/llvm-exegesis -num-repetitions=1000000 -mode=inverse_throughput -repetition-mode=min --loop-body-size=4096 -dump-object-to-disk=false -opcode-name=MULX32rr --max-configs-per-opcode=65536
---
mode: inverse_throughput
key:
instructions:
- 'MULX32rr EDX R11D R12D'
config: ''
register_initial_values:
- 'R12D=0x0'
- 'EDX=0x0'
cpu_name: znver3
llvm_triple: x86_64-unknown-linux-gnu
num_repetitions: 1000000
measurements:
- { key: inverse_throughput, value: 4.00014, per_snippet_value: 4.00014 }
error: ''
info: instruction has no tied variables picking Uses different from defs
assembled_snippet: 415441BC00000000BA00000000C4C223F6D4C4C223F6D4C4C223F6D4C4C223F6D4415CC3415441BC00000000BA0000000049B80200000000000000C4C223F6D4C4C223F6D44983C0FF75F0415CC3
...
```
```
$ ./bin/llvm-exegesis -num-repetitions=1000000 -mode=inverse_throughput -repetition-mode=min --loop-body-size=4096 -dump-object-to-disk=false -opcode-name=MULX32rr --max-configs-per-opcode=65536
---
mode: inverse_throughput
key:
instructions:
- 'MULX32rr R13D EDX ECX'
config: ''
register_initial_values:
- 'ECX=0x0'
- 'EDX=0x0'
cpu_name: znver3
llvm_triple: x86_64-unknown-linux-gnu
num_repetitions: 1000000
measurements:
- { key: inverse_throughput, value: 3.00013, per_snippet_value: 3.00013 }
error: ''
info: instruction has no tied variables picking Uses different from defs
assembled_snippet: 4155B900000000BA00000000C4626BF6E9C4626BF6E9C4626BF6E9C4626BF6E9415DC34155B900000000BA0000000049B80200000000000000C4626BF6E9C4626BF6E94983C0FF75F0415DC3
...
```
Oops! Not only does that not look fun, i did hit that pitfail during AMD Zen 3 enablement.
While i have since then addressed this in rGd4d459e7475b4bb0d15280f12ed669342fa5edcd,
i suspect there may be other buggy results lying around, so we should at least stop producing them.
Reviewed By: courbet
Differential Revision: https://reviews.llvm.org/D109275
The current IRSimilarityIdentifier does not try to find similarity across blocks, this patch provides a mechanism to compare two branches against one another, to find similarity across basic blocks, rather than just within them.
This adds a step in the similarity identification process that labels all of the basic blocks so that we can identify the relative branching locations. Within an IRSimilarityCandidate we use these relative locations to determine whether if the branching to other relative locations in the same region is the same between branches. If they are, we consider them similar.
We do not consider the relative location of the branch if the target branch is outside of the region. In this case, both branches must exit to a location outside the region, but the exact relative location does not matter.
Reviewers: paquette, yroux
Differential Revision: https://reviews.llvm.org/D106989
Recommit of 707ce34b06. Don't introduce a
dependency to the LLVMPasses component, instead register the required
passes individually.
Add methods for loop unrolling to the OpenMPIRBuilder class and use them in Clang if `-fopenmp-enable-irbuilder` is enabled. The unrolling methods are:
* `unrollLoopFull`
* `unrollLoopPartial`
* `unrollLoopHeuristic`
`unrollLoopPartial` and `unrollLoopHeuristic` can use compiler heuristics to automatically determine the unroll factor. If possible, that is if no CanonicalLoopInfo is required to pass to another method, metadata for LLVM's LoopUnrollPass is added. Otherwise the unroll factor is determined using the same heurstics as user by LoopUnrollPass. Not requiring a CanonicalLoopInfo, especially with `unrollLoopHeuristic` allows greater flexibility.
With full unrolling and partial unrolling with known unroll factor, instead of duplicating instructions by the OpenMPIRBuilder, the full unroll is still delegated to the LoopUnrollPass. In case of partial unrolling the loop is first tiled using the existing `tileLoops` methods, then the inner loop fully unrolled using the same mechanism.
Reviewed By: jdoerfert, kiranchandramohan
Differential Revision: https://reviews.llvm.org/D107764
This reapplies 71d7fed3bc which was
reverted by 3e2bd82f02. This change
includes the fix for breaking the sanitizer bots.
As seen in https://bugs.llvm.org/show_bug.cgi?id=48880 the current
implementation for parsing grouped short options can return unclear
error messages. This change fixes the example given in the ticket in
which a flag is incorrectly given an argument. Also when parsing a
group we now keep reading past the first incorrect option and output
errors for all incorrect options in the group.
Differential Revision: https://reviews.llvm.org/D108770
Add support for ordered directive in the OpenMPIRBuilder.
This patch also modidies clang to use the ordered directive when the
option -fopenmp-enable-irbuilder is enabled.
Also fix one ICE when parsing one canonical for loop with the relational
operator LE or GE in openmp region by replacing unary increment
operation of the expression of the variable "Expr A" minus the variable
"Expr B" (++(Expr A - Expr B)) with binary addition operation of the
experssion of the variable "Expr A" minus the variable "Expr B" and the
expression with constant value "1" (Expr A - Expr B + "1").
Reviewed By: Meinersbur, kiranchandramohan
Differential Revision: https://reviews.llvm.org/D107430
All ExecutorProcessControl subclasses must provide a JITLinkMemoryManager object
that can be used to allocate memory in the executor process. The
EPCGenericJITLinkMemoryManager class provides an off-the-shelf
JITLinkMemoryManager implementation for JITs that do not need (or cannot
provide) a specialized JITLinkMemoryManager implementation. This simplifies the
process of creating new ExecutorProcessControl implementations.
Looks like the MS STL wants StringMapKeyIterator::operator*() to be const.
Return the result by copy instead of reference to do that.
Assigning to a hash map key iterator doesn't make sense anyways.
Also reverts 123f811fe5 which is now hopefully no longer needed.
Differential Revision: https://reviews.llvm.org/D109167
Now prints the list of known archs. This requires plumbing a Driver
arg through a few functions.
Also add two more convenience insert() overlods to StringMap.
Differential Revision: https://reviews.llvm.org/D109105
Breaks build with -DBUILD_SHARED_LIBS=ON
```
CMake Error: The inter-target dependency graph contains the following strongly connected component (cycle):
"LLVMFrontendOpenMP" of type SHARED_LIBRARY
depends on "LLVMPasses" (weak)
"LLVMipo" of type SHARED_LIBRARY
depends on "LLVMFrontendOpenMP" (weak)
"LLVMCoroutines" of type SHARED_LIBRARY
depends on "LLVMipo" (weak)
"LLVMPasses" of type SHARED_LIBRARY
depends on "LLVMCoroutines" (weak)
depends on "LLVMipo" (weak)
At least one of these targets is not a STATIC_LIBRARY. Cyclic dependencies are allowed only among static libraries.
CMake Generate step failed. Build files cannot be regenerated correctly.
```
This reverts commit 707ce34b06.
llvm.vp.select extends the regular select instruction with an explicit
vector length (%evl).
All lanes with indexes at and above %evl are
undefined. Lanes below %evl are taken from the first input where the
mask is true and from the second input otherwise.
Reviewed By: rogfer01
Differential Revision: https://reviews.llvm.org/D105351
Add methods for loop unrolling to the OpenMPIRBuilder class and use them in Clang if `-fopenmp-enable-irbuilder` is enabled. The unrolling methods are:
* `unrollLoopFull`
* `unrollLoopPartial`
* `unrollLoopHeuristic`
`unrollLoopPartial` and `unrollLoopHeuristic` can use compiler heuristics to automatically determine the unroll factor. If possible, that is if no CanonicalLoopInfo is required to pass to another method, metadata for LLVM's LoopUnrollPass is added. Otherwise the unroll factor is determined using the same heurstics as user by LoopUnrollPass. Not requiring a CanonicalLoopInfo, especially with `unrollLoopHeuristic` allows greater flexibility.
With full unrolling and partial unrolling with known unroll factor, instead of duplicating instructions by the OpenMPIRBuilder, the full unroll is still delegated to the LoopUnrollPass. In case of partial unrolling the loop is first tiled using the existing `tileLoops` methods, then the inner loop fully unrolled using the same mechanism.
Reviewed By: jdoerfert, kiranchandramohan
Differential Revision: https://reviews.llvm.org/D107764
This is used by BOLT to do patching of DebugInfo section, and Line Table. Directly by using find, and through getAttrFieldOffsetForUnit.
Reviewed By: dblaikie
Differential Revision: https://reviews.llvm.org/D107874
As seen in https://bugs.llvm.org/show_bug.cgi?id=48880 the current
implementation for parsing grouped short options can return unclear
error messages. This change fixes the example given in the ticket in
which a flag is incorrectly given an argument. Also when parsing a
group we now keep reading past the first incorrect option and output
errors for all incorrect options in the group.
Differential Revision: https://reviews.llvm.org/D108770
Currently context strings contain a lot of duplicated function names and that significantly increase the profile size. This change split the context into a series of {name, offset, discriminator} tuples so function names used in the context can be replaced by the index into the name table and that significantly reduce the size consumed by context.
A follow-up improvement made in the compiler and profiling tools is to avoid reconstructing full context strings which is time- and memory- consuming. Instead a context vector of `StringRef` is adopted to represent the full context in all scenarios. As a result, the previous prevalent profile map which was implemented as a `StringRef` is now engineered as an unordered map keyed by `SampleContext`. `SampleContext` is reshaped to using an `ArrayRef` to represent a full context for CS profile. For non-CS profile, it falls back to use `StringRef` to represent a contextless function name. Both the `ArrayRef` and `StringRef` objects are underpinned by real array and string objects that are stored in producer buffers. For compiler, they are maintained by the sample reader. For llvm-profgen, they are maintained in `ProfiledBinary` and `ProfileGenerator`. Full context strings can be generated only in those cases of debugging and printing.
When it comes to profile format, nothing has changed to the text format, though internally CS context is implemented as a vector. Extbinary format is only changed for CS profile, with an additional `SecCSNameTable` section which stores all full contexts logically in the form of `vector<int>`, which each element as an offset points to `SecNameTable`. All occurrences of contexts elsewhere are redirected to using the offset of `SecCSNameTable`.
Testing
This is no-diff change in terms of code quality and profile content (for text profile).
For our internal large service (aka ads), the profile generation is cut to half, with a 20x smaller string-based extbinary format generated.
The compile time of ads is dropped by 25%.
Differential Revision: https://reviews.llvm.org/D107299
When the initial relationship between two pairs of values between
similar sections is ambiguous to commutativity, arguments to the
outlined functions can be passed in such that the order is incorrect,
causing miscompilations. This adds a canonical mapping to each
similarity section, so that we can maintain the relationship of global
value numbering from one section to another.
Added Tests:
Transforms/IROutliner/outlining-commutative-operands-opposite-order.ll
unittests/Analysis/IRSimilarityIdentifierTest.cpp - IRSimilarityCandidate:CanonicalNumbering
Reviewers: jroelofs, jpaquette, yroux
Differential Revision: https://reviews.llvm.org/D104143
Generate btf_tag annotations for function parameters.
A field "annotations" is introduced to DILocalVariable, and
annotations are represented as an DINodeArray, similar to
DIComposite elements. The following example illustrates how
annotations are encoded in IR:
distinct !DILocalVariable(name: "info",, arg: 1, ..., annotations: !10)
!10 = !{!11, !12}
!11 = !{!"btf_tag", !"a"}
!12 = !{!"btf_tag", !"b"}
Differential Revision: https://reviews.llvm.org/D106620
Generate btf_tag annotations for DIGlobalVariable.
A field "annotations" is introduced to DIGlobalVariable, and
annotations are represented as an DINodeArray, similar to
DIComposite elements. The following example illustrates how
annotations are encoded in IR:
distinct !DIGlobalVariable(..., annotations: !10)
!10 = !{!11, !12}
!11 = !{!"btf_tag", !"a"}
!12 = !{!"btf_tag", !"b"}
Differential Revision: https://reviews.llvm.org/D106619
The Code Extractor does not provide an easy mechanism for determining the
inputs and outputs after extraction has occurred, this patch gives the
ability to pass in empty SetVectors to be filled with the inputs and
outputs if they need to be analyzed.
Added Tests:
- InputOutputMonitoring in unittests/Transforms/Utils/CodeExtractorTests.cpp
Reviewers: paquette
Differential Revision: https://reviews.llvm.org/D106991
The `HashBuilder` interface allows conveniently building hashes of various data
types, without relying on the underlying hasher type to know about hashed data
types.
Reviewed By: dexonsmith
Differential Revision: https://reviews.llvm.org/D106910
In LLVM IR, `AlignmentBitfieldElementT` is 5-bit wide
But that means that the maximal alignment exponent is `(1<<5)-2`,
which is `30`, not `29`. And indeed, alignment of `1073741824`
roundtrips IR serialization-deserialization.
While this doesn't seem all that important, this doubles
the maximal supported alignment from 512MiB to 1GiB,
and there's actually one noticeable use-case for that;
On X86, the huge pages can have sizes of 2MiB and 1GiB (!).
So while this doesn't add support for truly huge alignments,
which i think we can easily-ish do if wanted, i think this adds
zero-cost support for a not-trivially-dismissable case.
I don't believe we need any upgrade infrastructure,
and since we don't explicitly record the IR version,
we don't need to bump one either.
As @craig.topper speculates in D108661#2963519,
this might be an artificial limit imposed by the original implementation
of the `getAlignment()` functions.
Differential Revision: https://reviews.llvm.org/D108661
When Src and Dst used in buildAnyExtOrTrunc or buildSExtOrTrunc
have the same type (creates COPY) use Src register directly or
use replaceRegOrBuildCopy instead.
Differential Revision: https://reviews.llvm.org/D108306
WrapperFunctionResult no longer supports wrapping constant data, so this patch
adds a non-const data method. Since data can now be written through the data
method, the allocate method can be simplified to return a WrapperFunctionResult.
DWARFDie::getDeclFile(...) previously only supported getting the DW_AT_decl_file if the DIE itself contained the DW_AT_decl_file attribute, or if the DIE had a DW_AT_abstract_origin that pointed to another DIE that had a DW_AT_decl_file. This patch allows the function to get the right attribute value if there is a DW_AT_specification that points to another DIE. We also test that if a DW_AT_abtract_origin or DW_AT_specification points to a DIE in another CU with a DW_FORM_ref_addr, that the right line table is used to extract the file index.
Full tests were added for the following cases:
- DIE has a DW_AT_decl_file attribute
- DIE has a DW_AT_abtract_origin that points to another die in the same CU
- DIE has a DW_AT_abtract_origin that points to another die in another CU
- DIE has a DW_AT_specification that points to another die in the same CU
- DIE has a DW_AT_specification that points to another die in another CU
Differential Revision: https://reviews.llvm.org/D108480
Renames the blobSerializationRoundTrip test helper function to
spsSerializationRoundTrip ('blob' was the placeholder name for the serialization
scheme during prototyping, this function was missed when renaming everything
for the mainline). Also drops explicit template arguments at call sites where
they can be inferred (and are obvious) from the call argument type.
All ExecutorProcessControl subclasses must provide an
ExecutorProcessControl::MemoryAccess object that can be used to access executor
memory from the JIT process. The EPCGenericMemoryAccess class provides an
off-the-shelf MemoryAccess implementation for JITs that do not need (or cannot
provide) a specialized MemoryAccess implementation. This simplifies the process
of creating new ExecutorProcessControl implementations.
Accepts a vector of (SymbolStringPtr, ExecutorAddress*) pairs, looks up all the
symbols, then writes their address to each of the corresponding
ExecutorAddresses.
This idiom (looking up and recording addresses into a specific set of variables)
is used in MachOPlatform and the (temporarily reverted) ELFNixPlatform, and is
likely to be used in other places in the near future, so wrapping it in a
utility function should save us some boilerplate.
Clang patch D106614 added attribute btf_tag support. This patch
generates btf_tag annotations for DIComposite types.
A field "annotations" is introduced to DIComposite, and the
annotations are represented as an DINodeArray, similar to
DIComposite elements. The following example illustrates
how annotations are encoded in IR:
distinct !DICompositeType(..., annotations: !10)
!10 = !{!11, !12}
!11 = !{!"btf_tag", !"a"}
!12 = !{!"btf_tag", !"b"}
Each btf_tag annotation is represented as a 2D array of
meta strings. Each record may have more than one
btf_tag annotations, as in the above example.
Reland with additional fixes for llvm/unittests/IR/DebugTypeODRUniquingTest.cpp.
Differential Revision: https://reviews.llvm.org/D106615
This information is necessary for clients of DebugInfo that
do not want to process a DWARF expression, but just treat it as a blob
of data. In BOLT, for example, we need to read these expressions in
CFIs and write them back to the binary, unchanged, so having access to
the original expression encoding is a shortcut to avoid the need to
re-encode the entire expression when re-writing exception handling
info (CFIs).
This patch is an alternative to https://reviews.llvm.org/D98301, in
which we implement the support to re-encode these expressions. But
since we don't really need to change anything in these expressions,
we can just copy their bytes.
Reviewed By: aprantl
Differential Revision: https://reviews.llvm.org/D107515
MSSA-based LICM has been enabled by default for a few years now.
This drops the old AST-based implementation. Using loop(licm) will
result in a fatal error, the use of loop-mssa(licm) is required
(or just licm, which defaults to loop-mssa).
Note that the core canSinkOrHoistInst() logic has to retain AST
support for now, because it is shared with LoopSink.
Differential Revision: https://reviews.llvm.org/D108244
Nest from being perfect
Expand LoopNestAnalysis to return the full list of instructions that
cause a loop nest to be imperfect. This is useful for other passes to
know if they should continue for in the inner loops.
Added New function getInterveningInstructions
that returns a small vector with the instructions that prevent a loop
for being perfect. Also added a couple of helper functions to reduce
code duplication.
Reviewed By: Whitney
Differential Revision: https://reviews.llvm.org/D107773
This patch adds vector-predicated ("VP") reduction intrinsics corresponding to
each of the existing unpredicated `llvm.vector.reduce.*` versions. Unlike the
unpredicated reductions, all VP reductions have a start value. This start value
is returned when the no vector element is active.
Support for expansion on targets without native vector-predication support is
included.
This patch is based on the ["reduction
slice"](https://reviews.llvm.org/D57504#1732277) of the LLVM-VP reference patch
(https://reviews.llvm.org/D57504).
Reviewed By: craig.topper
Differential Revision: https://reviews.llvm.org/D104308
This option has been enabled by default for quite a while now.
The practical impact of removing the option is that MSSA use
cannot be disabled in default pipelines (both LPM and NPM) and
in manual LPM invocations. NPM can still choose to enable/disable
MSSA using loop vs loop-mssa.
The next step will be to require MSSA for LICM and drop the
AST-based implementation entirely.
Differential Revision: https://reviews.llvm.org/D108075
Reset cl::Positional, cl::Sink and cl::ConsumeAfter options as well in cl::ResetCommandLineParser().
Reviewed By: rriddle, sammccall
Differential Revision: https://reviews.llvm.org/D103356
Improves maintainability (edit/modify the tests without recompiling) and
error messages (previously the failure would be a gtest failure
mentioning nothing of the input or desired text) and the option to
improve tests with more checks.
(maybe these tests shouldn't all be in separate files - we could
probably have DWARF yaml that contains multiple errors while still being
fairly maintainable - the various invalid offsets (ref_addr, rnglists,
ranges, etc) could probably be all in one test, but for the simple sake
of the migration I just did the mechanical thing here)
AttributeList::hasAttribute() is confusing, use clearer methods like
hasParamAttr()/hasRetAttr().
Add hasRetAttr() since it was missing from AttributeList.
Add in-source documentation on how CanonicalLoopInfo is intended to be used. In particular, clarify what parts of a CanonicalLoopInfo is considered part of the loop, that those parts must be side-effect free, and that InsertPoints to instructions outside those parts can be expected to be preserved after method calls implementing loop-associated directives.
CanonicalLoopInfo are now invalidated after it does not describe canonical loop anymore and asserts when trying to use it afterwards.
In addition, rename `createXYZWorkshareLoop` to `applyXYZWorkshareLoop` and remove the update location to avoid that the impression that they insert something from scratch at that location where in reality its InsertPoint is ignored. createStaticWorkshareLoop does not return a CanonicalLoopInfo anymore. First, it was not a canonical loop in the clarified sense (containing side-effects in form of calls to the OpenMP runtime). Second, it is ambiguous which of the two possible canonical loops it should actually return. It will not be needed before a feature expected to be introduced in OpenMP 6.0
Also see discussion in D105706.
Reviewed By: ftynse
Differential Revision: https://reviews.llvm.org/D107540
Some files still contained the old University of Illinois Open Source
Licence header. This patch replaces that with the Apache 2 with LLVM
Exception licence.
Differential Revision: https://reviews.llvm.org/D107528
If a G_SHL is fed by a G_CONSTANT, the lower and upper bits of the source can be
shifted individually by the constant shift amount.
However in case the shift amount came from a G_TRUNC(G_CONSTANT), the generic shift legalization
code was used, producing intermediate shifts that are potentially illegal on some targets.
This change teaches narrowScalarShift to look through G_TRUNCs and G_*EXTs.
Reviewed By: paquette
Differential Revision: https://reviews.llvm.org/D89100
1) add some self-diagnosis (when asserts are enabled) to check that all
features have the same nr of entries
2) avoid storing pointers to mutable fields because the proto API
contract doesn't actually guarantee those stay fixed even if no further
mutation of the object occurs.
Differential Revision: https://reviews.llvm.org/D107594
It's entirely possible (because it actually happened) for a bool
variable to end up with a 256-bit DW_AT_const_value. This came about
when a local bool variable was initialized from a bitfield in a
32-byte struct of bitfields, and after inlining and constant
propagation, the variable did have a constant value. The sequence of
optimizations had it carrying "i256" values around, but once the
constant made it into the llvm.dbg.value, no further IR changes could
affect it.
Technically the llvm.dbg.value did have a DIExpression to reduce it
back down to 8 bits, but the compiler is in no way ready to emit an
oversized constant *and* a DWARF expression to manipulate it.
Depending on the circumstances, we had either just the very fat bool
value, or an expression with no starting value.
The sequence of optimizations that led to this state did seem pretty
reasonable, so the solution I came up with was to invent a DWARF
constant expression folder. Currently it only does convert ops, but
there's no reason it couldn't do other ops if that became useful.
This broke three tests that depended on having convert ops survive
into the DWARF, so I added an operator that would abort the folder to
each of those tests.
Differential Revision: https://reviews.llvm.org/D106915
This allows users accessing options in libSupport before invoking
`cl::ParseCommandLineOptions`, and also matches the behavior before
D105959.
Reviewed By: MaskRay
Differential Revision: https://reviews.llvm.org/D106334
ValueTracking should allow for value ranges that may satisfy
llvm.assume, instead of restricting the ranges only to values that
will always satisfy the condition.
Differential Revision: https://reviews.llvm.org/D107298
When we build with split dwarf in single mode the .o files that contain both "normal" debug sections and dwo sections, along with relocaiton sections for "normal" debug sections.
When we create DWARF context in DWARFObjInMemory we process relocations and store them in the map for .debug_info, etc section.
For DWO Context we also do it for non dwo dwarf sections. Which I believe is not necessary. This leads to a lot of memory being wasted. We observed 70GB extra memory being used.
I went with context sensitive approach, flag is passed in. I am not sure if it's always safe not to process relocations for regular debug sections if Obj contains .dwo sections.
If it is alternatvie might be just to scan, in constructor, sections and if there are .dwo sections not to process regular debug ones.
Reviewed By: dblaikie
Differential Revision: https://reviews.llvm.org/D106624
This introduces a builder function for emitting IR performing reductions in
OpenMP. Reduction variable privatization and initialization to the
reduction-neutral value is expected to be handled separately. The caller
provides the reduction functions. Further commits can provide implementation of
reduction functions for the reduction operators defined in the OpenMP
specification.
This implementation was tested on an MLIR fork targeting OpenMP from C and
produced correct executable code.
Reviewed By: Meinersbur
Differential Revision: https://reviews.llvm.org/D104928
D106850 introduced a simplification for llvm.vscale by looking at the
surrounding function's vscale_range attributes. The call that's being
simplified may not yet have been inserted into the IR. This happens for
example during function cloning.
This patch fixes the issue by checking if the instruction is in a
parent basic block.
This takes two ranges and invokes a predicate on the element-wise pair in the
ranges. It returns true if all the pairs are matching the predicate and the ranges
have the same size.
It is useful with containers that aren't random iterator where we can't check the
sizes in O(1).
Differential Revision: https://reviews.llvm.org/D106605
Wrapper function call and dispatch handler helpers are moved to
ExecutionSession, and existing EPC-based tools are re-written to take an
ExecutionSession argument instead.
Requiring an ExecutorProcessControl instance simplifies existing EPC based
utilities (which only need to take an ES now), and should encourage more
utilities to use the EPC interface. It also simplifies process termination,
since the session can automatically call ExecutorProcessControl::disconnect
(previously this had to be done manually, and carefully ordered with the
rest of JIT tear-down to work correctly).
These tests access private symbols in the backends, so they cannot link
against libLLVM.so and must be statically linked. Linking these tests
can be slow and with debug builds the resulting binaries use a lot of
disk space.
By merging them into a single test binary means we now only need to
statically link 1 test instead of 6, which helps reduce the build
times and saves disk space.
Reviewed By: courbet
Differential Revision: https://reviews.llvm.org/D106464
This patch adds support for the next-generation arch14
CPU architecture to the SystemZ backend.
This includes:
- Basic support for the new processor and its features.
- Detection of arch14 as host processor.
- Assembler/disassembler support for new instructions.
- New LLVM intrinsics for certain new instructions.
- Support for low-level builtins mapped to new LLVM intrinsics.
- New high-level intrinsics in vecintrin.h.
- Indicate support by defining __VEC__ == 10304.
Note: No currently available Z system supports the arch14
architecture. Once new systems become available, the
official system name will be added as supported -march name.
checkForAllInstructions was not handling declarations correctly.
It should have been returning false when it gets called on a declaration
The patch also fixes a test case for AAFunctionReachability for it to be able
to pass after the changes to the checkForAllinstructions.
Differential Revision: https://reviews.llvm.org/D106625
Avoid buffering just to copy the buffered data, in 'development
mode', when logging. Instead, just populate the underlying protobuf.
Differential Revision: https://reviews.llvm.org/D106592
Opaque values (of zero size) can be stored in memory with the
implemention of reference types in the WebAssembly backend. Since
MachineMemOperand uses LLTs we need to be able to support
zero-sized scalars types in LLTs.
Differential Revision: https://reviews.llvm.org/D105423
This patch changes `__kmpc_free_shared` to take an additional argument
corresponding to the associated allocation's size. This makes it easier to
implement the allocator in the runtime.
Reviewed By: jdoerfert
Differential Revision: https://reviews.llvm.org/D106496
fixed fields with highly-aligned flexible fields.
The code was not considering the possibility that aligning
the current offset to the alignment of a queue might push
us past the end of the gap. Subtracting the offsets to
figure out the maximum field size for the gap then overflowed,
making us think that we had nearly unbounded space to fill.
Fixes PR 51131.
Make it easier to initialize small maps inline. Note that DenseMap already has an initializer_list constructor.
Reviewed By: dblaikie
Differential Revision: https://reviews.llvm.org/D106363
This patch allows iterating typed enum via the ADT/Sequence utility.
It also changes the original design to better separate concerns:
- `StrongInt` only deals with safe `intmax_t` operations,
- `SafeIntIterator` presents the iterator and reverse iterator
interface but only deals with safe `StrongInt` internally.
- `iota_range` only deals with `SafeIntIterator` internally.
This design ensures that operations are always valid. In particular,
"Out of bounds" assertions fire when:
- the `value_type` is not representable as an `intmax_t`
- iterator operations make internal computation underflow/overflow
- the internal representation cannot be converted back to `value_type`
Differential Revision: https://reviews.llvm.org/D106279
LinkGraph::transferBlock can be used to move a block and all associated symbols
from one section to another.
LinkGraph::mergeSections moves all blocks and sections from a source section to
a destination section.
After rGbbbc4f110e35ac709b943efaa1c4c99ec073da30, we can move
any string type that has convenient pointer and length fields
into the PtrAndLengthKind, reducing the amount of code.
Differential Revision: https://reviews.llvm.org/D106381
This was placing sret/byval attributes without type argument on
non-pointer arguments. Make this valid IR by using pointer
arguments and passing the corresponding attribute type argument.
This is a follow-up to https://reviews.llvm.org/D103935
A Twine's internal layout should not depend on which version of the
C++ standard is in use. Dynamically linking binaries compiled with two
different layouts (eg, --std=c++14 vs --std=c++17) ends up
problematic.
This change avoids that issue by immediately converting a
string_view to a pointer-and-length at the cost of an extra eight-bytes
in Twine.
Differential Revision: https://reviews.llvm.org/D106186
- This patch adds in the GOFF format to the file magic identification logic in LLVM
- Currently, for the object file support, GOFF is marked as having as an error
- However, this is only temporary until https://reviews.llvm.org/D98437 is merged in
Reviewed By: abhina.sreeskantharajan
Differential Revision: https://reviews.llvm.org/D105993
Code in getCPUNameFromS390Model currently assumes that the
numerical value of the model number always increases with
future hardware. While this has happened to be the case
with the last few machines, it is not guaranteed -- that
assumption was violated with (much) older machines, and
it can be violated again with future machines.
Fix by explicitly listing model numbers for all supported
machine models.
It turns out that during training, the time required to parse the
textual protobuf of a training log is about the same as the time it
takes to compile the module generating that log. Using binary protobufs
instead elides that cost almost completely.
Differential Revision: https://reviews.llvm.org/D106157
This diff changes llvm-ifs to use unified IFS file format
and perform other renaming changes in preparation for the
merging between elfabi/ifs.
Differential Revision: https://reviews.llvm.org/D99810
This change implements unified text stub format and command line
interface proposed in the elfabi/ifs merge plan.
Differential Revision: https://reviews.llvm.org/D99399
Adds support for MachO static initializers/deinitializers and eh-frame
registration via the ORC runtime.
This commit introduces cooperative support code into the ORC runtime and ORC
LLVM libraries (especially the MachOPlatform class) to support macho runtime
features for JIT'd code. This commit introduces support for static
initializers, static destructors (via cxa_atexit interposition), and eh-frame
registration. Near-future commits will add support for MachO native
thread-local variables, and language runtime registration (e.g. for Objective-C
and Swift).
The llvm-jitlink tool is updated to use the ORC runtime where available, and
regression tests for the new MachOPlatform support are added to compiler-rt.
Notable changes on the ORC runtime side:
1. The new macho_platform.h / macho_platform.cpp files contain the bulk of the
runtime-side support. This includes eh-frame registration; jit versions of
dlopen, dlsym, and dlclose; a cxa_atexit interpose to record static destructors,
and an '__orc_rt_macho_run_program' function that defines running a JIT'd MachO
program in terms of the jit- dlopen/dlsym/dlclose functions.
2. Replaces JITTargetAddress (and casting operations) with ExecutorAddress
(copied from LLVM) to improve type-safety of address management.
3. Adds serialization support for ExecutorAddress and unordered_map types to
the runtime-side Simple Packed Serialization code.
4. Adds orc-runtime regression tests to ensure that static initializers and
cxa-atexit interposes work as expected.
Notable changes on the LLVM side:
1. The MachOPlatform class is updated to:
1.1. Load the ORC runtime into the ExecutionSession.
1.2. Set up standard aliases for macho-specific runtime functions. E.g.
___cxa_atexit -> ___orc_rt_macho_cxa_atexit.
1.3. Install the MachOPlatformPlugin to scrape LinkGraphs for information
needed to support MachO features (e.g. eh-frames, mod-inits), and
communicate this information to the runtime.
1.4. Provide entry-points that the runtime can call to request initializers,
perform symbol lookup, and request deinitialiers (the latter is
implemented as an empty placeholder as macho object deinits are rarely
used).
1.5. Create a MachO header object for each JITDylib (defining the __mh_header
and __dso_handle symbols).
2. The llvm-jitlink tool (and llvm-jitlink-executor) are updated to use the
runtime when available.
3. A `lookupInitSymbolsAsync` method is added to the Platform base class. This
can be used to issue an async lookup for initializer symbols. The existing
`lookupInitSymbols` method is retained (the GenericIRPlatform code is still
using it), but is deprecated and will be removed soon.
4. JIT-dispatch support code is added to ExecutorProcessControl.
The JIT-dispatch system allows handlers in the JIT process to be associated with
'tag' symbols in the executor, and allows the executor to make remote procedure
calls back to the JIT process (via __orc_rt_jit_dispatch) using those tags.
The primary use case is ORC runtime code that needs to call bakc to handlers in
orc::Platform subclasses. E.g. __orc_rt_macho_jit_dlopen calling back to
MachOPlatform::rt_getInitializers using __orc_rt_macho_get_initializers_tag.
(The system is generic however, and could be used by non-runtime code).
The new ExecutorProcessControl::JITDispatchInfo struct provides the address
(in the executor) of the jit-dispatch function and a jit-dispatch context
object, and implementations of the dispatch function are added to
SelfExecutorProcessControl and OrcRPCExecutorProcessControl.
5. OrcRPCTPCServer is updated to support JIT-dispatch calls over ORC-RPC.
6. Serialization support for StringMap is added to the LLVM-side Simple Packed
Serialization code.
7. A JITLink::allocateBuffer operation is introduced to allocate writable memory
attached to the graph. This is used by the MachO header synthesis code, and will
be generically useful for other clients who want to create new graph content
from scratch.
At most these use the StringRef/Twine wrappers and don't have any implicit uses of std::string.
Move the include down to any cpp implementation where std::string is actually used.
llvm::KnownBits::byteSwap() and reverse() don't modify in-place, so
we weren't actually computing anything. This was causing a miscompile on an
arm64 stage2 bootstrap clang build.
We can build it with -Werror=global-constructors now. This helps
in situation where libSupport is embedded as a shared library,
potential with dlopen/dlclose scenario, and when command-line
parsing or other facilities may not be involved. Avoiding the
implicit construction of these cl::opt can avoid double-registration
issues and other kind of behavior.
Reviewed By: lattner, jpienaar
Differential Revision: https://reviews.llvm.org/D105959
We can build it with -Werror=global-constructors now. This helps
in situation where libSupport is embedded as a shared library,
potential with dlopen/dlclose scenario, and when command-line
parsing or other facilities may not be involved. Avoiding the
implicit construction of these cl::opt can avoid double-registration
issues and other kind of behavior.
Reviewed By: lattner, jpienaar
Differential Revision: https://reviews.llvm.org/D105959
We can build it with -Werror=global-constructors now. This helps
in situation where libSupport is embedded as a shared library,
potential with dlopen/dlclose scenario, and when command-line
parsing or other facilities may not be involved. Avoiding the
implicit construction of these cl::opt can avoid double-registration
issues and other kind of behavior.
Reviewed By: lattner, jpienaar
Differential Revision: https://reviews.llvm.org/D105959
The ceiling variant was recently added (due to the work towards D105216), and we're spending a lot of time trying to find optimizations for the expression. This patch brute forces the space of i8 unsigned divides and checks that we get a correct (well consistent with APInt) result for both udiv and udiv ceiling.
(This is basically what I've been doing locally in a hand rolled C++ program, and I realized there no good reason not to check it in as a unit test which directly exercises the logic on constants.)
Differential Revision: https://reviews.llvm.org/D106083
SME introduces the ZA array, a new piece of architectural register state
consisting of a matrix of [SVLb x SVLb] bytes, where SVL is the
implementation defined Streaming SVE vector length and SVLb is the
number of 8-bit elements in a vector of SVL bits.
SME instructions consist of three types of matrix operands:
* Tiles: a ZA tile is a square, two-dimensional sub-array of elements
within the ZA array. These tiles make up the larger accumulator array
and the granularity varies based on the element size, i.e.
- ZAQ0..ZAQ15 (smallest tile granule)
- ZAD0..ZAD7
- ZAS0..ZAS3
- ZAH0..ZAH1
or ZAB0 (largest tile granule, single tile)
* Tile vectors: similar to regular tiles, but have an extra 'h' or 'v'
to tell how the vector at [reg+offset] is layed out in the tile,
horizontally or vertically. E.g. za1h.h or za15v.q, which corresponds
to vectors in registers ZAH1 and ZAQ15, respectively.
* Accumulator matrix: this is the entire accumulator array ZA.
This patch adds the register classes and related operands and parsing
for SME instructions operating on the accumulator array.
The ADDHA and ADDVA instructions which operate on tiles are also added
in this patch to make some use of the code added, later patches will
make use of the other operands introduced here.
The reference can be found here:
https://developer.arm.com/documentation/ddi0602/2021-06
Co-authored by: Sander de Smalen (@sdesmalen)
Reviewed By: david-arm
Differential Revision: https://reviews.llvm.org/D105570
Continuing from D105763, this allows placing certain properties
about attributes in the TableGen definition. In particular, we
store whether an attribute applies to fn/param/ret (or a combination
thereof). This information is used by the Verifier, as well as the
ForceFunctionAttrs pass. I also plan to use this in LLParser,
which also duplicates info on which attributes are valid where.
This keeps metadata about attributes in one place, and makes it
more likely that it stays in sync, rather than in various
functions spread across the codebase.
Differential Revision: https://reviews.llvm.org/D105780
First patch in a series adding MC layer support for the Arm Scalable
Matrix Extension.
This patch adds the following features:
sme, sme-i64, sme-f64
The sme-i64 and sme-f64 flags are for the optional I16I64 and F64F64
features.
If a target supports I16I64 then the following instructions are
implemented:
* 64-bit integer ADDHA and ADDVA variants (D105570).
* SMOPA, SMOPS, SUMOPA, SUMOPS, UMOPA, UMOPS, USMOPA, and USMOPS
instructions that accumulate 16-bit integer outer products into 64-bit
integer tiles.
If a target supports F64F64 then the FMOPA and FMOPS instructions that
accumulate double-precision floating-point outer products into
double-precision tiles are implemented.
Outer products are implemented in D105571.
The reference can be found here:
https://developer.arm.com/documentation/ddi0602/2021-06
Reviewed By: CarolineConcatto
Differential Revision: https://reviews.llvm.org/D105569
This patch makes the operations on InstructionCost saturate, so that when
costs are accumulated they saturate to <max value>.
One of the compelling reasons for wanting to have saturation support
is because in various places, arbitrary values are used to represent
a 'high' cost, but when accumulating the cost of some set of operations
or a loop, overflow is not taken into account, which may lead to unexpected
results. By defining the operations to saturate, we can express the cost
of something 'very expensive' as InstructionCost::getMax().
Reviewed By: kparzysz, dmgreen
Differential Revision: https://reviews.llvm.org/D105108