The current half vector was enforcing an assert expecting
"(LHS is half vector) == (RHS is half vector)"
for comma.
Reviewed By: ahatanak, fhahn
Differential Revision: https://reviews.llvm.org/D88265
This happens in glibc's headers. It's important that we recognize these
functions so that we can mark them as returns_twice.
Differential Revision: https://reviews.llvm.org/D88518
Check applied to unbounded (incomplete) arrays and pointers to spot
cases where the computed address is beyond the largest possible
addressable extent of the array, based on the address space in which the
array is delcared, or which the pointer refers to.
Check helps to avoid cases of nonsense pointer math and array indexing
which could lead to linker failures or runtime exceptions. Of
particular interest when building for embedded systems with small
address spaces.
This is version 2 of this patch -- version 1 had some testing issues
due to a sign error in existing code. That error is corrected and
lit test for this chagne is extended to verify the fix.
Originally reviewed/accepted by: aaron.ballman
Original revision: https://reviews.llvm.org/D86796
Reviewed By: ebevhan
Differential Revision: https://reviews.llvm.org/D88174
Set the default wchar_t type on z/OS, and unsigned as the default.
Reviewed By: hubert.reinterpretcast, fanbo-meng
Differential Revision: https://reviews.llvm.org/D87624
Instead of relying on whether a certain identifier is a builtin, introduce BuiltinAttr to specify a declaration as having builtin semantics.
This fixes incompatible redeclarations of builtins, as reverting the identifier as being builtin due to one incompatible redeclaration would have broken rest of the builtin calls.
Mostly-compatible redeclarations of builtins also no longer have builtin semantics. They don't call the builtin nor inherit their attributes.
A long-standing FIXME regarding builtins inside a namespace enclosed in extern "C" not being recognized is also addressed.
Due to the more correct handling attributes for builtin functions are added in more places, resulting in more useful warnings.
Tests are updated to reflect that.
Intrinsics without an inline definition in intrin.h had `inline` and `static` removed as they had no effect and caused them to no longer be recognized as builtins otherwise.
A pthread_create() related test is XFAIL-ed, as it relied on it being recognized as a builtin based on its name.
The builtin declaration syntax is too restrictive and doesn't allow custom structs, function pointers, etc.
It seems to be the only case and fixing this would require reworking the current builtin syntax, so this seems acceptable.
Fixes PR45410.
Reviewed By: rsmith, yutsumi
Differential Revision: https://reviews.llvm.org/D77491
This patch adds support for implicit casting between GNU vectors and SVE
vectors when `__ARM_FEATURE_SVE_BITS==N`, as defined by the Arm C
Language Extensions (ACLE, version 00bet5, section 3.7.3.3) for SVE [1].
This behavior makes it possible to use GNU vectors with ACLE functions
that operate on VLAT. For example:
typedef int8_t vec __attribute__((vector_size(32)));
vec f(vec x) { return svasrd_x(svptrue_b8(), x, 1); }
Tests are also added for implicit casting between GNU and fixed-length
SVE vectors created by the 'arm_sve_vector_bits' attribute. This
behavior makes it possible to use VLST with existing interfaces that
operate on GNUT. For example:
typedef int8_t vec1 __attribute__((vector_size(32)));
void f(vec1);
#if __ARM_FEATURE_SVE_BITS==256 && __ARM_FEATURE_SVE_VECTOR_OPERATORS
typedef svint8_t vec2 __attribute__((arm_sve_vector_bits(256)));
void g(vec2 x) { f(x); } // OK
#endif
The `__ARM_FEATURE_SVE_VECTOR_OPERATORS` feature macro indicates
interoperability with the GNU vector extension. This is the first patch
providing support for this feature, which once complete will be enabled
by the `-msve-vector-bits` flag, as the `__ARM_FEATURE_SVE_BITS` feature
currently is.
[1] https://developer.arm.com/documentation/100987/latest
Reviewed By: efriedma
Differential Revision: https://reviews.llvm.org/D87607
Check applied to unbounded (incomplete) arrays and pointers
to spot cases where the computed address is beyond the
largest possible addressable extent of the array, based
on the address space in which the array is delcared, or
which the pointer refers to.
Check helps to avoid cases of nonsense pointer math and
array indexing which could lead to linker failures or
runtime exceptions. Of particular interest when building
for embedded systems with small address spaces.
Reviewed By: aaron.ballman
Differential Revision: https://reviews.llvm.org/D86796
This is the initial part of the implementation of the C++20 likelihood
attributes. It handles the attributes in an if statement.
Differential Revision: https://reviews.llvm.org/D85091
The __ARM_FEATURE_SVE_BITS feature macro is specified in the Arm C
Language Extensions (ACLE) for SVE [1] (version 00bet5). From the spec,
where __ARM_FEATURE_SVE_BITS==N:
When N is nonzero, indicates that the implementation is generating
code for an N-bit SVE target and that the arm_sve_vector_bits(N)
attribute is available.
This was defined in D83550 as __ARM_FEATURE_SVE_BITS_EXPERIMENTAL and
enabled under the -msve-vector-bits flag to simplify initial tests.
This patch drops _EXPERIMENTAL now there is support for the feature.
[1] https://developer.arm.com/documentation/100987/latest
Reviewed By: david-arm
Differential Revision: https://reviews.llvm.org/D86720
Continue to heuristically pick the wider of the two operands for
narrowing conversion warnings so that some_char + 1 isn't treated as
being wider than a char, but use the more accurate computation for
tautological comparison warnings.
Differential Revision: https://reviews.llvm.org/D85778
This patch implements the semantics for the 'arm_sve_vector_bits' type
attribute, defined by the Arm C Language Extensions (ACLE) for SVE [1].
The purpose of this attribute is to define vector-length-specific (VLS)
versions of existing vector-length-agnostic (VLA) types.
The semantics were already implemented by D83551, although the
implementation approach has since changed to represent VLSTs as
VectorType in the AST and fixed-length vectors in the IR everywhere
except in function args/returns. This is described in the prototype
patch D85128 demonstrating the new approach.
The semantic changes added in D83551 are changed since the
AttributedType is replaced by VectorType in the AST. Minimal changes
were necessary in the previous patch as the canonical type for both VLA
and VLS was the same (i.e. sizeless), except in constructs such as
globals and structs where sizeless types are unsupported. This patch
reverts the changes that permitted VLS types that were represented as
sizeless types in such circumstances, and adds support for implicit
casting between VLA <-> VLS types as described in section 3.7.3.2 of the
ACLE.
Since the SVE builtin types for bool and uint8 are both represented as
BuiltinType::UChar in VLSTs, two new vector kinds are implemented to
distinguish predicate and data vectors.
[1] https://developer.arm.com/documentation/100987/latest
Reviewed By: aaron.ballman
Differential Revision: https://reviews.llvm.org/D85736
This enables us to use the __builtin_rotateleft / __builtin_rotateright 8/16/32/64 intrinsics inside constexpr code.
Differential Revision: https://reviews.llvm.org/D86342
This adds parsing and codegen support for tune in target attribute.
I've implemented this so that arch in the target attribute implicitly disables tune from the command line. I'm not sure what gcc does here. But since -march implies -mtune. I assume 'arch' in the target attribute implies tune in the target attribute.
Differential Revision: https://reviews.llvm.org/D86187
[Clang] Fix BZ47169, loader_uninitialized on incomplete types
Reported by @erichkeane. Fix proposed by @erichkeane works, tests included.
Bug introduced in D74361. Crash was on querying a CXXRecordDecl for
hasTrivialDefaultConstructor on an incomplete type. Fixed by calling
RequireCompleteType in the right place.
Reviewed By: erichkeane
Differential Revision: https://reviews.llvm.org/D85990
We're (temporarily) disabling ExtInt for the '__atomic' builtins so we can better design their behavior later. The idea is until we do an audit/design for the way atomic builtins are supposed to work with _ExtInt, we should leave them restricted so they don't limit our future options, such as by binding us to a sub-optimal implementation via ABI.
Example after this change:
$ cat test.c
void f(_ExtInt(64) *ptr) {
__atomic_fetch_add(ptr, 1, 0);
}
$ clang -c test.c
test.c:2:22: error: argument to atomic builtin of type '_ExtInt' is not supported
__atomic_fetch_add(ptr, 1, 0);
^
1 error generated.
Differential Revision: https://reviews.llvm.org/D84049
ns_error_domain can be used by, e.g. NS_ERROR_ENUM, in order to
identify a global declaration representing the domain constant.
Introduces the attribute, Sema handling, diagnostics, and test case.
This is cherry-picked from a14779f504
and adapted to updated Clang APIs.
Reviewed By: gribozavr2, aaron.ballman
Differential Revision: https://reviews.llvm.org/D84005
- Prevent nullptr-deference at try to emit warning for invalid `expr`
- Simplify `InitListChecker::UpdateStructuredListElement()` usages. We do not need to check `expr` and increment `StructuredIndex` (for invalid `expr`) before the call anymore.
Reviewed By: aaron.ballman
Differential Revision: https://reviews.llvm.org/D85193
This change squelches the warning for a cast from fixed to fixed point
conversions when -Wbad-function-cast is enabled.
Fixes:
cast from function call of type '_Fract' to non-matching type '_Fract'
[-Wbad-function-cast]
Reviewed By: bjope
Differential Revision: https://reviews.llvm.org/D85157
Vectors of bfloat are a storage format only; you're supposed to
explicitly convert them to a wider type to do arithmetic on them.
But currently, if you write something like
bfloat16x4_t test(bfloat16x4_t a, bfloat16x4_t b) { return a + b; }
then the clang frontend accepts it without error, and (ARM or AArch64)
isel fails to generate code for it.
Added a rule in Sema that forbids the attempt from even being made,
and tests that check it. In particular, we also outlaw arithmetic
between vectors of bfloat and any other vector type.
Patch by Luke Cheeseman.
Reviewed By: LukeGeeson
Differential Revision: https://reviews.llvm.org/D85009
This warning diagnoses cases where an expression is compared to a
constant, and the comparison is tautological due to the form of the
expression (but not merely due to its type). This applies in cases such
as comparisons of bit-fields and the result of bit-masks.
The new warning is added to the Clang diagnostic group
-Wtautological-constant-in-range-compare but not to the
formerly-equivalent GCC-compatibility diagnostic group -Wtype-limits,
which retains its old meaning of diagnosing only tautological
comparisons to extremal values of a type (eg, int > INT_MAX).
Reviewed By: rtrieu
Differential Revision: https://reviews.llvm.org/D85256
This patch added the following additional compile-once
run-everywhere (CO-RE) relocations:
- existence/size of typedef, struct/union or enum type
- enum value and enum value existence
These additional relocations will make CO-RE bpf programs more
adaptive for potential kernel internal data structure changes.
For existence/size relocations, the following two code patterns
are supported:
1. uint32_t __builtin_preserve_type_info(*(<type> *)0, flag);
2. <type> var;
uint32_t __builtin_preserve_field_info(var, flag);
flag = 0 for existence relocation and flag = 1 for size relocation.
For enum value existence and enum value relocations, the following code
pattern is supported:
uint64_t __builtin_preserve_enum_value(*(<enum_type> *)<enum_value>,
flag);
flag = 0 means existence relocation and flag = 1 for enum value.
relocation. In the above <enum_type> can be an enum type or
a typedef to enum type. The <enum_value> needs to be an enumerator
value from the same enum type. The return type is uint64_t to
permit potential 64bit enumerator values.
Differential Revision: https://reviews.llvm.org/D83242
Since we permit using SOME attributes (at the moment, just 1) with
multiversioning, we should improve the message as it still implies that
no attributes should be combined with multiversioning.
Summary:
This patch implements semantics for the 'arm_sve_vector_bits' type
attribute, defined by the Arm C Language Extensions (ACLE) for SVE [1].
The purpose of this attribute is to define fixed-length (VLST) versions
of existing sizeless types (VLAT).
Implemented in this patch is the the behaviour described in section 3.7.3.2
and minimal parts of sections 3.7.3.3 and 3.7.3.4, this includes:
* Defining VLST globals, structs, unions, and local variables
* Implicit casting between VLAT <=> VLST.
* Diagnosis of ill-formed conditional expressions of the form:
C ? E1 : E2
where E1 is a VLAT type and E2 is a VLST, or vice-versa. This
avoids any ambiguity about the nature of the result type (i.e is
it sized or sizeless).
* For vectors:
* sizeof(VLST) == N/8
* alignof(VLST) == 16
* For predicates:
* sizeof(VLST) == N/64
* alignof(VLST) == 2
VLSTs have the same representation as VLATs in the AST but are wrapped
with a TypeAttribute. Scalable types are currently emitted in the IR for
uses such as globals and structs which don't support these types, this
is addressed in the next patch with codegen, where VLSTs are lowered to
sized arrays for globals, structs / unions and arrays.
Not implemented in this patch is the behaviour guarded by the feature
macros:
* __ARM_FEATURE_SVE_VECTOR_OPERATORS
* __ARM_FEATURE_SVE_PREDICATE_OPERATORS
As such, the GNU __attribute__((vector_size)) extension is not available
and operators such as binary '+' are not supported for VLSTs. Support
for this is intended to be addressed by later patches.
[1] https://developer.arm.com/documentation/100987/latest
This is patch 2/4 of a patch series.
Reviewers: sdesmalen, rsandifo-arm, efriedma, cameron.mcinally, ctetreau, rengolin, aaron.ballman
Reviewed By: aaron.ballman
Differential Revision: https://reviews.llvm.org/D83551
Summary:
We need to detect when certain TypoExprs are not being transformed
due to invalid trees, otherwise we risk endlessly trying to fix it.
Reviewers: rsmith
Subscribers: cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D84067
As reported in PR46774, an invalid arithemetic conversion used in a C
ternary operator resulted in an assertion. This patch replaces that
assertion with a diagnostic stating that the conversion failed.
At the moment, I believe the only case of this happening is _ExtInt
types.
Summary:
This patch implements parsing support for the 'arm_sve_vector_bits' type
attribute, defined by the Arm C Language Extensions (ACLE, version 00bet5,
section 3.7.3) for SVE [1].
The purpose of this attribute is to define fixed-length (VLST) versions
of existing sizeless types (VLAT). For example:
#if __ARM_FEATURE_SVE_BITS==512
typedef svint32_t fixed_svint32_t __attribute__((arm_sve_vector_bits(512)));
#endif
Creates a type 'fixed_svint32_t' that is a fixed-length version of
'svint32_t' that is normal-sized (rather than sizeless) and contains
exactly 512 bits. Unlike 'svint32_t', this type can be used in places
such as structs and arrays where sizeless types can't.
Implemented in this patch is the following:
* Defined and tested attribute taking single argument.
* Checks the argument is an integer constant expression.
* Attribute can only be attached to a single SVE vector or predicate
type, excluding tuple types such as svint32x4_t.
* Added the `-msve-vector-bits=<bits>` flag. When specified the
`__ARM_FEATURE_SVE_BITS__EXPERIMENTAL` macro is defined.
* Added a language option to store the vector size specified by the
`-msve-vector-bits=<bits>` flag. This is used to validate `N ==
__ARM_FEATURE_SVE_BITS`, where N is the number of bits passed to the
attribute and `__ARM_FEATURE_SVE_BITS` is the feature macro defined under
the same flag.
The `__ARM_FEATURE_SVE_BITS` macro will be made non-experimental in the final
patch of the series.
[1] https://developer.arm.com/documentation/100987/latest
This is patch 1/4 of a patch series.
Reviewers: sdesmalen, rsandifo-arm, efriedma, ctetreau, cameron.mcinally, rengolin, aaron.ballman
Reviewed By: sdesmalen, aaron.ballman
Differential Revision: https://reviews.llvm.org/D83550
The _ExtInt type allows custom width integers, but the atomic memory
access's operand must have a power-of-two size. _ExtInts with
non-power-of-two size should not be allowed for atomic intrinsic.
Before this change:
$ cat test.c
typedef unsigned _ExtInt(42) dtype;
void verify_binary_op_nand(dtype* pval1, dtype val2)
{ __sync_nand_and_fetch(pval1, val2); }
$ clang test.c
clang-11:
/home/ubuntu/llvm_workspace/llvm/clang/lib/CodeGen/CGBuiltin.cpp:117:
llvm::Value*
EmitToInt(clang::CodeGen::CodeGenFunction&, llvm::Value*,
clang::QualType, llvm::IntegerType*): Assertion `V->getType() ==
IntType' failed.
PLEASE submit a bug report to https://bugs.llvm.org/ and include the
crash backtrace, preprocessed source, and associated run script.
After this change:
$ clang test.c
test.c:3:30: error: Atomic memory operand must have a power-of-two size
{ __sync_nand_and_fetch(pval1, val2); }
^
List of the atomic intrinsics that have this
problem:
__sync_fetch_and_add
__sync_fetch_and_sub
__sync_fetch_and_or
__sync_fetch_and_and
__sync_fetch_and_xor
__sync_fetch_and_nand
__sync_nand_and_fetch
__sync_and_and_fetch
__sync_add_and_fetch
__sync_sub_and_fetch
__sync_or_and_fetch
__sync_xor_and_fetch
__sync_fetch_and_min
__sync_fetch_and_max
__sync_fetch_and_umin
__sync_fetch_and_umax
__sync_val_compare_and_swap
__sync_bool_compare_and_swap
Differential Revision: https://reviews.llvm.org/D83340
Currently, Clang previously diagnosed this code by default:
void f(int a[static 0]);
saying that "static has no effect on zero-length arrays", which was
accurate.
However, static array extents require that the caller of the function
pass a nonnull pointer to an array of *at least* that number of
elements, but it can pass more (see C17 6.7.6.3p6). Given that we allow
zero-sized arrays as a GNU extension and that it's valid to pass more
elements than specified by the static array extent, we now support
zero-sized static array extents with the usual semantics because it can
be useful in cases like:
void my_bzero(char p[static 0], int n);
my_bzero(&c+1, 0); //ok
my_bzero(t+k,n-k); //ok, pattern from actual code
in places such as constant folding
Previously some places that should have handled
__builtin_expect_with_probability is missing, so in some case it acts
differently than __builtin_expect.
For example it was not handled in constant folding, thus in the
following program, the "if" condition should be constantly true and
folded, but previously it was not handled and cause warning "control may
reach end of non-void function" (while __builtin_expect does not):
__attribute__((noreturn)) extern void bar();
int foo(int x, int y) {
if (y) {
if (__builtin_expect_with_probability(1, 1, 1))
bar();
}
else
return 0;
}
Now it's fixed.
Differential Revisions: https://reviews.llvm.org/D83362
__builtin_va_*() and __builtin_ms_va_*() are declared as functions with a
parameter of reference type.
This patch fixes a crash when using these functions in C where an argument
of structure type is incompatible with the parameter type.
Differential Revision: https://reviews.llvm.org/D82805
Reviewed By: riccibruno
Patch by: Aleksandr Platonov <platonov.aleksandr@huawei.com>
The error-bit was missing, and the unexpandedpack bit seemed to be
set incorrectly.
Reviewed By: sammccall, erichkeane
Differential Revision: https://reviews.llvm.org/D83114
Summary:
We might lose the error-bit if the error-bit goes through the code path
"error type/expr" -> "error template argument" -> "nested name specifier" ->
... -> "template Specialization type"
Template name also needs this, as a template can be nested into
an error specifier, e.g. templateName apply in
`TC<decltype(<recovery-expr>(Foo, int()))>::template apply`
Reviewers: sammccall
Subscribers: cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D82526
Summary:
Patch adds tests for mangling of svbfloat16_t and several other type
related tests.
Reviewers: sdesmalen, kmclaughlin, fpetrogalli, efriedma
Reviewed By: sdesmalen, fpetrogalli
Differential Revision: https://reviews.llvm.org/D82668
This was suggested in D72782 and brings the diagnostics more in line
with how argument references are handled elsewhere.
Reviewers: rjmccall, jfb, Bigcheese
Reviewed By: rjmccall
Differential Revision: https://reviews.llvm.org/D82473
Add a new builtin-function __builtin_expect_with_probability and
intrinsic llvm.expect.with.probability.
The interface is __builtin_expect_with_probability(long expr, long
expected, double probability).
It is mainly the same as __builtin_expect besides one more argument
indicating the probability of expression equal to expected value. The
probability should be a constant floating-point expression and be in
range [0.0, 1.0] inclusive.
It is similar to builtin-expect-with-probability function in GCC
built-in functions.
Differential Revision: https://reviews.llvm.org/D79830
Clang is missing one of the conditions for C99 6.5.9p2, where comparison
between pointers must either both point to incomplete types or both
point to complete types. This patch adds an extra check to the clause
where two pointers are of compatible types.
This only applies to C89/C99; the relevant part of the standard was
rewritten for C11.
Differential Revision: https://reviews.llvm.org/D79945
This patch add __builtin_matrix_column_major_store to Clang,
as described in clang/docs/MatrixTypes.rst. In the initial version,
the stride is not optional yet.
Reviewers: rjmccall, jfb, rsmith, Bigcheese
Reviewed By: rjmccall
Differential Revision: https://reviews.llvm.org/D72782
This patch add __builtin_matrix_column_major_load to Clang,
as described in clang/docs/MatrixTypes.rst. In the initial version,
the stride is not optional yet.
Reviewers: rjmccall, rsmith, jfb, Bigcheese
Reviewed By: rjmccall
Differential Revision: https://reviews.llvm.org/D72781
Summary:
The field decl (in the testcase) was still valid, which results in a
valid RecordDecl, it led to crash when performing struct layout,
and computing struct size etc.
Reviewers: sammccall
Subscribers: cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D81913
_ExtInt types
- Fix computed size for _ExtInt types passed to checked arithmetic
builtins.
- Emit diagnostic when signed _ExtInt larger than 128-bits is passed
to __builtin_mul_overflow.
- Change Sema checks for builtins to accept placeholder types.
Differential Revision: https://reviews.llvm.org/D81420
The ParseStructUnionBody function was separately keeping track of the
field decls for historical reasons, however the "ActOn" functions add
the field to the RecordDecl anyway.
The "ParseStructDeclaration" function, which handles parsing fields
didn't have a way of handling what happens on an anonymous field, and
changing it would alter a large amount of objc code, so I chose instead
to implement this by just filling the FieldDecls vector with the actual
FieldDecls that were successfully added to the recorddecl .
Summary:
__builtin_amdgcn_atomic_inc32(int *Ptr, int Val, unsigned MemoryOrdering, const char *SyncScope)
__builtin_amdgcn_atomic_inc64(int64_t *Ptr, int64_t Val, unsigned MemoryOrdering, const char *SyncScope)
__builtin_amdgcn_atomic_dec32(int *Ptr, int Val, unsigned MemoryOrdering, const char *SyncScope)
__builtin_amdgcn_atomic_dec64(int64_t *Ptr, int64_t Val, unsigned MemoryOrdering, const char *SyncScope)
First and second arguments gets transparently passed to the amdgcn atomic
inc/dec intrinsic. Fifth argument of the intrinsic is set as true if the
first argument of the builtin is a volatile pointer. The third argument of
this builtin is one of the memory-ordering specifiers ATOMIC_ACQUIRE,
ATOMIC_RELEASE, ATOMIC_ACQ_REL, or ATOMIC_SEQ_CST following C++11 memory
model semantics. This is mapped to corresponding LLVM atomic memory ordering
for the atomic inc/dec instruction using CLANG atomic C ABI. The fourth
argument is an AMDGPU-specific synchronization scope defined as string.
Reviewers: arsenm, sameerds, JonChesterfield, jdoerfert
Reviewed By: arsenm, sameerds
Subscribers: kzhuravl, jvesely, wdng, nhaehnle, yaxunl, dstuttard, tpr, t-tye, jfb, kerbowa, cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D80804
This patch add __builtin_matrix_transpose to Clang, as described in
clang/docs/MatrixTypes.rst.
Reviewers: rjmccall, jfb, rsmith, Bigcheese
Reviewed By: rjmccall
Differential Revision: https://reviews.llvm.org/D72778
Summary:
When getting a warning that we release a capability that isn't held it's
sometimes not clear why. So just like we do for double locking, we add a
note on the previous release operation, which marks the point since when
the capability isn't held any longer.
We can find this previous release operation by looking up the
corresponding negative capability.
Reviewers: aaron.ballman, delesley
Reviewed By: aaron.ballman
Differential Revision: https://reviews.llvm.org/D81352
This patch implements the * binary operator for values of
MatrixType. It adds support for matrix * matrix, scalar * matrix and
matrix * scalar.
For the matrix, matrix case, the number of columns of the first operand
must match the number of rows of the second. For the scalar,matrix variants,
the element type of the matrix must match the scalar type.
Reviewers: rjmccall, anemet, Bigcheese, rsmith, martong
Reviewed By: rjmccall
Differential Revision: https://reviews.llvm.org/D76794
This patch addresses the review comments on r352930:
- Removes redundant diagnostic checking code
- Removes errnoneous use of diag::err_alias_is_definition, which
turned out to be ineffective anyway since functions can be defined later
in the translation unit and avoid detection.
- Adds a test for various invalid cases for import_name and import_module.
This reapplies D59520, with the addition of adding
`InGroup<IgnoredAttributes>` to the new warnings, to fix the
Misc/warning-flags.c failure.
Differential Revision: https://reviews.llvm.org/D59520
This patch addresses the review comments on r352930:
- Removes redundant diagnostic checking code
- Removes errnoneous use of diag::err_alias_is_definition, which
turned out to be ineffective anyway since functions can be defined later
in the translation unit and avoid detection.
- Adds a test for various invalid cases for import_name and import_module.
Differential Revision: https://reviews.llvm.org/D59520
Summary:
This patch upstreams support for a new storage only bfloat16 C type.
This type is used to implement primitive support for bfloat16 data, in
line with the Bfloat16 extension of the Armv8.6-a architecture, as
detailed here:
https://community.arm.com/developer/ip-products/processors/b/processors-ip-blog/posts/arm-architecture-developments-armv8-6-a
The bfloat type, and its properties are specified in the Arm Architecture
Reference Manual:
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
In detail this patch:
- introduces an opaque, storage-only C-type __bf16, which introduces a new bfloat IR type.
This is part of a patch series, starting with command-line and Bfloat16
assembly support. The subsequent patches will upstream intrinsics
support for BFloat16, followed by Matrix Multiplication and the
remaining Virtualization features of the armv8.6-a architecture.
The following people contributed to this patch:
- Luke Cheeseman
- Momchil Velikov
- Alexandros Lamprineas
- Luke Geeson
- Simon Tatham
- Ties Stuij
Reviewers: SjoerdMeijer, rjmccall, rsmith, liutianle, RKSimon, craig.topper, jfb, LukeGeeson, fpetrogalli
Reviewed By: SjoerdMeijer
Subscribers: labrinea, majnemer, asmith, dexonsmith, kristof.beyls, arphaman, danielkiss, cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D76077
Extension vectors now can be used in element-wise conditional selector.
For example:
```
R[i] = C[i]? A[i] : B[i]
```
This feature was previously only enabled in OpenCL C. Now it's also
available in C. Not that it has different behaviors than GNU vectors
(i.e. __vector_size__). Extension vectors selects on signdness of the
vector. GNU vectors on the other hand do normal bool conversions. Also,
this feature is not available in C++.
Differential Revision: https://reviews.llvm.org/D80574
This patch implements matrix index expressions
(matrix[RowIdx][ColumnIdx]).
It does so by introducing a new MatrixSubscriptExpr(Base, RowIdx, ColumnIdx).
MatrixSubscriptExprs are built in 2 steps in ActOnMatrixSubscriptExpr. First,
if the base of a subscript is of matrix type, we create a incomplete
MatrixSubscriptExpr(base, idx, nullptr). Second, if the base is an incomplete
MatrixSubscriptExpr, we create a complete
MatrixSubscriptExpr(base->getBase(), base->getRowIdx(), idx)
Similar to vector elements, it is not possible to take the address of
a MatrixSubscriptExpr.
For CodeGen, a new MatrixElt type is added to LValue, which is very
similar to VectorElt. The only difference is that we may need to cast
the type of the base from an array to a vector type when accessing it.
Reviewers: rjmccall, anemet, Bigcheese, rsmith, martong
Reviewed By: rjmccall
Differential Revision: https://reviews.llvm.org/D76791
GCC 10.1 introduced support for the [[]] style spelling of attributes in C
mode. Similar to how GCC supports __attribute__((foo)) as [[gnu::foo]] in
C++ mode, it now supports the same spelling in C mode as well. This patch
makes a change in Clang so that when you use the GCC attribute spelling,
the attribute is automatically available in all three spellings by default.
However, like Clang, GCC has some attributes it only recognizes in C++ mode
(specifically, abi_tag and init_priority), which this patch also honors.
This patch implements the + and - binary operators for values of
MatrixType. It adds support for matrix +/- matrix, scalar +/- matrix and
matrix +/- scalar.
For the matrix, matrix case, the types must initially be structurally
equivalent. For the scalar,matrix variants, the element type of the
matrix must match the scalar type.
Reviewers: rjmccall, anemet, Bigcheese, rsmith, martong
Reviewed By: rjmccall
Differential Revision: https://reviews.llvm.org/D76793
Summary:
With recovery-ast, we will get an undeduced `auto` return type for
"auto foo()->undef()" function declaration, the function decl still keeps
valid, it is dangerous, and breaks assumptions in clang, and leads crashes.
This patch invalidates these functions, if we deduce autos from the
return rexpression, which is similar to auto VarDecl.
Subscribers: cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D80221
The headers provided with recent GNU toolchains for PPC have code that includes
typedefs such as:
typedef _Complex float __cfloat128 __attribute__ ((__mode__ (__KC__)))
This patch allows clang to compile programs that contain
#include <math.h>
with -mfloat128 which it currently fails to compile.
Fixes: https://bugs.llvm.org/show_bug.cgi?id=46068
Differential revision: https://reviews.llvm.org/D80374
Summary: 'A' constraint requires an immediate int or fp constant that can be inlined in an instruction encoding.
This is the second part of the change. The llvm part has been committed as b087b91c91.
See https://reviews.llvm.org/D78494
Reviewers: arsenm, rampitec
Differential Revision: https://reviews.llvm.org/D79493
When I fixed the targets specific builtins to make sure that aux-targets
are checked, it seems I didn't consider cases where the builtins check
the target info for further info. This patch bubbles the target-info
down to the individual checker functions to ensure that they validate
against the aux-target as well.
For non-aux-target invocations, this is an NFC.
Such a builtin function is mostly useful to preserve btf type id
for non-global data. For example,
extern void foo(..., void *data, int size);
int test(...) {
struct t { int a; int b; int c; } d;
d.a = ...; d.b = ...; d.c = ...;
foo(..., &d, sizeof(d));
}
The function "foo" in the above only see raw data and does not
know what type of the data is. In certain cases, e.g., logging,
the additional type information will help pretty print.
This patch implemented a BPF specific builtin
u32 btf_type_id = __builtin_btf_type_id(param, flag)
which will return a btf type id for the "param".
flag == 0 will indicate a BTF local relocation,
which means btf type_id only adjusted when bpf program BTF changes.
flag == 1 will indicate a BTF remote relocation,
which means btf type_id is adjusted against linux kernel or
future other entities.
Differential Revision: https://reviews.llvm.org/D74668
I discovered that when using an aux-target builtin, it was recognized as
a builtin but never checked. This patch checks for an aux-target builtin
and instead validates it against the correct target.
It does this by extracting the checking code for Target-specific
builtins into its own function, then calls with either targetInfo or
AuxTargetInfo.
Summary:
Conflicting types for the same section name defined in clang section
pragmas and GNU-style section attributes were not properly captured by
Clang's Sema. The lack of diagnostics was caused by the fact the section
specification coming from attributes was handled by Sema as implicit,
even though explicitly defined by the user.
This patch enables the diagnostics for section type conflicts between
those specifications by making sure sections defined in section
attributes are correctly handled as explicit.
Reviewers: hans, rnk, javed.absar
Reviewed By: rnk
Subscribers: cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D78573
Summary:
Section names used in clang section pragmas were not validated against
previously defined sections, causing section type conflicts to be
ignored by Sema.
This patch enables Clang to capture these section type conflicts by
using the existing Sema's UnifySection method to validate section names
from clang section pragmas.
Reviewers: hans, rnk, javed.absar
Reviewed By: rnk
Subscribers: cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D78572
This is the result of an audit of all of the ABIs in clang to implement
and enable the type for those targets.
Additionally, this finds an issue with integer-promotion passing for a
few platforms when using _ExtInt of < int, so this also corrects that
resulting in signext/zeroext being on a params of those types in some
platforms.
Differential Revisions: https://reviews.llvm.org/D79118
The built-in SVE types are supposed to be treated as opaque types.
This means that for initialisation purposes they should be treated
as a single unit, much like a scalar type.
However, as Eli pointed out, actually using "scalar" in the diagnostics
is likely to cause confusion, given the types are logically vectors.
The patch therefore uses custom diagnostics or generalises existing
ones. Some of the messages use the word "indivisible" to try to make
it clear(er) that these types can't be initialised elementwise.
I don't think it's possible to trigger warn_braces_around_(scalar_)init
for sizeless types as things stand, since the types can't be used as
members or elements of more complex types. But it seemed better to be
consistent with ext_many_braces_around_(scalar_)init, so the patch
changes it anyway.
Differential Revision: https://reviews.llvm.org/D76689
I have a follow-on patch that uses an alternative wording for
ext_excess_initializers in some cases. This patch puts it and
a couple of related warnings under their own -W option in order
to avoid a regression in Misc/warning-flags.c.
Differential Revision: https://reviews.llvm.org/D79244
Since the _ExtInt type got into the repo, we've discovered that the ABI
implications weren't completely understood. The other architectures are
going to be audited (see D79118), however downstream targets aren't
going to benefit from this audit.
This patch disables the _ExtInt type by default and makes the
target-info an opt-in. As it is audited, I'll re-enable these for all
of our default targets.
When passing a value of a struct/union type from secure to non-secure
state (that is returning from a CMSE entry function or passing an
argument to CMSE-non-secure call), there is a potential sensitive
information leak via the padding bits in the structure. It is not
possible in the general case to ensure those bits are cleared by using
Standard C/C++.
This patch makes the compiler emit code to clear such padding
bits. Since type information is lost in LLVM IR, the code generation
is done by Clang.
For each interesting record type, we build a bitmask, in which all the
bits, corresponding to user declared members, are set. Values of
record types are returned by coercing them to an integer. After the
coercion, the coerced value is masked (with bitwise AND) and then
returned by the function. In a similar manner, values of record types
are passed as arguments by coercing them to an array of integers, and
the coerced values themselves are masked.
For union types, we effectively clear only bits, which aren't part of
any member, since we don't know which is the currently active one.
The compiler will issue a warning, whenever a union is passed to
non-secure state.
Values of half-precision floating-point types are passed in the least
significant bits of a 32-bit register (GPR or FPR) with the most
significant bits unspecified. Since this is also a potential leak of
sensitive information, this patch also clears those unspecified bits.
Differential Revision: https://reviews.llvm.org/D76369
Expose llvm fence instruction as clang builtin for AMDGPU target
__builtin_amdgcn_fence(unsigned int memoryOrdering, const char *syncScope)
The first argument of this builtin is one of the memory-ordering specifiers
__ATOMIC_ACQUIRE, __ATOMIC_RELEASE, __ATOMIC_ACQ_REL, or __ATOMIC_SEQ_CST
following C++11 memory model semantics. This is mapped to corresponding
LLVM atomic memory ordering for the fence instruction using LLVM atomic C
ABI. The second argument is an AMDGPU-specific synchronization scope
defined as string.
Reviewed By: sameerds
Differential Revision: https://reviews.llvm.org/D75917
Currently, both `warn_impcast_integer_float_precision_constant` and
`warn_impcast_integer_float_precision` are covered by
-Wimplicit-int-float-conversion, but only the ..._constant warning is on
by default.
`warn_impcast_integer_float_precision_constant` likely flags real problems
while `warn_impcast_integer_float_precision` may flag legitimate use
cases (for example, `int` used with limited range supported by `float`).
If -Wno-implicit-int-float-conversion is used, currently there is no way
to restore the ..._constant warning. This patch adds
-Wimplicit-const-int-float-conversion to address the issue. (Similar to
the reasoning in https://reviews.llvm.org/D64666#1598194)
Adapted from a patch by Brooks Moses.
Reviewed By: nickdesaulniers
Differential Revision: https://reviews.llvm.org/D78661
WG14 has adopted N2480 (http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2480.pdf)
into C2x at the meetings last week, allowing parameter names of a function
definition to be elided. This patch relaxes the error so that C++ and C2x do not
diagnose this situation, and modes before C2x will allow it as an extension.
This also adds the same feature to ObjC blocks under the assumption that ObjC
wishes to follow the C standard in this regard.
Summary:
This matches llvm::VectorType.
It moves the size from the type bitfield into VectorType, increasing size by 8
bytes (including padding of 4). This is OK as we don't expect to create terribly
many of these types.
c.f. D77313 which enables large power-of-two sizes without growing VectorType.
Reviewers: efriedma, hokein
Subscribers: cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D77335
The driver enables -fdiagnostics-show-option by default, so flip the CC1
default to reduce the lengths of common CC1 command lines.
This change also makes ParseDiagnosticArgs() consistently enable
-fdiagnostics-show-option by default.
Summary: We mark these decls as invalid.
Reviewers: sammccall
Subscribers: cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D77037
Summary:
If the bitwith expr contains errors, we mark the field decl invalid.
This patch also tweaks the behavior of ObjCInterfaceDecl to be consistent with
existing RecordDecl -- getObjCLayout method is only called with valid decls.
Reviewers: sammccall
Subscribers: cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D76953
Casts from an SVE type to itself aren't very useful, but they are
supposed to be valid, and could occur in things like macro expansions.
Such casts already work for C++ and are tested by sizeless-1.cpp.
This patch makes them work for C too.
Differential Revision: https://reviews.llvm.org/D76694
When compiling C, a ?: between two values of the same SVE type
currently gives an error such as:
incompatible operand types ('svint8_t' (aka '__SVInt8_t') and 'svint8_t')
It's supposed to be valid to select between (cv-qualified versions of)
the same SVE type, so this patch adds that case.
These expressions already work for C++ and are tested by
SemaCXX/sizeless-1.cpp.
Differential Revision: https://reviews.llvm.org/D76693
There's inconsistency in handling array types between the
`distributeFunctionTypeAttrXXX` functions and the
`FunctionTypeUnwrapper` in `SemaType.cpp`.
This patch lets `FunctionTypeUnwrapper` apply function type attributes
through array types.
Differential Revision: https://reviews.llvm.org/D75109
Summary: If the size parameter of `__builtin_memcpy_inline` comes from an un-instantiated template parameter current code would crash.
Reviewers: efriedma, courbet
Subscribers: cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D76504
Summary:
This patch implements the following intrinsics:
uint8x16_t __arm_vcx1q_u8 (int coproc, uint32_t imm);
T __arm_vcx1qa(int coproc, T acc, uint32_t imm);
T __arm_vcx2q(int coproc, T n, uint32_t imm);
uint8x16_t __arm_vcx2q_u8(int coproc, T n, uint32_t imm);
T __arm_vcx2qa(int coproc, T acc, U n, uint32_t imm);
T __arm_vcx3q(int coproc, T n, U m, uint32_t imm);
uint8x16_t __arm_vcx3q_u8(int coproc, T n, U m, uint32_t imm);
T __arm_vcx3qa(int coproc, T acc, U n, V m, uint32_t imm);
Most of them are polymorphic. Furthermore, some intrinsics are
polymorphic by 2 or 3 parameter types, such polymorphism is not
supported by the existing MVE/CDE tablegen backends, also we don't
really want to have a combinatorial explosion caused by 1000 different
combinations of 3 vector types. Because of this some intrinsics are
implemented as macros involving a cast of the polymorphic arguments to
uint8x16_t.
The IR intrinsics are even more restricted in terms of types: all MVE
vectors are cast to v16i8.
Reviewers: simon_tatham, MarkMurrayARM, dmgreen, ostannard
Reviewed By: MarkMurrayARM
Subscribers: kristof.beyls, hiraditya, danielkiss, cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D76299
Summary:
This change implements ACLE CDE intrinsics that translate to
instructions working with general-purpose registers.
The specification is available at
https://static.docs.arm.com/101028/0010/ACLE_2019Q4_release-0010.pdf
Each ACLE intrinsic gets a corresponding LLVM IR intrinsic (because
they have distinct function prototypes). Dual-register operands are
represented as pairs of i32 values. Because of this the instruction
selection for these intrinsics cannot be represented as TableGen
patterns and requires custom C++ code.
Reviewers: simon_tatham, MarkMurrayARM, dmgreen, ostannard
Reviewed By: MarkMurrayARM
Subscribers: kristof.beyls, hiraditya, danielkiss, cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D76296
Summary:
[Clang] Attribute to allow defining undef global variables
Initializing global variables is very cheap on hosted implementations. The
C semantics of zero initializing globals work very well there. It is not
necessarily cheap on freestanding implementations. Where there is no loader
available, code must be emitted near the start point to write the appropriate
values into memory.
At present, external variables can be declared in C++ and definitions provided
in assembly (or IR) to achive this effect. This patch provides an attribute in
order to remove this reason for writing assembly for performance sensitive
freestanding implementations.
A close analogue in tree is LDS memory for amdgcn, where the kernel is
responsible for initializing the memory after it starts executing on the gpu.
Uninitalized variables in LDS are observably cheaper than zero initialized.
Patch is loosely based on the cuda __shared__ and opencl __local variable
implementation which also produces undef global variables.
Reviewers: kcc, rjmccall, rsmith, glider, vitalybuka, pcc, eugenis, vlad.tsyrklevich, jdoerfert, gregrodgers, jfb, aaron.ballman
Reviewed By: rjmccall, aaron.ballman
Subscribers: Anastasia, aaron.ballman, davidb, Quuxplusone, dexonsmith, cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D74361
This patch completes a trio of changes related to arrays of
sizeless types. It rejects various forms of arithmetic on
pointers to sizeless types, in the same way as for other
incomplete types.
Differential Revision: https://reviews.llvm.org/D76086
clang currently accepts:
__SVInt8_t &foo1(__SVInt8_t *x) { return *x; }
__SVInt8_t &foo2(__SVInt8_t *x) { return x[1]; }
The first function is valid ACLE code and generates correct LLVM IR
(and assembly code). But the second function is invalid for the
same reason that arrays of sizeless types are. Trying to code-generate
the function leads to:
llvm/include/llvm/Support/TypeSize.h:126: uint64_t llvm::TypeSize::getFixedSize() const: Assertion `!IsScalable && "Request for a fixed size on a s
calable object"' failed.
Another problem is that:
template<typename T>
constexpr __SIZE_TYPE__ f(T *x) { return &x[1] - x; }
typedef int arr1[f((int *)0) - 1];
typedef int arr2[f((__SVInt8_t *)0) - 1];
produces:
a.cpp:2:48: warning: subtraction of pointers to type '__SVInt8_t' of zero size has undefined behavior [-Wpointer-arith]
constexpr __SIZE_TYPE__ f(T *x) { return &x[1] - x; }
~~~~~ ^ ~
a.cpp:4:18: note: in instantiation of function template specialization 'f<__SVInt8_t>' requested here
typedef int arr2[f((__SVInt8_t *)0) - 1];
This patch reports an appropriate diagnostic instead.
Differential Revision: https://reviews.llvm.org/D76084
The SVE ACLE doesn't allow arrays of sizeless types. At the moment
clang accepts the TU:
__SVInt8_t x[2];
but trying to code-generate it triggers the LLVM assertion:
llvm/lib/IR/Type.cpp:588: static llvm::ArrayType* llvm::ArrayType::get(llvm::Type*, uint64_t): Assertion `isValidElementType(ElementType) && "Invalid type for array element!"' failed.
This patch reports an appropriate error instead.
The rules are slightly more restrictive than for general incomplete types.
For example:
struct s;
typedef struct s arr[2];
is valid as far as it goes, whereas arrays of sizeless types are
invalid in all contexts. BuildArrayType therefore needs a specific
check for isSizelessType in addition to the usual handling of
incomplete types.
Differential Revision: https://reviews.llvm.org/D76082
The SVE ACLE doesn't allow fields to have sizeless type. At the moment
clang accepts things like:
struct s { __SVInt8_t x; } y;
but trying to code-generate it leads to LLVM asserts like:
llvm/include/llvm/Support/TypeSize.h:126: uint64_t llvm::TypeSize::getFixedSize() const: Assertion `!IsScalable && "Request for a fixed size on a scalable object"' failed.
This patch adds an associated clang diagnostic.
Differential Revision: https://reviews.llvm.org/D75737
Summary:
The parsing of GNU C extended asm statements was a little brittle and
had a few issues:
- It was using Parse::ParseTypeQualifierListOpt to parse the `volatile`
qualifier. That parser is really meant for TypeQualifiers; an asm
statement doesn't really have a type qualifier. This is still maybe
nice to have, but not necessary. We now can check for the `volatile`
token by properly expanding the grammer, rather than abusing
Parse::ParseTypeQualifierListOpt.
- The parsing of `goto` was position dependent, so `asm goto volatile`
wouldn't parse. The qualifiers should be position independent to one
another. Now they are.
- We would warn on duplicate `volatile`, but the parse error for
duplicate `goto` was a generic parse error and wasn't clear.
- We need to add support for the recent GNU C extension `asm inline`.
Adding support to the parser with the above issues highlighted the
need for this refactoring.
Link: https://gcc.gnu.org/onlinedocs/gcc/Extended-Asm.html
Reviewers: aaron.ballman
Reviewed By: aaron.ballman
Subscribers: aheejin, jfb, nathanchance, cfe-commits, echristo, efriedma, rsmith, chandlerc, craig.topper, erichkeane, jyu2, void, srhines
Tags: #clang
Differential Revision: https://reviews.llvm.org/D75563
clang accepts a TU containing just:
__SVInt8_t x;
However, sizeless types are not allowed to have static or thread-local
storage duration and trying to code-generate the TU triggers an LLVM
fatal error:
Globals cannot contain scalable vectors
<vscale x 16 x i8>* @x
fatal error: error in backend: Broken module found, compilation aborted!
This patch adds an associated clang diagnostic.
Differential Revision: https://reviews.llvm.org/D75736
It would be difficult to guarantee atomicity for sizeless types,
so the SVE ACLE makes atomic sizeless types invalid. As it happens,
we already rejected them before the patch, but for the wrong reason:
error: _Atomic cannot be applied to type 'svint8_t' (aka '__SVInt8_t')
which is not trivially copyable
The SVE types should be treated as trivially copyable; a later
patch fixes that.
Differential Revision: https://reviews.llvm.org/D75734
A previous patch rejected alignof for sizeless types. This patch
extends that to cover the "aligned" attribute and _Alignas. Since
sizeless types are not meant to be used for long-term data, cannot
be used in aggregates, and cannot have static storage duration,
there shouldn't be any need to fiddle with their alignment.
Like with alignof, this is a conservative position that can be
relaxed in future if it turns out to be too restrictive.
Differential Revision: https://reviews.llvm.org/D75573
clang current accepts:
void foo1(__SVInt8_t *x, __SVInt8_t *y) { *x = *y; }
void foo2(__SVInt8_t *x, __SVInt8_t *y) {
memcpy(y, x, sizeof(__SVInt8_t));
}
The first function is valid ACLE code and generates correct LLVM IR.
However, the second function is invalid ACLE code and generates a
zero-length memcpy. The point of this patch is to reject the use
of sizeof in the second case instead.
There's no similar wrong-code bug for alignof. However, the SVE ACLE
conservatively treats alignof in the same way as sizeof, just as the
C++ standard does for incomplete types. The idea is that layout of
sizeless types is an implementation property and isn't defined at
the language level.
Implementation-wise, the patch adds a new CompleteTypeKind enum
that controls whether RequireCompleteType & friends accept sizeless
built-in types. For now the default is to maintain the status quo
and accept sizeless types. However, the end of the series will flip
the default and remove the Default enum value.
The patch also adds new ...CompleteSized... wrappers that callers can
use if they explicitly want to reject sizeless types. The callers then
use diagnostics that have an extra 0/1 parameter to indicats whether
the type is sizeless or not.
The idea is to have three cases:
1. calls that explicitly reject sizeless types, with a tweaked diagnostic
for the sizeless case
2. calls that explicitly allow sizeless types
3. normal/old-style calls that don't make an explicit choice either way
Once the default is flipped, the 3. calls will conservatively reject
sizeless types, using the same diagnostic as for other incomplete types.
Differential Revision: https://reviews.llvm.org/D75572
This patch adds C and C++ tests for various uses of SVE types.
The tests cover valid uses that are already (correctly) accepted and
invalid uses that are already (correctly) rejected. Later patches
will expand the tests as they fix other cases.[*]
Some of the tests for invalid uses aren't obviously related to
scalable vectors. Part of the reason for having them is to make
sure that the quality of the error message doesn't regress once/if
the types are treated as incomplete types.
[*] These later patches all fix invalid uses that are being incorrectly
accepted. I don't know of any cases in which valid uses are being
incorrectly rejected. In other words, this series is all about
diagnosing invalid code rather than enabling something new.
Differential Revision: https://reviews.llvm.org/D75571
Summary:
This patch generalizes the existing code to support CDE intrinsics
which will share some properties with existing MVE intrinsics
(some of the intrinsics will be polymorphic and accept/return values
of MVE vector types).
Specifically the patch:
* Adds new tablegen backends -gen-arm-cde-builtin-def,
-gen-arm-cde-builtin-codegen, -gen-arm-cde-builtin-sema,
-gen-arm-cde-builtin-aliases, -gen-arm-cde-builtin-header based on
existing MVE backends.
* Renames the '__clang_arm_mve_alias' attribute into
'__clang_arm_builtin_alias' (it will be used with CDE intrinsics as
well as MVE intrinsics)
* Implements semantic checks for the coprocessor argument of the CDE
intrinsics as well as the existing coprocessor intrinsics.
* Adds one CDE intrinsic __arm_cx1 to test the above changes
Reviewers: simon_tatham, MarkMurrayARM, ostannard, dmgreen
Reviewed By: simon_tatham
Subscribers: sdesmalen, mgorny, kristof.beyls, danielkiss, cfe-commits, llvm-commits
Tags: #clang, #llvm
Differential Revision: https://reviews.llvm.org/D75850
This adds infrastructure for a multiversioning whitelist, plus adds
'used' to the allowed list with 'target'. The behavior here mirrors the
implementation in GCC, where 'used' only applies to the single
declaration and doesn't apply to the ifunc or resolver.
This is not being applied to cpu_dispatch and cpu_specific, since the
rules are more complicated for cpu_specific, which emits multiple
symbols. Additionally, the author isn't currently aware of uses in the
wild of this combination, but is aware of a number of target+used
combinations.
GCC does not warn on casts from pointers to enumerators, while clang
currently does: https://godbolt.org/z/3DFDVG
This causes a bunch of extra warnings in the Linux kernel, where
certain structs contain a void pointer to avoid using a gigantic
union for all of the various types of driver data, such as
versions.
Add a diagnostic that allows certain projects like the kernel to
disable the warning just for enums, which allows those projects to
keep full compatibility with GCC but keeps the intention of treating
casts to integers and enumerators the same by default so that other
projects have the opportunity to catch issues not noticed before (or
follow suite and disable the warning).
Link: https://github.com/ClangBuiltLinux/linux/issues/887
Reviewed By: rjmccall
Differential Revision: https://reviews.llvm.org/D75758
Summary:
It's basically Doxygen's version of a link and can happen anywhere
inside of a paragraph. Fixes a bogus warning about empty paragraphs when
a parameter description starts with a link.
Reviewers: gribozavr2
Reviewed By: gribozavr2
Differential Revision: https://reviews.llvm.org/D75632
When an implicitly generated decl was the first entry in the group, we
attempted to lookup comments with an empty FileID, leading to crashes. Avoid
this by trying to use the other declarations in the group, and then bailing out
if none are valid.
rdar://59919733
Differential revision: https://reviews.llvm.org/D75483
Verifies that an argument passed to __builtin_frame_address or __builtin_return_address is within the range [0, 0xFFFF]
Differential revision: https://reviews.llvm.org/D66839
Re-committed after fixed: c93112dc4f
Compute and propagate conversion kind to diagnostics helper in C++
to provide more specific diagnostics about incorrect implicit
conversions in assignments, initializations, params, etc...
Duplicated some diagnostics as errors because C++ is more strict.
Tags: #clang
Differential Revision: https://reviews.llvm.org/D74116
Summary:
Clang's "asm goto" feature didn't initially support outputs constraints. That
was the same behavior as gcc's implementation. The decision by gcc not to
support outputs was based on a restriction in their IR regarding terminators.
LLVM doesn't restrict terminators from returning values (e.g. 'invoke'), so
it made sense to support this feature.
Output values are valid only on the 'fallthrough' path. If an output value's used
on an indirect branch, then it's 'poisoned'.
In theory, outputs *could* be valid on the 'indirect' paths, but it's very
difficult to guarantee that the original semantics would be retained. E.g.
because indirect labels could be used as data, we wouldn't be able to split
critical edges in situations where two 'callbr' instructions have the same
indirect label, because the indirect branch's destination would no longer be
the same.
Reviewers: jyknight, nickdesaulniers, hfinkel
Reviewed By: jyknight, nickdesaulniers
Subscribers: MaskRay, rsmith, hiraditya, llvm-commits, cfe-commits, craig.topper, rnk
Tags: #clang, #llvm
Differential Revision: https://reviews.llvm.org/D69876
The diagnostic added in D72231 also shows a diagnostic when casting to a
_Bool. This is unwanted. This patch removes the diagnostic for _Bool types.
Differential Revision: https://reviews.llvm.org/D74860
For tag typedefs like this one:
/*!
@class Foo
*/
typedef class { } Foo;
clang -Wdocumentation gives:
warning: '@class' command should not be used in a comment attached to a
non-struct declaration [-Wdocumentation]
... while doxygen seems fine with it.
Differential Revision: https://reviews.llvm.org/D74746
Summary:
As @rsmith notes in https://reviews.llvm.org/D73020#inline-672219
while that is certainly UB land, it may not be actually reachable at runtime, e.g.:
```
template<int N> void *make() {
if ((N & (N-1)) == 0)
return operator new(N, std::align_val_t(N));
else
return operator new(N);
}
void *p = make<7>();
```
and we shouldn't really error-out there.
That being said, i'm not really following the logic here.
Which ones of these cases should remain being an error?
Reviewers: rsmith, erichkeane
Reviewed By: erichkeane
Subscribers: cfe-commits, rsmith
Tags: #clang
Differential Revision: https://reviews.llvm.org/D73996
Use the more accurate location when emitting the location of the
function being called's prototype in diagnostics emitted when calling
a function with an incorrect number of arguments.
In particular, avoids showing a trace of irrelevant macro expansions
for "MY_EXPORT static int AwesomeFunction(int, int);". Fixes PR#23564.
Converting a pointer to an integer whose result cannot represented in the
integer type is undefined behavior is C and prohibited in C++. C++ already
has a diagnostic when casting. This adds a diagnostic for C.
Since this diagnostic uses the range of the conversion it also modifies
int-to-pointer-cast diagnostic to use a range.
Fixes PR8718: No warning on casting between pointer and non-pointer-sized int
Differential Revision: https://reviews.llvm.org/D72231
Summary:
Zero-parameter K&R definitions specify that the function has no
parameters, but they are still not prototypes, so calling the function
with the wrong number of parameters is just a warning, not an error.
The C11 standard doesn't seem to directly define what a prototype is,
but it can be inferred from 6.9.1p7: "If the declarator includes a
parameter type list, the list also specifies the types of all the
parameters; such a declarator also serves as a function prototype
for later calls to the same function in the same translation unit."
This refers to 6.7.6.3p5: "If, in the declaration “T D1”, D1 has
the form
D(parameter-type-list)
or
D(identifier-list_opt)
[...]". Later in 6.11.7 it also refers only to the parameter-type-list
variant as prototype: "The use of function definitions with separate
parameter identifier and declaration lists (not prototype-format
parameter type and identifier declarators) is an obsolescent feature."
We already correctly treat an empty parameter list as non-prototype
declaration, so we can just take that information.
GCC also warns about this with -Wstrict-prototypes.
This shouldn't affect C++, because there all FunctionType's are
FunctionProtoTypes. I added a simple test for that.
Reviewed By: aaron.ballman
Differential Revision: https://reviews.llvm.org/D66919
whether a call is to a builtin.
We already had a general mechanism to do this but for some reason
weren't using it. In passing, check for the other unary operators that
can intervene in a reasonably-direct function call (we already handled
'&' but missed '*' and '+').
This reverts commit aaae6b1b61,
reinstating af80b8ccc5, with a fix to
clang-tidy.
Summary:
These instructions generate a vector of consecutive elements starting
from a given base value and incrementing by 1, 2, 4 or 8. The `wdup`
versions also wrap the values back to zero when they reach a given
limit value. The instruction updates the scalar base register so that
another use of the same instruction will continue the sequence from
where the previous one left off.
At the IR level, I've represented these instructions as a family of
target-specific intrinsics with two return values (the constructed
vector and the updated base). The user-facing ACLE API provides a set
of intrinsics that throw away the written-back base and another set
that receive it as a pointer so they can update it, plus the usual
predicated versions.
Because the intrinsics return two values (as do the underlying
instructions), the isel has to be done in C++.
This is the first family of MVE intrinsics that use the `imm_1248`
immediate type in the clang Tablegen framework, so naturally, I found
I'd given it the wrong C integer type. Also added some tests of the
check that the immediate has a legal value, because this is the first
time those particular checks have been exercised.
Finally, I also had to fix a bug in MveEmitter which failed an
assertion when I nested two `seq` nodes (the inner one used to extract
the two values from the pair returned by the IR intrinsic, and the
outer one put on by the predication multiclass).
Reviewers: dmgreen, MarkMurrayARM, miyuki, ostannard
Reviewed By: dmgreen
Subscribers: kristof.beyls, hiraditya, cfe-commits, llvm-commits
Tags: #clang, #llvm
Differential Revision: https://reviews.llvm.org/D73357
Summary:
The 'z' length modifier, signalling that an integer format specifier
takes a `size_t` sized integer, is only supported by the C library of
MSVC 2015 and later. Earlier versions don't recognize the 'z' at all,
and respond to `printf("%zu", x)` by just printing "zu".
So, if the MS compatibility version is set to a value earlier than
MSVC2015, it's useful to warn about 'z' modifiers in printf format
strings we check.
Reviewers: aaron.ballman, lebedev.ri, rnk, majnemer, zturner
Reviewed By: aaron.ballman
Subscribers: amccarth, cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D73457
whether a call is to a builtin.
We already had a general mechanism to do this but for some reason
weren't using it. In passing, check for the other unary operators that
can intervene in a reasonably-direct function call (we already handled
'&' but missed '*' and '+').
Implement a pessimistic evaluator of the minimal required size for a buffer
based on the format string, and couple that with the fortified version to emit a
warning when the buffer size is lower than the lower bound computed from the
format string.
Differential Revision: https://reviews.llvm.org/D71566
There is llvm::Value::MaximumAlignment, which is numerically
equivalent to these constants, but we can't use it directly
because we can't include llvm IR headers in clang Sema.
So instead, copy-paste the constant, and fixup the places to use it.
This was initially reviewed in https://reviews.llvm.org/D72998
Summary:
For `__builtin_assume_aligned()`, we do validate that the alignment
is not greater than `536870912` (D68824), but we don't do that for
`__attribute__((assume_aligned(N)))` attribute.
I suspect we should.
This was initially committed in a4cfb15d15
but reverted in 210f0882c9 due to
suspicious bot failures.
Reviewers: erichkeane, aaron.ballman, hfinkel, rsmith, jdoerfert
Reviewed By: erichkeane
Subscribers: cfe-commits, llvm-commits
Tags: #llvm, #clang
Differential Revision: https://reviews.llvm.org/D72994
Summary:
`alloc_align` attribute takes parameter number, not the alignment itself,
so given **just** the attribute/function declaration we can't do any
sanity checking for said alignment.
However, at call site, given the actual `Expr` that is passed
into that parameter, we //might// be able to evaluate said `Expr`
as Integer Constant Expression, and perform the sanity checks.
But since there is no requirement for that argument to be an immediate,
we may fail, and that's okay.
However if we did evaluate, we should enforce the same constraints
as with `__builtin_assume_aligned()`/`__attribute__((assume_aligned(imm)))`:
said alignment is a power of two, and is not greater than our magic threshold
This was initially committed in c2a9061ac5
but reverted in 00756b1823 because of
suspicious bot failures.
Reviewers: erichkeane, aaron.ballman, hfinkel, rsmith, jdoerfert
Reviewed By: erichkeane
Subscribers: cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D72996
Summary:
`alloc_align` attribute takes parameter number, not the alignment itself,
so given **just** the attribute/function declaration we can't do any
sanity checking for said alignment.
However, at call site, given the actual `Expr` that is passed
into that parameter, we //might// be able to evaluate said `Expr`
as Integer Constant Expression, and perform the sanity checks.
But since there is no requirement for that argument to be an immediate,
we may fail, and that's okay.
However if we did evaluate, we should enforce the same constraints
as with `__builtin_assume_aligned()`/`__attribute__((assume_aligned(imm)))`:
said alignment is a power of two, and is not greater than our magic threshold
Reviewers: erichkeane, aaron.ballman, hfinkel, rsmith, jdoerfert
Reviewed By: erichkeane
Subscribers: cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D72996
Summary:
For `__builtin_assume_aligned()`, we do validate that the alignment
is not greater than `536870912` (D68824), but we don't do that for
`__attribute__((assume_aligned(N)))` attribute.
I suspect we should.
Reviewers: erichkeane, aaron.ballman, hfinkel, rsmith, jdoerfert
Reviewed By: erichkeane
Subscribers: cfe-commits, llvm-commits
Tags: #llvm, #clang
Differential Revision: https://reviews.llvm.org/D72994
Summary:
Immediate vmvnq is code-generated as a simple vector constant in IR,
and left to the backend to recognize that it can be created with an
MVE VMVN instruction. The predicated version is represented as a
select between the input and the same constant, and I've added a
Tablegen isel rule to turn that into a predicated VMVN. (That should
be better than the previous VMVN + VPSEL: it's the same number of
instructions but now it can fold into an adjacent VPT block.)
The unpredicated forms of VBIC and VORR are done by enabling the same
isel lowering as for NEON, recognizing appropriate immediates and
rewriting them as ARMISD::VBICIMM / ARMISD::VORRIMM SDNodes, which I
then instruction-select into the right MVE instructions (now that I've
also reworked those instructions to use the same MC operand encoding).
In order to do that, I had to promote the Tablegen SDNode instance
`NEONvorrImm` to a general `ARMvorrImm` available in MVE as well, and
similarly for `NEONvbicImm`.
The predicated forms of VBIC and VORR are represented as a vector
select between the original input vector and the output of the
unpredicated operation. The main convenience of this is that it still
lets me use the existing isel lowering for VBICIMM/VORRIMM, and not
have to write another copy of the operand encoding translation code.
This intrinsic family is the first to use the `imm_simd` system I put
into the MveEmitter tablegen backend. So, naturally, it showed up a
bug or two (emitting bogus range checks and the like). Fixed those,
and added a full set of tests for the permissible immediates in the
existing Sema test.
Also adjusted the isel pattern for `vmovlb.u8`, which stopped matching
because lowering started turning its input into a VBICIMM. Now it
recognizes the VBICIMM instead.
Reviewers: dmgreen, MarkMurrayARM, miyuki, ostannard
Reviewed By: dmgreen
Subscribers: kristof.beyls, hiraditya, cfe-commits, llvm-commits
Tags: #clang, #llvm
Differential Revision: https://reviews.llvm.org/D72934
This patch broke the Sanitizer buildbots. Please see the commit's
differential revision for more information
(https://reviews.llvm.org/D67678).
This reverts commit b72a8c65e4.
This is applied to the vector types defined in <arm_mve.h> for use
with the intrinsics for the ARM MVE vector architecture.
Its purpose is to inhibit lax vector conversions, but only in the
context of overload resolution of the MVE polymorphic intrinsic
functions. This solves an ambiguity problem with polymorphic MVE
intrinsics that take a vector and a scalar argument: the scalar
argument can often have the wrong integer type due to default integer
promotions or unsuffixed literals, and therefore, the type of the
vector argument should be considered trustworthy when resolving MVE
polymorphism.
As part of the same change, I've added the new attribute to the
declarations generated by the MveEmitter Tablegen backend (and
corrected a namespace issue with the other attribute while I was
there).
Reviewers: aaron.ballman, dmgreen
Reviewed By: aaron.ballman
Subscribers: kristof.beyls, JDevlieghere, cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D72518
GCC supports the conditional operator on VectorTypes that acts as a
'select' in C++ mode. This patch implements the support. Types are
converted as closely to GCC's behavior as possible, though in a few
places consistency with our existing vector type support was preferred.
Note that this implementation is different from the OpenCL version in a
number of ways, so it unfortunately required a different implementation.
First, the SEMA rules and promotion rules are significantly different.
Secondly, GCC implements COND[i] != 0 ? LHS[i] : RHS[i] (where i is in
the range 0- VectorSize, for each element). In OpenCL, the condition is
COND[i] < 0 ? LHS[i]: RHS[i].
In the process of implementing this, it was also required to make the
expression COND ? LHS : RHS type dependent if COND is type dependent,
since the type is now dependent on the condition. For example:
T ? 1 : 2;
Is not typically type dependent, since the result can be deduced from
the operands. HOWEVER, if T is a VectorType now, it could change this
to a 'select' (basically a swizzle with a non-constant mask) with the 1
and 2 being promoted to vectors themselves.
While this is a change, it is NOT a standards incompatible change. Based
on my (and D. Gregor's, at the time of writing the code) reading of the
standard, the expression is supposed to be type dependent if ANY
sub-expression is type dependent.
Differential Revision: https://reviews.llvm.org/D71463
This feature is generic. Make it applicable for AArch64 and X86 because
the backend has only implemented NOP insertion for AArch64 and X86.
Reviewed By: nickdesaulniers, aaron.ballman
Differential Revision: https://reviews.llvm.org/D72221
Summary:
Avoid using the `nocf_check` attribute with Control Flow Guard. Instead, use a
new `"guard_nocf"` function attribute to indicate that checks should not be
added on indirect calls within that function. Add support for
`__declspec(guard(nocf))` following the same syntax as MSVC.
Reviewers: rnk, dmajor, pcc, hans, aaron.ballman
Reviewed By: aaron.ballman
Subscribers: aaron.ballman, tomrittervg, hiraditya, cfe-commits, llvm-commits
Tags: #clang, #llvm
Differential Revision: https://reviews.llvm.org/D72167
This change introduces three new builtins (which work on both pointers
and integers) that can be used instead of common bitwise arithmetic:
__builtin_align_up(x, alignment), __builtin_align_down(x, alignment) and
__builtin_is_aligned(x, alignment).
I originally added these builtins to the CHERI fork of LLVM a few years ago
to handle the slightly different C semantics that we use for CHERI [1].
Until recently these builtins (or sequences of other builtins) were
required to generate correct code. I have since made changes to the default
C semantics so that they are no longer strictly necessary (but using them
does generate slightly more efficient code). However, based on our experience
using them in various projects over the past few years, I believe that adding
these builtins to clang would be useful.
These builtins have the following benefit over bit-manipulation and casts
via uintptr_t:
- The named builtins clearly convey the semantics of the operation. While
checking alignment using __builtin_is_aligned(x, 16) versus
((x & 15) == 0) is probably not a huge win in readably, I personally find
__builtin_align_up(x, N) a lot easier to read than (x+(N-1))&~(N-1).
- They preserve the type of the argument (including const qualifiers). When
using casts via uintptr_t, it is easy to cast to the wrong type or strip
qualifiers such as const.
- If the alignment argument is a constant value, clang can check that it is
a power-of-two and within the range of the type. Since the semantics of
these builtins is well defined compared to arbitrary bit-manipulation,
it is possible to add a UBSAN checker that the run-time value is a valid
power-of-two. I intend to add this as a follow-up to this change.
- The builtins avoids int-to-pointer casts both in C and LLVM IR.
In the future (i.e. once most optimizations handle it), we could use the new
llvm.ptrmask intrinsic to avoid the ptrtoint instruction that would normally
be generated.
- They can be used to round up/down to the next aligned value for both
integers and pointers without requiring two separate macros.
- In many projects the alignment operations are already wrapped in macros (e.g.
roundup2 and rounddown2 in FreeBSD), so by replacing the macro implementation
with a builtin call, we get improved diagnostics for many call-sites while
only having to change a few lines.
- Finally, the builtins also emit assume_aligned metadata when used on pointers.
This can improve code generation compared to the uintptr_t casts.
[1] In our CHERI compiler we have compilation mode where all pointers are
implemented as capabilities (essentially unforgeable 128-bit fat pointers).
In our original model, casts from uintptr_t (which is a 128-bit capability)
to an integer value returned the "offset" of the capability (i.e. the
difference between the virtual address and the base of the allocation).
This causes problems for cases such as checking the alignment: for example, the
expression `if ((uintptr_t)ptr & 63) == 0` is generally used to check if the
pointer is aligned to a multiple of 64 bytes. The problem with offsets is that
any pointer to the beginning of an allocation will have an offset of zero, so
this check always succeeds in that case (even if the address is not correctly
aligned). The same issues also exist when aligning up or down. Using the
alignment builtins ensures that the address is used instead of the offset. While
I have since changed the default C semantics to return the address instead of
the offset when casting, this offset compilation mode can still be used by
passing a command-line flag.
Reviewers: rsmith, aaron.ballman, theraven, fhahn, lebedev.ri, nlopes, aqjune
Reviewed By: aaron.ballman, lebedev.ri
Differential Revision: https://reviews.llvm.org/D71499
In common with most MVE immediate shift instructions, the left shift
takes an immediate in the range [0,n-1], while the right shift takes
one in the range [1,n]. I had absent-mindedly made them both the
latter.
While I'm here, I've added a set of regression tests checking both
ends of the immediate range for a representative sample of the
immediate shifts.
Summary:
The ACLE intrinsics with `gather_base` or `scatter_base` in the name
are wrappers on the MVE load/store instructions that take a vector of
base addresses and an immediate offset. The immediate offset can be up
to 127 times the alignment unit, and it can be positive or negative.
At the MC layer, we got that right. But in the Sema error checking for
the wrapping intrinsics, the offset was erroneously constrained to be
positive.
To fix this I've adjusted the `imm_mem7bit` class in the Tablegen that
defines the intrinsics. But that causes integer literals like
`0xfffffffffffffe04` to appear in the autogenerated calls to
`SemaBuiltinConstantArgRange`, which provokes a compiler warning
because that's out of the non-overflowing range of an `int64_t`. So
I've also tweaked `MveEmitter` to emit that as `-0x1fc` instead.
Updated the tests of the Sema checks themselves, and also adjusted a
random sample of the CodeGen tests to actually use negative offsets
and prove they get all the way through code generation without causing
a crash.
Reviewers: dmgreen, miyuki, MarkMurrayARM
Reviewed By: dmgreen
Subscribers: kristof.beyls, cfe-commits, llvm-commits
Tags: #clang, #llvm
Differential Revision: https://reviews.llvm.org/D72268
The current handling of the operators ||, && and ?: has a number of false
positive and false negative. The issues for operator || and && are:
1. We need to add sequencing regions for the LHS and RHS as is done for the
comma operator. Not doing so causes false positives in expressions like
`((a++, false) || (a++, false))` (from PR39779, see PR22197 for another
example).
2. In the current implementation when the evaluation of the LHS fails, the RHS
is added to a worklist to be processed later. This results in false negatives
in expressions like `(a && a++) + a`.
Fix these issues by introducing sequencing regions for the LHS and RHS, and by
not deferring the visitation of the RHS.
The issues with the ternary operator ?: are similar, with the added twist that
we should not warn on expressions like `(x ? y += 1 : y += 2)` since exactly
one of the 2nd and 3rd expression is going to be evaluated, but we should still
warn on expressions like `(x ? y += 1 : y += 2) = y`.
Differential Revision: https://reviews.llvm.org/D57747
Reviewed By: rsmith
These annotations will be used in an upcomming static analyzer check
that finds handle leaks, use after releases, and double releases.
Differential Revision: https://reviews.llvm.org/D70469
Summary:
This adds parsing of the qualifiers __ptr32, __ptr64, __sptr, and __uptr and
lowers them to the corresponding address space pointer for 32-bit and 64-bit pointers.
(32/64-bit pointers added in https://reviews.llvm.org/D69639)
A large part of this patch is making these pointers ignore the address space
when doing things like overloading and casting.
https://bugs.llvm.org/show_bug.cgi?id=42359
Reviewers: rnk, rsmith
Subscribers: jholewinski, jvesely, nhaehnle, cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D71039
The FP-classification builtins (__builtin_isfinite, etc) use variadic
packs in the definition file to mean an overload set. Because of that,
floats were converted to doubles, which is incorrect. There WAS a patch
to remove the cast after the fact.
THis patch switches these builtins to just be custom type checking,
calls the implicit conversions for the integer members, and makes sure
the correct L->R casts are put into place, then does type checking like
normal.
A future direction (that wouldn't be NFC) would consider making
conversions for the floating point parameter legal.
Note: The initial patch for this missed that certain systems need to
still convert half to float, since they dont' support that type.
This covers:
* usual arithmetic conversions (comparisons, arithmetic, conditionals)
between different enumeration types
* usual arithmetic conversions between enums and floating-point types
* comparisons between two operands of array type
The deprecation warnings are on-by-default (in C++20 compilations); it
seems likely that these forms will become ill-formed in C++23, so
warning on them now by default seems wise.
For the first two bullets, off-by-default warnings were also added for
all the cases where we didn't already have warnings (covering language
modes prior to C++20). These warnings are in subgroups of the existing
-Wenum-conversion (except that the first case is not warned on if either
enumeration type is anonymous, consistent with our existing
-Wenum-conversion warnings).
This reverts commit b1e542f302.
The original 'hack' didn't chop out fp-16 to double conversions, so
systems that use FP16ConversionIntrinsics end up in IR-CodeGen with an
i16 type isntead of a float type (like PPC64-BE). The bots noticed
this.
Reverting until I figure out how to fix this
The FP-classification builtins (__builtin_isfinite, etc) use variadic
packs in the definition file to mean an overload set. Because of that,
floats were converted to doubles, which is incorrect. There WAS a patch
to remove the cast after the fact.
THis patch switches these builtins to just be custom type checking,
calls the implicit conversions for the integer members, and makes sure
the correct L->R casts are put into place, then does type checking like
normal.
A future direction (that wouldn't be NFC) would consider making
conversions for the floating point parameter legal.
Now Clang does not check that features required by built-in functions
are enabled. That causes errors in the backend reported in PR44018.
This patch fixes this bug by checking that required features
are enabled.
This should fix PR44018.
Differential Revision: https://reviews.llvm.org/D70808
References need somewhat special treatment. While copying a gsl::Pointer
will propagate the points-to set, creating an object from a reference
often behaves more like a dereference operation.
Differential Revision: https://reviews.llvm.org/D70755
Current EvalInfo ctor causes EnableNewConstInterp to be true even though
it is supposed to be false on MSVC 2017. This is because a virtual function
getLangOpts() is called in member initializer lists, whereas on MSVC
member ctors are called before function virtual function pointers are
initialized.
This patch fixes that.
Differential Revision: https://reviews.llvm.org/D70729
Summary:
As noted in PR, we have a poor test coverage for this warning. I think macro support was just overlooked. GCC warns in these cases.
Clang missed a real bug in the code I am working with, GCC caught it.
Reviewers: aaron.ballman
Reviewed By: aaron.ballman
Subscribers: cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D70624
This fixes an assertion in Sema::CreateBuiltinBinOp that fails when one
of the vector operand's element type is a typedef of __fp16.
rdar://problem/55983556
Summary:
A user may want to use freestanding mode with the standard "main" entry
point. It's not useful to warn about a missing prototype as it's not
typical to have a prototype for "main".
Reviewers: efriedma, aaron.ballman
Reviewed By: aaron.ballman
Subscribers: aaron.ballman, cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D70588
We seem to have been gradually growing support for atomic min/max operations
(exposing longstanding IR atomicrmw instructions). But until now there have
been gaps in the expected intrinsics. This adds support for the C11-style
intrinsics (i.e. taking _Atomic, rather than individually blessed by C11
standard), and the variants that return the new value instead of the original
one.
That way, people won't be misled by trying one form and it not working, and the
front-end is more friendly to people using _Atomic types, as we recommend.
Some clients of this function want to know about any expression that is known
to produce a 0/1 value, and others care about expressions that are semantically
boolean.
This fixes a -Wswitch-bool regression I introduced in 8bfb353bb3, pointed out
by Chris Hamilton!
Summary:
Semantically they're the same thing, and it's important when the underlying
struct is anonymous.
There doesn't seem to be a problem attaching the same comment to multiple things
as it already happens with `/** doc */ int a, b;`
This affects an Index test but the results look better (name present, USR points
to the typedef).
Fixes https://github.com/clangd/clangd/issues/189
Reviewers: kadircet, lh123
Subscribers: ilya-biryukov, jkorous, arphaman, usaxena95, cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D70203
Provides support for using r6-r11 as globally scoped
register variables. This requires a -ffixed-rN flag
in order to reserve rN against general allocation.
If for a given GRV declaration the corresponding flag
is not found, or the the register in question is the
target's FP, we fail with a diagnostic.
Differential Revision: https://reviews.llvm.org/D68862
This adds the `vgetq_lane` and `vsetq_lane` families, to copy between
a scalar and a specified lane of a vector.
One of the new `vgetq_lane` intrinsics returns a `float16_t`, which
causes a compile error if `%clang_cc1` doesn't get the option
`-fallow-half-arguments-and-returns`. The driver passes that option to
cc1 already, but I've had to edit all the explicit cc1 command lines
in the existing MVE intrinsics tests.
A couple of fixes are included for the code I wrote up front in
MveEmitter to support lane-index immediates (and which nothing has
tested until now): the type was wrong (`uint32_t` instead of `int`)
and the range was off by one.
I've also added a method of bypassing the default promotion to `i32`
that is done by the MveEmitter code generation: it's sensible to
promote short scalars like `i16` to `i32` if they're going to be
passed to custom IR intrinsics representing a machine instruction
operating on GPRs, but not if they're going to be passed to standard
IR operations like `insertelement` which expect the exact type.
Reviewers: ostannard, MarkMurrayARM, dmgreen
Reviewed By: dmgreen
Subscribers: kristof.beyls, cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D70188
This patch is a follow-up for commit 4e2ce228ae
[BPF] Add preserve_access_index attribute for record definition
to restrict attribute for C only. A new test case is added
to check for this restriction.
Additional code polishing is done based on
Aaron Ballman's suggestion in https://reviews.llvm.org/D69759/new/.
Differential Revision: https://reviews.llvm.org/D70257
This is a resubmission for the previous reverted commit
9434360401 with the same subject. This commit fixed the
segfault issue and addressed additional review comments.
This patch introduced a new bpf specific attribute which can
be added to struct or union definition. For example,
struct s { ... } __attribute__((preserve_access_index));
union u { ... } __attribute__((preserve_access_index));
The goal is to simplify user codes for cases
where preserve access index happens for certain struct/union,
so user does not need to use clang __builtin_preserve_access_index
for every members.
The attribute has no effect if -g is not specified.
When the attribute is specified and -g is specified, any member
access defined by that structure or union, including array subscript
access and inner records, will be preserved through
__builtin_preserve_{array,struct,union}_access_index()
IR intrinsics, which will enable relocation generation
in bpf backend.
The following is an example to illustrate the usage:
-bash-4.4$ cat t.c
#define __reloc__ __attribute__((preserve_access_index))
struct s1 {
int c;
} __reloc__;
struct s2 {
union {
struct s1 b[3];
};
} __reloc__;
struct s3 {
struct s2 a;
} __reloc__;
int test(struct s3 *arg) {
return arg->a.b[2].c;
}
-bash-4.4$ clang -target bpf -g -S -O2 t.c
A relocation with access string "0:0:0:0:2:0" will be generated
representing access offset of arg->a.b[2].c.
forward declaration with attribute is also handled properly such
that the attribute is copied and populated in real record definition.
Differential Revision: https://reviews.llvm.org/D69759
Some warnings in -Wtautological-compare subgroups are DefaultIgnore.
Adding this group to -Wmost, which is part of -Wall, will aid in their
discoverability.
Differential Revision: https://reviews.llvm.org/D69292
This patch introduced a new bpf specific attribute which can
be added to struct or union definition. For example,
struct s { ... } __attribute__((preserve_access_index));
union u { ... } __attribute__((preserve_access_index));
The goal is to simplify user codes for cases
where preserve access index happens for certain struct/union,
so user does not need to use clang __builtin_preserve_access_index
for every members.
The attribute has no effect if -g is not specified.
When the attribute is specified and -g is specified, any member
access defined by that structure or union, including array subscript
access and inner records, will be preserved through
__builtin_preserve_{array,struct,union}_access_index()
IR intrinsics, which will enable relocation generation
in bpf backend.
The following is an example to illustrate the usage:
-bash-4.4$ cat t.c
#define __reloc__ __attribute__((preserve_access_index))
struct s1 {
int c;
} __reloc__;
struct s2 {
union {
struct s1 b[3];
};
} __reloc__;
struct s3 {
struct s2 a;
} __reloc__;
int test(struct s3 *arg) {
return arg->a.b[2].c;
}
-bash-4.4$ clang -target bpf -g -S -O2 t.c
A relocation with access string "0:0:0:0:2:0" will be generated
representing access offset of arg->a.b[2].c.
forward declaration with attribute is also handled properly such
that the attribute is copied and populated in real record definition.
Differential Revision: https://reviews.llvm.org/D69759
While here, wordsmith the error a bit. Now clang says:
error: filter expression has non-integral type 'Foo'
Fixes PR43779
Reviewers: amccarth
Differential Revision: https://reviews.llvm.org/D69969
This patch adds two new families of intrinsics, both of which are
memory accesses taking a vector of locations to load from / store to.
The vldrq_gather_base / vstrq_scatter_base intrinsics take a vector of
base addresses, and an immediate offset to be added consistently to
each one. vldrq_gather_offset / vstrq_scatter_offset take a scalar
base address, and a vector of offsets to add to it. The
'shifted_offset' variants also multiply each offset by the element
size type, so that the vector is effectively of array indices.
At the IR level, these operations are represented by a single set of
four IR intrinsics: {gather,scatter} × {base,offset}. The other
details (signed/unsigned, shift, and memory element size as opposed to
vector element size) are all specified by IR intrinsic polymorphism
and immediate operands, because that made the selection job easier
than making a huge family of similarly named intrinsics.
I considered using the standard IR representations such as
llvm.masked.gather, but they're not a good fit. In order to use
llvm.masked.gather to represent a gather_offset load with element size
smaller than a pointer, you'd have to expand the <8 x i16> vector of
offsets into an <8 x i16*> vector of pointers, which would be split up
during legalization, so you'd spend most of your time undoing the mess
it had made. Also, ISel support for llvm.masked.gather would be easy
enough in a trivial way (you can expand it into a gather-base load
with a zero immediate offset), but instruction-selecting lots of
fiddly idioms back into all the _other_ MVE load instructions would be
much more work. So I think dedicated IR intrinsics are the more
sensible approach, at least for the moment.
On the clang tablegen side, I've added two new features to the
Tablegen source accepted by MveEmitter: a 'CopyKind' type node for
defining a type that varies with the parameter type (it lets you ask
for an unsigned integer type of the same width as the parameter), and
an 'unsignedflag' value node for passing an immediate IR operand which
is 0 for a signed integer type or 1 for an unsigned one. That lets me
write each kind of intrinsic just once and get all its subtypes and
immediate arguments generated automatically.
Also I've tweaked the handling of pointer-typed values in the code
generation part of MveEmitter: they're generated as Address rather
than Value (i.e. including an alignment) so that they can be given to
the ordinary IR load and store operations, but I'd omitted the code to
convert them back to Value when they're going to be used as an
argument to an IR intrinsic.
On the MC side, I've enhanced MVEVectorVTInfo so that it can tell you
not only the full assembly-language suffix for a given vector type
(like 's32' or 'u16') but also the numeric-only one used by store
instructions (just '32' or '16').
Reviewers: dmgreen
Subscribers: kristof.beyls, hiraditya, cfe-commits, llvm-commits
Tags: #clang, #llvm
Differential Revision: https://reviews.llvm.org/D69791
Summary:
This is a follow up on https://reviews.llvm.org/D61634
This patch is simpler and only adds the no_builtin attribute.
Reviewers: tejohnson, courbet, theraven, t.p.northover, jdoerfert
Subscribers: mgrang, cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D68028
This is a re-submit after it got reverted in https://reviews.llvm.org/rGbd8791610948 since the breakage doesn't seem to come from this patch.
Summary:
This is a follow up on https://reviews.llvm.org/D61634
This patch is simpler and only adds the no_builtin attribute.
Reviewers: tejohnson, courbet, theraven, t.p.northover, jdoerfert
Subscribers: mgrang, cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D68028
See also: D67515
- For the given call expression we would end up repeatedly
trying to transform the same expression over and over again
- Fix is to keep the old TransformCache when checking for ambiguity
Differential Revision: https://reviews.llvm.org/D69060
This allows you to declare a function with a name of your choice (say
`foo`), but have clang treat it as if it were a builtin function (say
`__builtin_foo`), by writing
static __inline__ __attribute__((__clang_arm_mve_alias(__builtin_foo)))
int foo(args);
I'm intending to use this for the ACLE intrinsics for MVE, which have
to be polymorphic on their argument types and also need to be
implemented by builtins. To avoid having to implement the polymorphism
with several layers of nested _Generic and make error reporting
hideous, I want to make all the user-facing intrinsics correspond
directly to clang builtins, so that after clang resolves
__attribute__((overloadable)) polymorphism it's already holding the
right BuiltinID for the intrinsic it selected.
However, this commit itself just introduces the new attribute, and
doesn't use it for anything.
To avoid unanticipated side effects if this attribute is used to make
aliases to other builtins, there's a restriction mechanism: only
(BuiltinID, alias) pairs that are approved by the function
ArmMveAliasValid() will be permitted. At present, that function
doesn't permit anything, because the Tablegen that will generate its
list of valid pairs isn't yet implemented. So the only test of this
facility is one that checks that an unapproved builtin _can't_ be
aliased.
Reviewers: dmgreen, miyuki, ostannard
Subscribers: cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D67159
Taking a value and the bitwise-or it with a non-zero constant will always
result in a non-zero value. In a boolean context, this is always true.
if (x | 0x4) {} // always true, intended '&'
This patch creates a new warning group -Wtautological-bitwise-compare for this
warning. It also moves in the existing tautological bitwise comparisons into
this group. A few other changes were needed to the CFGBuilder so that all bool
contexts would be checked. The warnings in -Wtautological-bitwise-compare will
be off by default due to using the CFG.
Fixes: https://bugs.llvm.org/show_bug.cgi?id=42666
Differential Revision: https://reviews.llvm.org/D66046
llvm-svn: 375318
__builtin_assume_aligned takes a size_t which is a 32 bit int on
hexagon. Thus, the constant gets converted to a 32 bit value, resulting
in 0 not being a power of 2. This patch changes the constant being
passed to 2**30 so that it fails, but doesnt exceed 30 bits.
llvm-svn: 374569
The behavior from the original patch has changed, since we're no longer
allowing LLVM to just ignore the alignment. Instead, we're just
assuming the maximum possible alignment.
Differential Revision: https://reviews.llvm.org/D68824
llvm-svn: 374562
The test fails on Windows, with
error: 'warning' diagnostics expected but not seen:
File builtin-assume-aligned.c Line 62: requested alignment
must be 268435456 bytes or smaller; assumption ignored
error: 'warning' diagnostics seen but not expected:
File builtin-assume-aligned.c Line 62: requested alignment
must be 8192 bytes or smaller; assumption ignored
llvm-svn: 374456
Code to handle __builtin_assume_aligned was allowing larger values, but
would convert this to unsigned along the way. This patch removes the
EmitAssumeAligned overloads that take unsigned to do away with this
problem.
Additionally, it adds a warning that values greater than 1 <<29 are
ignored by LLVM.
Differential Revision: https://reviews.llvm.org/D68824
llvm-svn: 374450
I noticed that compiling on Windows with -fno-ms-compatibility had the
side effect of defining __GNUC__, along with __GNUG__, __GXX_RTTI__, and
a number of other macros for GCC compatibility. This is undesirable and
causes Chromium to do things like mix __attribute__ and __declspec,
which doesn't work. We should have a positive language option to enable
GCC compatibility features so that we can experiment with
-fno-ms-compatibility on Windows. This change adds -fgnuc-version= to be
that option.
My issue aside, users have, for a long time, reported that __GNUC__
doesn't match their expectations in one way or another. We have
encouraged users to migrate code away from this macro, but new code
continues to be written assuming a GCC-only environment. There's really
nothing we can do to stop that. By adding this flag, we can allow them
to choose their own adventure with __GNUC__.
This overlaps a bit with the "GNUMode" language option from -std=gnu*.
The gnu language mode tends to enable non-conforming behaviors that we'd
rather not enable by default, but the we want to set things like
__GXX_RTTI__ by default, so I've kept these separate.
Helps address PR42817
Reviewed By: hans, nickdesaulniers, MaskRay
Differential Revision: https://reviews.llvm.org/D68055
llvm-svn: 374449
Summary:
Character buffers are sometimes used to represent a pool of memory that
contains non-character objects, due to them being synonymous with a stream of
bytes on almost all modern architectures. Often, when interacting with hardware
devices, byte buffers are therefore used as an intermediary and so we can end
Character buffers are sometimes used to represent a pool of memory that
contains non-character objects, due to them being synonymous with a stream of
bytes on almost all modern architectures. Often, when interacting with hardware
devices, byte buffers are therefore used as an intermediary and so we can end
up generating lots of false-positives.
Moreover, due to the ability of character pointers to alias non-character
pointers, the strict aliasing violations that would generally be implied by the
calculations caught by the warning (if the calculation itself is in fact
correct) do not apply here, and so although the length calculation may be
wrong, that is the only possible issue.
Reviewers: rsmith, xbolva00, thakis
Reviewed By: xbolva00, thakis
Subscribers: thakis, lebedev.ri, cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D68526
llvm-svn: 374035
The warnings now in -Wformat-type-confusion don't align with how we interpret
'pedantic' in clang, and don't belong in -pedantic.
Differential revision: https://reviews.llvm.org/D67775
llvm-svn: 373774
Extracted from D63082. GCC has this warning under -Wint-in-bool-context, but as noted in the D63082's review, we should put it under TautologicalConstantCompare.
llvm-svn: 372531
Commit c15aa241f8 ("[CLANG][BPF] change __builtin_preserve_access_index()
signature") changed the builtin function signature to
PointerT __builtin_preserve_access_index(PointerT ptr)
with a pointer type as the argument/return type, where argument and
return types must be the same.
There is really no reason for this constraint. The builtin just
presented a code region so that IR builtins
__builtin_{array, struct, union}_preserve_access_index
can be applied.
This patch removed the pointer type restriction to permit any
argument type as long as it is permitted by the compiler.
Differential Revision: https://reviews.llvm.org/D67883
llvm-svn: 372516
-Wtautological-overlap-compare and self-comparison from -Wtautological-compare
relay on detecting the same operand in different locations. Previously, each
warning had it's own operand checker. Now, both are merged together into
one function that each can call. The function also now looks through member
access and array accesses.
Differential Revision: https://reviews.llvm.org/D66045
llvm-svn: 372453
Allow this warning to detect a larger number of constant values, including
negative numbers, and handle non-int types better.
Differential Revision: https://reviews.llvm.org/D66044
llvm-svn: 372448
The clang intrinsic __builtin_preserve_access_index() currently
has signature:
const void * __builtin_preserve_access_index(const void * ptr)
This may cause compiler warning when:
- parameter type is "volatile void *" or "const volatile void *", or
- the assign-to type of the intrinsic does not have "const" qualifier.
Further, this signature does not allow dereference of the
builtin result pointer as it is a "const void *" type, which
adds extra step for the user to do type casting.
Let us change the signature to:
PointerT __builtin_preserve_access_index(PointerT ptr)
such that the result and argument types are the same.
With this, directly dereferencing the builtin return value
becomes possible.
Differential Revision: https://reviews.llvm.org/D67734
llvm-svn: 372294
Also, add a diagnostic under -Wformat for printing a boolean value as a
character.
rdar://54579473
Differential revision: https://reviews.llvm.org/D66856
llvm-svn: 372247
Also, add a diagnostic group, -Wobjc-signed-char-bool, to control all these
related diagnostics.
rdar://51954400
Differential revision: https://reviews.llvm.org/D67559
llvm-svn: 372183
Summary:
This fixes a bug introduced in D62648, where Clang could infinite loop
if it became stuck on a single TypoCorrection when it was supposed to
be testing ambiguous corrections. Although not a common case, it could
happen if there are multiple possible corrections with the same edit
distance.
The fix is simply to wipe the TypoExpr from the `TransformCache` so that
the call to `TransformTypoExpr` doesn't use the `CachedEntry`.
Reviewers: rsmith
Subscribers: cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D67515
llvm-svn: 371859
levels:
-- none: no lax vector conversions [new GCC default]
-- integer: only conversions between integer vectors [old GCC default]
-- all: all conversions between same-size vectors [Clang default]
For now, Clang still defaults to "all" mode, but per my proposal on
cfe-dev (2019-04-10) the default will be changed to "integer" as soon as
that doesn't break lots of testcases. (Eventually I'd like to change the
default to "none" to match GCC and general sanity.)
Following GCC's behavior, the driver flag -flax-vector-conversions is
translated to -flax-vector-conversions=integer.
This reinstates r371805, reverted in r371813, with an additional fix for
lldb.
llvm-svn: 371817
levels:
-- none: no lax vector conversions [new GCC default]
-- integer: only conversions between integer vectors [old GCC default]
-- all: all conversions between same-size vectors [Clang default]
For now, Clang still defaults to "all" mode, but per my proposal on
cfe-dev (2019-04-10) the default will be changed to "integer" as soon as
that doesn't break lots of testcases. (Eventually I'd like to change the
default to "none" to match GCC and general sanity.)
Following GCC's behavior, the driver flag -flax-vector-conversions is
translated to -flax-vector-conversions=integer.
llvm-svn: 371805
Summary:
The first NFC change is to replace a getCXXABI().isMicrosoft() check
with getTriple().isWindowsMSVCEnvironment(). This code takes effect in
non-C++ compilations, so it doesn't make sense to check the C++ ABI. In
the MS ABI, enums are always considered to be "complete" because the
underlying type of an unfixed enum will always be 'int'. This behavior
was moved from -fms-compatibility to MS ABI back in r249656.
The second change is functional, and it downgrades an error to a warning
when the MS ABI is used rather than only under -fms-compatibility. The
reasoning is that it's unreasonable for the following code to reject the
following code for all MS ABI targets with -fno-ms-compatibility:
enum Foo { Foo_Val = 0xDEADBEEF };
This is valid code for any other target, but in the MS ABI, Foo_Val just
happens to be negative. With this change, clang emits a
-Wmicrosoft-enum-value warning on this code, but compiles it without
error.
Fixes PR38478
Reviewers: hans, rsmith, STL_MSFT
Subscribers: cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D67304
llvm-svn: 371581
constant-folding mode regardless of the original evaluation mode.
In order for this to be correct, we need to track whether we're checking
for a potential constant expression or checking for undefined behavior
separately from the evaluation mode enum, since we don't want to clobber
those states when entering constant-folding mode.
llvm-svn: 371557
Current for SAE instructions we only allow _MM_FROUND_CUR_DIRECTION(bit 2) or _MM_FROUND_NO_EXC(bit 3) to be used as the immediate passed to the inrinsics. But these instructions don't perform rounding so _MM_FROUND_CUR_DIRECTION is just sort of a default placeholder when you don't want to suppress exceptions. Using _MM_FROUND_NO_EXC by itself is really bit equivalent to (_MM_FROUND_NO_EXC | _MM_FROUND_TO_NEAREST_INT) since _MM_FROUND_TO_NEAREST_INT is 0. Since we aren't rounding on these instructions we should also accept (_MM_FROUND_CUR_DIRECTION | _MM_FROUND_NO_EXC) as equivalent to (_MM_FROUND_NO_EXC). icc allows this, but gcc does not.
Differential Revision: https://reviews.llvm.org/D67289
llvm-svn: 371430
Previously, -Wsizeof-pointer-div failed to catch:
const int *r;
sizeof(r) / sizeof(int);
Now fixed.
Also introduced -Wsizeof-array-div which catches bugs like:
sizeof(r) / sizeof(short);
(Array element type does not match type of sizeof operand).
llvm-svn: 371222
A number of inline assembly constraints are currently supported by LLVM, but rejected as invalid by Clang:
Target independent constraints:
s: An integer constant, but allowing only relocatable values
ARM specific constraints:
j: An immediate integer between 0 and 65535 (valid for MOVW)
x: A 32, 64, or 128-bit floating-point/SIMD register: s0-s15, d0-d7, or q0-q3
N: An immediate integer between 0 and 31 (Thumb1 only)
O: An immediate integer which is a multiple of 4 between -508 and 508. (Thumb1 only)
This patch adds support to Clang for the missing constraints along with some checks to ensure that the constraints are used with the correct target and Thumb mode, and that immediates are within valid ranges (at least where possible). The constraints are already implemented in LLVM, but just a couple of minor corrections to checks (V8M Baseline includes MOVW so should work with 'j', 'N' and 'O' shouldn't be valid in Thumb2) so that Clang and LLVM are in line with each other and the documentation.
Differential Revision: https://reviews.llvm.org/D65863
Change-Id: I18076619e319bac35fbb60f590c069145c9d9a0a
llvm-svn: 371079
Summary:
The assertion happens when compiling with -Wdocumentation with variable declaration to a typedefed function pointer. I not too familiar with the ObjC syntax but first two tests assert without this patch.
Fixes https://bugs.llvm.org/show_bug.cgi?id=42844
Reviewers: gribozavr
Reviewed By: gribozavr
Subscribers: cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D66706
llvm-svn: 370677
initializers.
This has some interesting interactions with our existing extensions to
support C99 designated initializers as an extension in C++. Those are
resolved as follows:
* We continue to permit the full breadth of C99 designated initializers
in C++, with the exception that we disallow a partial overwrite of an
initializer with a non-trivially-destructible type. (Full overwrite
is OK, because we won't run the first initializer at all.)
* The C99 extensions are disallowed in SFINAE contexts and during
overload resolution, where they could change the meaning of valid
programs.
* C++20 disallows reordering of initializers. We only check for that for
the simple cases that the C++20 rules permit (designators of the form
'.field_name =' and continue to allow reordering in other cases).
It would be nice to improve this behavior in future.
* All C99 designated initializer extensions produce a warning by
default in C++20 mode. People are going to learn the C++ rules based
on what Clang diagnoses, so it's important we diagnose these properly
by default.
* In C++ <= 17, we apply the C++20 rules rather than the C99 rules, and
so still diagnose C99 extensions as described above. We continue to
accept designated C++20-compatible initializers in C++ <= 17 silently
by default (but naturally still reject under -pedantic-errors).
This is not a complete implementation of P0329R4. In particular, that
paper introduces new non-C99-compatible syntax { .field { init } }, and
we do not support that yet.
This is based on a previous patch by Don Hinton, though I've made
substantial changes when addressing the above interactions.
Differential Revision: https://reviews.llvm.org/D59754
llvm-svn: 370544
list, rather than recursively checking multiple lists in C.
This simplification is in preparation for making InitListChecker
maintain more state that's specific to the explicit initializer list,
particularly when handling designated initialization.
llvm-svn: 370418
We're building the CFG from bottom to top, so when the return-value expression
has a non-trivial CFG on its own, we need to continue building from the entry
to the return-value expression CFG rather than from the block to which
we've just appended the return statement.
Fixes a false positive warning "control may reach end of non-void function".
llvm-svn: 370406
Based on @davezarzycki remarks in D64696 improved the wording of the warning
message.
Differential Revision: https://reviews.llvm.org/D66700
Patch by Mark de Wever.
llvm-svn: 369873
Summary:
As Typo Resolution can create new TypoExprs while resolving typos,
it is necessary to recurse through the expression to search for more
typos.
This should fix the assertion failure in `clang::Sema::~Sema()`:
`DelayedTypos.empty() && "Uncorrected typos!"`
Notes:
- In case some TypoExprs are created but thrown away, Sema
now has a Vector that is used to keep track of newly created
typos.
- For expressions with multiple typos, we only give suggestions
if we are able to resolve all typos in the expression
- This patch is similar to D37521 except that it does not eagerly
commit to a correction for the first typo in the expression.
Instead, it will search for corrections which fix all of the
typos in the expression.
Subscribers: cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D62648
llvm-svn: 369427
...so that at least a preceding \param etc. that lacks a description gets a
-Wdocumentation warning (instead of erroneously treating the \retval ... text as
its paragraph).
Differential Revision: https://reviews.llvm.org/D66350
llvm-svn: 369345