Original commit message:
Defer some shl transforms to DAGCombine.
The shl instruction is used to represent multiplication by a constant
power of two as well as bitwise left shifts. Some InstCombine
transformations would turn an shl instruction into a bit mask operation,
making it difficult for later analysis passes to recognize the
constsnt multiplication.
Disable those shl transformations, deferring them to DAGCombine time.
An 'shl X, C' instruction is now treated mostly the same was as 'mul X, C'.
These transformations are deferred:
(X >>? C) << C --> X & (-1 << C) (When X >> C has multiple uses)
(X >>? C1) << C2 --> X << (C2-C1) & (-1 << C2) (When C2 > C1)
(X >>? C1) << C2 --> X >>? (C1-C2) & (-1 << C2) (When C1 > C2)
The corresponding exact transformations are preserved, just like
div-exact + mul:
(X >>?,exact C) << C --> X
(X >>?,exact C1) << C2 --> X << (C2-C1)
(X >>?,exact C1) << C2 --> X >>?,exact (C1-C2)
The disabled transformations could also prevent the instruction selector
from recognizing rotate patterns in hash functions and cryptographic
primitives. I have a test case for that, but it is too fragile.
llvm-svn: 155362
The problem is that the struct file_status on UNIX systems has two
members called st_dev and st_ino; those are also members of the
struct stat, and they are reserved identifiers which can also be
provided as #define (and this is the case for st_dev on Hurd).
The solution (attached) is to rename them, for example adding a
"fs_" prefix (= file status) to them.
Patch by Pino Toscano
llvm-svn: 155354
1) Make the checked assertions a bit more precise. We really want the
canonical forms coming out of reassociate to be exactly what is
expected.
2) Remove other passes, and switch the test to actually directly check
that reassociate makes the important transforms and
canonicalizations.
3) Fold in a related test case now that we're using FileCheck. Make the
same tidying changes to it.
llvm-svn: 155311
It set NumLowBitAvailable = 3 which may not be true on all platforms. We only
ever use 2 bits (the default) so this assumption can be safely removed
Should fix PR12612.
llvm-svn: 155288
The X86 target is editing the selection DAG while isel is selecting
nodes following a topological ordering. When the DAG hacking triggers
CSE, nodes can be deleted and bad things happen.
llvm-svn: 155257
Now that multiple DAGUpdateListeners can be active at the same time,
ISelPosition can become a local variable in DoInstructionSelection.
We simply register an ISelUpdater with CurDAG while ISelPosition exists.
llvm-svn: 155249
Instead of passing listener pointers to RAUW, let SelectionDAG itself
keep a linked list of interested listeners.
This makes it possible to have multiple listeners active at once, like
RAUWUpdateListener was already doing. It also makes it possible to
register listeners up the call stack without controlling all RAUW calls
below.
DAGUpdateListener uses an RAII pattern to add itself to the SelectionDAG
list of active listeners.
llvm-svn: 155248
The <undef> flag on a def operand only applies to partial register
redefinitions. Only print the flag when relevant, and print it as
<def,read-undef> to make it clearer what it means.
llvm-svn: 155239
This nicely handles the most common case of virtual register sets, but
also handles anticipated cases where we will map pointers to IDs.
The goal is not to develop a completely generic SparseSet
template. Instead we want to handle the expected uses within llvm
without any template antics in the client code. I'm adding a bit of
template nastiness here, and some assumption about expected usage in
order to make the client code very clean.
The expected common uses cases I'm designing for:
- integer keys that need to be reindexed, and may map to additional
data
- densely numbered objects where we want pointer keys because no
number->object map exists.
llvm-svn: 155227
Use the new TwoOperandAliasConstraint to handle lots of the two-operand aliases
for NEON instructions. There's still more to go, but this is a good chunk of
them.
llvm-svn: 155210
(load only has one operand) and smuggle in some whitespace changes too
NB: I am obviously testing the water here, and believe that the unguarded
cast is still wrong, but why is the getZExtValue of the load's operand
tested against zero here? Any review is appreciated.
llvm-svn: 155190
While the patch was perfect and defect free, it exposed a really nasty
bug in X86 SelectionDAG that caused an llc crash when compiling lencod.
I'll put the patch back in after fixing the SelectionDAG problem.
llvm-svn: 155181
Assembly matchers for instructions with a two-operand form. ARM is full
of these, for example:
add {Rd}, Rn, Rm // Rd is optional and is the same as Rn if omitted.
The property TwoOperandAliasConstraint on the instruction definition controls
when, and if, an alias will be formed. No explicit InstAlias definitions
are required.
rdar://11255754
llvm-svn: 155172
Now that llvm-config is a binary instead of a script the version installed
during a cross compiled build cannot be run from the host. When cross
compiling, install a separate llvm-config-host that will run on the host.
llvm-svn: 155164
when the set bits aren't the same for both args of the xor.
This transformation is in the function TargetLowering::SimplifyDemandedBits
in the file lib/CodeGen/SelectionDAG/TargetLowering.cpp.
I have tested this test using a previous version of llc which the defect and
the a version of llc which does not. I got the expected fail and pass,
respectively.
This test goes with rdar://11195364 and the check in with the fix: svn r154955
llvm-svn: 155156
llvm-ld is no longer useful and causes confusion and so it is being removed.
* Does not work very well on Windows because it must call a gcc like driver to
assemble and link.
* Has lots of hard coded paths which are wrong on many systems.
* Does not understand most of ld's options.
* Can be partially replaced by llvm-link | opt | {llc | as, llc -filetype=obj} |
ld, or fully replaced by Clang.
I know of no production use of llvm-ld, and hacking use should be
replaced by Clang's driver.
llvm-svn: 155147
The shl instruction is used to represent multiplication by a constant
power of two as well as bitwise left shifts. Some InstCombine
transformations would turn an shl instruction into a bit mask operation,
making it difficult for later analysis passes to recognize the
constsnt multiplication.
Disable those shl transformations, deferring them to DAGCombine time.
An 'shl X, C' instruction is now treated mostly the same was as 'mul X, C'.
These transformations are deferred:
(X >>? C) << C --> X & (-1 << C) (When X >> C has multiple uses)
(X >>? C1) << C2 --> X << (C2-C1) & (-1 << C2) (When C2 > C1)
(X >>? C1) << C2 --> X >>? (C1-C2) & (-1 << C2) (When C1 > C2)
The corresponding exact transformations are preserved, just like
div-exact + mul:
(X >>?,exact C) << C --> X
(X >>?,exact C1) << C2 --> X << (C2-C1)
(X >>?,exact C1) << C2 --> X >>?,exact (C1-C2)
The disabled transformations could also prevent the instruction selector
from recognizing rotate patterns in hash functions and cryptographic
primitives. I have a test case for that, but it is too fragile.
llvm-svn: 155136
- Work in progress, this is mostly important because it lets us incrementally migrate the remaining documentation.
- Lots of styling, editing, and integration work yet to come…
- PR12589
llvm-svn: 155133
symbolicated. These have and operand type of TYPE_RELv which was not handled
as isBranch in translateImmediate() in X86Disassembler.cpp. rdar://11268426
llvm-svn: 155074
commits have had several major issues pointed out in review, and those
issues are not being addressed in a timely fashion. Furthermore, this
was all committed leading up to the v3.1 branch, and we don't need piles
of code with outstanding issues in the branch.
It is possible that not all of these commits were necessary to revert to
get us back to a green state, but I'm going to let the Hexagon
maintainer sort that out. They can recommit, in order, after addressing
the feedback.
Reverted commits, with some notes:
Primary commit r154616: HexagonPacketizer
- There are lots of review comments here. This is the primary reason
for reverting. In particular, it introduced large amount of warnings
due to a bad construct in tablegen.
- Follow-up commits that should be folded back into this when
reposting:
- r154622: CMake fixes
- r154660: Fix numerous build warnings in release builds.
- Please don't resubmit this until the three commits above are
included, and the issues in review addressed.
Primary commit r154695: Pass to replace transfer/copy ...
- Reverted to minimize merge conflicts. I'm not aware of specific
issues with this patch.
Primary commit r154703: New Value Jump.
- Primarily reverted due to merge conflicts.
- Follow-up commits that should be folded back into this when
reposting:
- r154703: Remove iostream usage
- r154758: Fix CMake builds
- r154759: Fix build warnings in release builds
- Please incorporate these fixes and and review feedback before
resubmitting.
Primary commit r154829: Hexagon V5 (floating point) support.
- Primarily reverted due to merge conflicts.
- Follow-up commits that should be folded back into this when
reposting:
- r154841: Remove unused variable (fixing build warnings)
There are also accompanying Clang commits that will be reverted for
consistency.
llvm-svn: 155047
DenseMap's hash function uses slightly more entropy and reduces hash collisions
significantly. I also experimented with Hashing.h, but it didn't gave a lot of
improvement while being much more expensive to compute.
llvm-svn: 154996
If the loop contains invoke instructions, whose unwind edge escapes the loop,
then don't try to unswitch the loop. Doing so may cause the unwind edge to be
split, which not only is non-trivial but doesn't preserve loop simplify
information.
Fixes PR12573
llvm-svn: 154987
This introduces a threshold of 200 IV Users, which is very
conservative but should be sufficient to avoid serious compile time
sink or stack overflow. The llvm test-suite with LTO never exceeds 190
users per loop.
The bug doesn't relate to a specific type of loop. Checking in an
arbitrary giant loop as a unit test would be silly.
Fixes rdar://11262507.
llvm-svn: 154983
also fix SimplifyLibCalls to use TLI rather than compile-time conditionals to enable optimizations on floor, ceil, round, rint, and nearbyint
llvm-svn: 154960
transformation:
(X op C1) ^ C2 --> (X op C1) & ~C2 iff (C1&C2) == C2
should be done.
This change has been tested:
Using a debug+asserts build:
on the specific test case that brought this bug to light
make check-all
lnt nt
using this clang to build a release version of clang
Using the release+asserts clang-with-clang build:
on the specific test case that brought this bug to light
make check-all
lnt nt
Checking in because Evan wants it checked in. Test case forthcoming after
scrubbing.
llvm-svn: 154955
for the life of me remember why I wrote it this way, but I can't see any good
reason for it now. This patch replaces the custom linked list with an ilist.
This change should preserve the existing numberings exactly, so no generated code
should change (if it does, file a bug!).
llvm-svn: 154904
the MCJIT execution engine.
The GDB JIT debugging integration support works by registering a loaded
object image with a pre-defined function that GDB will monitor if GDB
is attached. GDB integration support is implemented for ELF only at this
time. This integration requires GDB version 7.0 or newer.
Patch by Andy Kaylor!
llvm-svn: 154868
both fallthrough and a conditional branch target the same successor.
Gracefully delete the conditional branch and introduce any unconditional
branch needed to reach the actual successor. This fixes memory
corruption in 2009-06-15-RegScavengerAssert.ll and possibly other tests.
Also, while I'm here fix a latent bug I spotted by inspection. I never
applied the same fundamental fix to this fallthrough successor finding
logic that I did to the logic used when there are no conditional
branches. As a consequence it would have selected landing pads had they
be aligned in just the right way here. I don't have a test case as
I spotted this by inspection, and the previous time I found this
required have of TableGen's source code to produce it. =/ I hate backend
bugs. ;]
Thanks to Jim Grosbach for helping me reason through this and reviewing
the fix.
llvm-svn: 154867
A trailing comma means no argument at all (i.e., as if the comma were not
present), not an empty argument to the invokee.
rdar://11252521
llvm-svn: 154863
1. CHECKNEXT was used instead of CHECK-NEXT which caused the line to be
ignored which in turn hid the next 2 problems:
2. ('sh_offset', 0x{{{[0-9,a-f]+}}) had one too many leading curly braces and
failed to do it's job of accepting all hex digits and:
3. The check for the hex values for the code instructions didn't account for
blank separators.
Patch by Jack Carter.
llvm-svn: 154842
through the use of 'fpmath' metadata. Currently this only provides a 'fpaccuracy'
value, which may be a number in ULPs or the keyword 'fast', however the intent is
that this will be extended with additional information about NaN's, infinities
etc later. No optimizations have been hooked up to this so far.
llvm-svn: 154822
This is mostly to test the waters. I'd like to get results from FNT
build bots and other bots running on non-x86 platforms.
This feature has been pretty heavily tested over the last few months by
me, and it fixes several of the execution time regressions caused by the
inlining work by preventing inlining decisions from radically impacting
block layout.
I've seen very large improvements in yacr2 and ackermann benchmarks,
along with the expected noise across all of the benchmark suite whenever
code layout changes. I've analyzed all of the regressions and fixed
them, or found them to be impossible to fix. See my email to llvmdev for
more details.
I'd like for this to be in 3.1 as it complements the inliner changes,
but if any failures are showing up or anyone has concerns, it is just
a flag flip and so can be easily turned off.
I'm switching it on tonight to try and get at least one run through
various folks' performance suites in case SPEC or something else has
serious issues with it. I'll watch bots and revert if anything shows up.
llvm-svn: 154816
once we start changing the block layout, so just nuke it. If anyone has
ideas about how to craft a code layout agnostic form of the test please
let me know.
llvm-svn: 154815
rotation. When there is a loop backedge which is an unconditional
branch, we will end up with a branch somewhere no matter what. Try
placing this backedge in a fallthrough position above the loop header as
that will definitely remove at least one branch from the loop iteration,
where whole loop rotation may not.
I haven't seen any benchmarks where this is important but loop-blocks.ll
tests for it, and so this will be covered when I flip the default.
llvm-svn: 154812
and retrieving it from instructions. I don't have a use for this but is seems
logical for it to exist. While there, remove some 'const' markings from methods
which are in fact 'const' in practice, but aren't logically 'const'.
llvm-svn: 154811
The test change is to account for the fact that the default disassembler behaviour has changed with regards to specifying the assembly syntax to use.
llvm-svn: 154809
so we don't want it to show up in the stable 3.1 interface.
While at it, add a comment about why LTOCodeGenerator manually creates the
internalize pass.
llvm-svn: 154807
laid out in a form with a fallthrough into the header and a fallthrough
out of the bottom. In that case, leave the loop alone because any
rotation will introduce unnecessary branches. If either side looks like
it will require an explicit branch, then the rotation won't add any, do
it to ensure the branch occurs outside of the loop (if possible) and
maximize the benefit of the fallthrough in the bottom.
llvm-svn: 154806
This is a complex change that resulted from a great deal of
experimentation with several different benchmarks. The one which proved
the most useful is included as a test case, but I don't know that it
captures all of the relevant changes, as I didn't have specific
regression tests for each, they were more the result of reasoning about
what the old algorithm would possibly do wrong. I'm also failing at the
moment to craft more targeted regression tests for these changes, if
anyone has ideas, it would be welcome.
The first big thing broken with the old algorithm is the idea that we
can take a basic block which has a loop-exiting successor and a looping
successor and use the looping successor as the layout top in order to
get that particular block to be the bottom of the loop after layout.
This happens to work in many cases, but not in all.
The second big thing broken was that we didn't try to select the exit
which fell into the nearest enclosing loop (to which we exit at all). As
a consequence, even if the rotation worked perfectly, it would result in
one of two bad layouts. Either the bottom of the loop would get
fallthrough, skipping across a nearer enclosing loop and thereby making
it discontiguous, or it would be forced to take an explicit jump over
the nearest enclosing loop to earch its successor. The point of the
rotation is to get fallthrough, so we need it to fallthrough to the
nearest loop it can.
The fix to the first issue is to actually layout the loop from the loop
header, and then rotate the loop such that the correct exiting edge can
be a fallthrough edge. This is actually much easier than I anticipated
because we can handle all the hard parts of finding a viable rotation
before we do the layout. We just store that, and then rotate after
layout is finished. No inner loops get split across the post-rotation
backedge because we check for them when selecting the rotation.
That fix exposed a latent problem with our exitting block selection --
we should allow the backedge to point into the middle of some inner-loop
chain as there is no real penalty to it, the whole point is that it
*won't* be a fallthrough edge. This may have blocked the rotation at all
in some cases, I have no idea and no test case as I've never seen it in
practice, it was just noticed by inspection.
Finally, all of these fixes, and studying the loops they produce,
highlighted another problem: in rotating loops like this, we sometimes
fail to align the destination of these backwards jumping edges. Fix this
by actually walking the backwards edges rather than relying on loopinfo.
This fixes regressions on heapsort if block placement is enabled as well
as lots of other cases where the previous logic would introduce an
abundance of unnecessary branches into the execution.
llvm-svn: 154783
As an example, attach range info to the "invalid instruction" message:
$ clang -arch arm -c asm.c
asm.c:2:11: error: invalid instruction
__asm__("foo r0");
^
<inline asm>:1:2: note: instantiated into assembly here
foo r0
^~~
llvm-svn: 154765
thinking of generalizing it to be able to specify other freedoms beyond accuracy
(such as that NaN's don't have to be respected). I'd like the 3.1 release (the
first one with this metadata) to have the more generic name already rather than
having to auto-upgrade it in 3.2.
llvm-svn: 154744
When vectorizing pointer types it is important to realize that potential
pairs cannot be connected via the address pointer argument of a load or store.
This is because even after vectorization, the address is still a scalar because
the address of the higher half of the pair is implicit from the address of the
lower half (it need not be, and should not be, explicitly computed).
llvm-svn: 154735
This is a special flag for targets that really want their block
terminators in the DAG. The default scheduler cannot handle this
correctly, so it becomes the specialized scheduler's responsibility to
schedule terminators.
llvm-svn: 154712
- Don't copy offsets into HashData, the underlying vector won't change once the table is finalized.
- Allocate HashData and HashDataContents in a BumpPtrAllocator.
- Allocate string map entries in the same allocator.
- Random cleanups.
llvm-svn: 154694