into profile symbol list.
When test is unrepresentative to production behavior, sample profile
collected from production can cause unexpected performance behavior
in test. To triage such issue, it is useful to have a cutoff flag
to control how many symbols will be included into profile symbol list
in order to do binary search.
Differential Revision: https://reviews.llvm.org/D97623
Use emitDwarfUnitLength for debug line, so we can benefit from
overriding of emitDwarfUnitLength inside different streamers.
Reviewed By: ikudrin, dblaikie
Differential Revision: https://reviews.llvm.org/D95998
The universal index was maintained if dense indices were still
in place, and lattice points followed. However, it should only
be kept if any of those following lattice points actually
consumes the universal index. This change also fixes an
inaccuracy with a missing broadcast around vector invariant.
Reviewed By: bixia
Differential Revision: https://reviews.llvm.org/D97594
This enables this kind of construct in the DSL to generate a named op that is polymorphic over numeric type variables `T` and `U`, generating the correct arithmetic casts at construction time:
```
@tc_def_op
def polymorphic_matmul(A=TensorDef(T1, S.M, S.K),
B=TensorDef(T2, S.K, S.N),
C=TensorDef(U, S.M, S.N, output=True)):
implements(ContractionOpInterface)
C[D.m, D.n] += cast(U, A[D.m, D.k]) * cast(U, B[D.k, D.n])
```
Presently, this only supports type variables that are bound to the element type of one of the arguments, although a further extension that allows binding a type variable to an attribute would allow some more expressiveness and may be useful for some formulations. This is left to a future patch. In addition, this patch does not yet materialize the verifier support which ensures that types are bound correctly (for such simple examples, failing to do so will yield IR that fails verification, it just won't yet fail with a precise error).
Note that the full grid of extensions/truncation/int<->float conversions are supported, but many of them are lossy and higher level code needs to be mindful of numerics (it is not the job of this level).
As-is, this should be sufficient for most integer matmul scenarios we work with in typical quantization schemes.
Differential Revision: https://reviews.llvm.org/D97603
Simon modified the check prefixes in these tests while D97160
was pending review. When D97160 was commited it wasn't updated
it merge cleanly, but didn't comprehend the check prefix changes.
Bifurcate the `readFile()` API into ...
* `readRawFile()` which performs no checks, and
* `readLinkableFile()` which enforces minimum length of 20 bytes, same as ld64
There are no new tests because tweaks to existing tests are sufficient.
Differential Revision: https://reviews.llvm.org/D97610
This is a bug fix of https://bugs.llvm.org/show_bug.cgi?id=49175
The expected code format:
unsigned int* a;
int* b;
unsigned int Const* c;
The actual code after formatting (without this patch):
unsigned int* a;
int* b;
unsigned int Const* c;
Differential Revision: https://reviews.llvm.org/D97137
Not only this is likely more efficient than BitVector::find_first(), but
also if the BitVector is empty find_first() returns -1, which
llvm::drop_begin isn't robust against.
By adding the line number of the split point immediately after the file
name (separated by `:`) this is recognized by various tool as a proper
location.
Ideally we would want to point to the line of the error, but that would
require some very invasive changes I suspect.
Reviewed By: jpienaar
Differential Revision: https://reviews.llvm.org/D93363
Document the default for the XNACK and SRAMECC target features for code object V2-V3 and V4.
Reviewed By: kzhuravl
Differential Revision: https://reviews.llvm.org/D97598
On arm64, UNSIGNED relocs are the only ones that use embedded addends
instead of the ADDEND relocation.
Also ensure that the addend works when UNSIGNED is part of a SUBTRACTOR
pair.
Reviewed By: #lld-macho, alexshap
Differential Revision: https://reviews.llvm.org/D97105
Also add a few asserts to verify that we are indeed handling an
UNSIGNED relocation as the minued. I haven't made it an actual
user-facing error since I don't think llvm-mc is capable of generating
SUBTRACTOR relocations without an associated UNSIGNED.
Reviewed By: #lld-macho, smeenai
Differential Revision: https://reviews.llvm.org/D97103
`llvm-mc` doesn't generate any relocations for subtractions
between local symbols -- they must be global -- so the previous test
wasn't actually testing any relocation logic. I've fixed that and
extended the test to cover r_length=3 relocations as well as both x86_64
and arm64.
Reviewed By: #lld-macho, smeenai
Differential Revision: https://reviews.llvm.org/D97057
In the example based on:
https://llvm.org/PR49218
...we are crashing because poison is a subclass of undef, so we merge blocks and create:
PHI node has multiple entries for the same basic block with different incoming values!
%k3 = phi i64 [ poison, %entry ], [ %k3, %g ], [ undef, %entry ]
If both poison and undef values are incoming, we soften the poison values to undef.
Differential Revision: https://reviews.llvm.org/D97495
Per the discussion in D97453. We currently disable it due to it's not a
common scenario and has some problem in implementation.
Differential Revision: https://reviews.llvm.org/D97453
Split from D91844.
The local variable `Unit` in function `DWARFLinker::loadClangModule`
in file `llvm/lib/DWARFLinker/DWARFLinker.cpp`. If the variable is not set
in the loop below its definition, it will trigger a null pointer dereference
after the loop.
Patch By: OikawaKirie
Reviewed By: avl
Differential Revision: https://reviews.llvm.org/D97185
This also exposed a bug in Dialect loading where it was not correctly identifying identifiers that had the dialect namespace as a prefix.
Differential Revision: https://reviews.llvm.org/D97431
Includes a lowering for tosa.const, tosa.if, and tosa.while to Standard/SCF dialects. TosaToStandard is
used for constant lowerings and TosaToSCF handles the if/while ops.
Resubmission of https://reviews.llvm.org/D97518 with ASAN fixes.
Differential Revision: https://reviews.llvm.org/D97529