- no setting auto completion
- very manual and error prone way of getting/setting variables
- tons of code duplication
- useless instance names for processes, threads
Now settings can easily be defined like option values. The new settings makes use of the "OptionValue" classes so we can re-use the option value code that we use to set settings in command options. No more instances, just "does the right thing".
llvm-svn: 162366
when you want to find the caller's saved pc, you look up the return address
register and use that. On arm, for instance, this would be the contents of
the link register (lr).
If the eh_frame CIE defines an RA, record that fact in the UnwindPlan.
When we're finding a saved register, if it's the pc, lok for the location
of the return address register instead.
<rdar://problem/12062310>
llvm-svn: 162167
tread on the m_embedded_thread_input_reader_sp singleton maintained by the script interpreter.
Furthermore, use two additional slots under the script interpreter to store the PseudoTerminal and
the InputReaderSP pertaining to the embedded python interpreter -- resulted from the
ScriptInterpreterPython::ExecuteInterpreterLoop() call -- to facilitate separation from what is being
used by the PythonInputReaderManager instances.
llvm-svn: 162147
do not take the sanpshot and forget about the stop info. It is possible that the variable expression has gone
out of scope, we'll revise the hit count due to the false alarms.
llvm-svn: 161892
Record the snapshot of our watched value when the watchpoint is set or hit.
And report the old/new values when watchpoint is triggered. Add some test scenarios.
llvm-svn: 161785
Fixed an issue that could cause references the shared data for an object file to stay around longer than intended and could cause memory bloat when debugging multiple times.
llvm-svn: 161716
the expression returns nothing. There is now a
setting, "notify-void." When the user enables
that setting, lldb prints (void) if an expression's
result is void. Otherwise, lldb is silent.
<rdar://problem/11225150>
llvm-svn: 161600
require an AddressClass, which is useless at this
point since it already knows the distinction between
32-bit Thumb opcodes and 32-bit ARM opcodes.
llvm-svn: 161382
keep a shared pointer to their disassembler. This
is important for the LLVM-C disassembler because
it needs to lock its parent in order to disassemble
itself.
This means that every interface that returned a
Disassembler* needs to return a DisassemblerSP, so
that the instructions and any external owners share
the same reference count on the object. I changed
all clients to use this shared pointer, which also
plugged a few leaks.
<rdar://problem/12002822>
llvm-svn: 161123
Added new API to lldb::SBTypeMember for bitfields:
bool SBTypeMember::IsBitfield();
uint32_t SBTypeMember::GetBitfieldSizeInBits();
Also added new properties for easy access. Now SBTypeMember objects in python have a "fields" property for all type fields, "bases" for all direct bases, "vbases" for all virtual base classes and "members" for a combo of all three organized by bit offset. They all return a python list() of SBTypeMember objects. Usage:
(lldb) script
>>> t = lldb.target.FindFirstType("my_type")
>>> for field in t.fields:
... print field
>>> for vbase in t.vbases:
... print vbase
>>> for base in t.bases:
... print base
>>> for member in t.members:
... print member
Also added new "is_bitfield" property to the SBTypeMember objects that will return the result of SBTypeMember::IsBitfield(), and "bitfield_bit_size" which will return the result of SBTypeMember::GetBitfieldSizeInBits();
I also fixed "SBTypeMember::GetOffsetInBytes()" to return the correct byte offset.
llvm-svn: 161091
Convert from calling Halt in the lldb Driver.cpp's input reader's sigint handler to sending this AsyncInterrupt so it can be handled in the
event loop.
If you are attaching and get an async interrupt, abort the attach attempt.
Also remember to destroy the process if get interrupted while attaching.
Getting this to work also required handing the eBroadcastBitInterrupt in a few more places in Process WaitForEvent & friends.
<rdar://problem/10792425>
llvm-svn: 160903
calling functions. This is necessary on Mac OS X, since bad things can happen if you set
the registers of a thread that's sitting in a kernel trap.
<rdar://problem/11145013>
llvm-svn: 160756
to returned by expressions, by removing the
__cxa_atexit call that would normally cause these
objects to be destroyed. This also prevents many
errors of the form
Couldn't rewrite one of the arguments of a function call
error: Couldn't materialize struct: Structure hasn't been laid out yet
<rdar://problem/11309402>
llvm-svn: 160596
Improved the error message when we can find a function in the current program by printing the demangled name.
Also added the ability to create lldb_private::Mangled instances with a ConstString when we already have a ConstString for a mangled or demangled name. Also added the ability to call SetValue with a ConstString and also without a boolean to indicate if the string is mangled where we will now auto-detect if the string is mangled.
llvm-svn: 160450
the state of the unwind instructions once the prologue has finished. If it hits an
early return epilogue in the middle of the function, re-instate the prologue after that
epilogue has completed so that we can still unwind for cases where the flow of control
goes past that early-return. <rdar://problem/11775059>
Move the UnwindPlan operator== definition into the .cpp file, expand the definition a bit.
Add some casts to a SBCommandInterpreter::HandleCompletion() log statement so it builds without
warning on 64- and 32-bit systems.
llvm-svn: 160337
a shared pointer to ease some memory management issues with a patch
I'm working on.
The main complication with using SPs for these objects is that most
methods that build up an UnwindPlan will construct a Row to a given
instruction point in a function, then add additional regsaves in
the next instruction point to that row and push it again. A little
care is needed to not mutate the previous instruction point's Row
once these are switched to being held behing shared pointers.
llvm-svn: 160214
Fixed a case where the python interpreter could end up holding onto a previous lldb::SBProcess (probably in lldb.process) when run under Xcode. Prior to this fix, the lldb::SBProcess held onto a shared pointer to a lldb_private::Process. This in turn could cause the process to still have a thread list with stack frames. The stack frames would have module shared pointers in the lldb_private::SymbolContext objects.
We also had issues with things staying in the shared module list too long when we found things by UUID (we didn't remove the out of date ModuleSP from the global module cache).
Now all of this is fixed and everything goes away between runs.
llvm-svn: 160140
UnwindPlans for a function. This specifically does not use any
previously-generated UnwindPlans so if any logging is performed
while creating the UnwindPlans, it will be repeated. This is
useful for when an lldb stack trace is not correct and you want
to gather diagnostic information from the user -- they can do
log enable -v lldb unwind, image show-unwind of the function, and
you'll get the full logging as the UnwindPlans are recreated.
llvm-svn: 160095
% cat sp.cpp
#include <tr1/memory>
class A
{
public:
A (): m_i (12) {}
virtual ~A() {}
private:
int m_i;
};
int main (int argc, char const *argv[], char const *envp[])
{
A *a_pointers[2] = { NULL, NULL };
A a1;
A a2;
a_pointers[0] = &a1;
a_pointers[1] = &a2;
return 0;
}
And you stop at the "return 0", you can now read memory using the "address" format and see:
(lldb) memory read --format address `&a_pointers`
0x7fff5fbff870: 0x00007fff5fbff860 -> 0x00000001000010b0 vtable for A + 16
0x7fff5fbff878: 0x00007fff5fbff850 -> 0x00000001000010b0 vtable for A + 16
0x7fff5fbff880: 0x00007fff5fbff8d0
0x7fff5fbff888: 0x00007fff5fbff8c0
0x7fff5fbff890: 0x0000000000000001
0x7fff5fbff898: 0x36d54c275add2294
0x7fff5fbff8a0: 0x00007fff5fbff8b0
0x7fff5fbff8a8: 0x0000000100000bb4 a.out`start + 52
Note the extra dereference that was applied to 0x00007fff5fbff860 and 0x00007fff5fbff850 so we can see that these are "A" classes.
llvm-svn: 160085
a bit -- we're creating the UnwindPlan here, we can set the register set to
whatever is convenient for us, no need to handle different register sets.
A handful of small comment fixes I noticed while reading through the code.
llvm-svn: 159924
Modified the heap.py to be able to correctly indentify the exact ivar for the "ptr_refs" command no matter how deep the ivar is in a class hierarchy. Also fixed the ability for the heap command to symbolicate the stack backtrace when MallocStackLogging is set in the environment and the "--stack" option was specified.
llvm-svn: 159883
than being given the pthread_mutex_t from the Mutex and locks that. That allows us to
track ownership of the Mutex better.
Used this to switch the LLDB_CONFIGURATION_DEBUG enabled assert when we can't get the
gdb-remote sequence mutex to assert when the thread that had the mutex releases it. This
is generally more useful information than saying just who failed to get it (since the
code that had it locked often had released it by the time the assert fired.)
llvm-svn: 158240
Execute which was never going to get run and another ExecuteRawCommandString. Took the knowledge of how
to prepare raw & parsed commands out of CommandInterpreter and put it in CommandObject where it belongs.
Also took all the cases where there were the subcommands of Multiword commands declared in the .h file for
the overall command and moved them into the .cpp file.
Made the CommandObject flags work for raw as well as parsed commands.
Made "expr" use the flags so that it requires you to be paused to run "expr".
llvm-svn: 158235
a cache of address ranges for child sections,
accelerating lookups. This cache is built during
object file loading, and is then set in stone once
the object files are done loading. (In Debug builds,
we ensure that the cache is never invalidated after
that.)
llvm-svn: 158188
wait till that is done. We need a stronger way to do this, but in practice this works and using some locking
strategy is harder because Halt & HandlePrivateEvent generally happen on different threads.
llvm-svn: 158042
The output of 'register read' should be prettier.
Modify RegisterValue::Dump() to take an additional parameter:
uint32_t reg_name_right_align_at
which defaults to 0 (i.e., no alignment at all). Update the 'register read' command impl to pass 8
as the alignment to RegisterValue::Dump() method. If more sophisticated scheme is desired, we will
need to introduce an additional command option to 'register read' later on.
llvm-svn: 158039
Fix confusing error message about "expression did not evaluate to an address" when doing 'watchpoint set expression".
Instead of using 0 as the fail_value when invoking ValueObject::GetValueAsUnsigned(), modify the API to take an addition
bool pointer (defaults to NULL) to indicate success/failure of value conversion.
llvm-svn: 158016
Refactorings of watchpoint creation APIs so that SBTarget::WatchAddress(), SBValue::Watch(), and SBValue::WatchPointee()
now take an additional 'SBError &error' parameter (at the end) to contain the reason if there is some failure in the
operation. Update 'watchpoint set variable/expression' commands to take advantage of that.
Update existing test cases to reflect the API change and add test cases to verify that the SBError mechanism works for
SBTarget::WatchAddress() by passing an invalid watch_size.
llvm-svn: 157964
setting breakpoints. That's dangerous, since while we are setting a breakpoint,
the target might hit the dyld load notification, and start removing modules from
the list. This change adds a GetMutex accessor to the ModuleList class, and
uses it whenever we are accessing the target's ModuleList (as returned by GetImages().)
<rdar://problem/11552372>
llvm-svn: 157668
A local std::string was being filled in and then the function would return "s.c_str()".
A local StreamString (which contains a std::string) was being filled in, and essentially also returning the c string from the std::string, though it was in a the StreamString class.
The fix was to not do this by passing a stream object into StringList::Join() and fix the "arch_helper()" function to do what it should: cache the result in a global.
llvm-svn: 157519
Make 'help arch' return the list of supported architectures.
Add a convenience method StringList::Join(const char *separator) which is called from the help function for 'arch'.
Also add a simple test case.
llvm-svn: 157507
Supports the use-case scenario of immediately continuing the process once attached.
Add a simple completion test case from "process attach --con" to "process attach --continue ".
llvm-svn: 157361
Add default Process::GetWatchpointSupportInfo() impl which returns an error of "not supported".
Add "qWatchpointSupportInfo" packet to the gdb communication layer to support this, and modify TestWatchpointCommands.py to test it.
llvm-svn: 157345
"break set" commands to set this per breakpoint. Also, some CreateBreakpoint API's in the lldb_private
namespace had "internal" first and "skip_prologue" second. "internal should always be last. Fixed that.
rdar://problem/11484729
llvm-svn: 157225
<rdar://problem/11455913>
"target symbol add" should flush the cached frames
"register write" should flush the thread state in case registers modifications change stack
llvm-svn: 157042
path on rerunning, evict the old module from the target module list, inform the breakpoints
about this so they can do something intelligent as well.
rdar://problem/11273043
llvm-svn: 157008
Make sure our debugger STDIN read thread shuts down quickly when we are done with it. We had a case where the owner of the file handle was not closing it and caused spins.
llvm-svn: 156879
Also changed the defaults for SBThread::Step* to not delete extant plans.
Also added some test cases to test more complex stepping scenarios.
llvm-svn: 156667
Fixed the DisassemblerLLVMC disassembler to parse more efficiently instead of parsing opcodes over and over. The InstructionLLVMC class now only reads the opcode in the InstructionLLVMC::Decode function. This can be done very efficiently for ARM and architectures that have fixed opcode sizes. For x64 it still calls the disassembler to get the byte size.
Moved the lldb_private::Instruction::Dump(...) function up into the lldb_private::Instruction class and it now uses the function that gets the mnemonic, operandes and comments so that all disassembly is using the same code.
Added StreamString::FillLastLineToColumn() to allow filling a line up to a column with a character (which is used by the lldb_private::Instruction::Dump(...) function).
Modified the Opcode::GetData() fucntion to "do the right thing" for thumb instructions.
llvm-svn: 156532
the controlling plans so that they don't lose control.
Also change "ThreadPlanStepThrough" to take the return StackID for its backstop breakpoint as an argument
to the constructor rather than having it try to figure it out itself, since it might get it wrong whereas
the caller always knows where it is coming from.
rdar://problem/11402287
llvm-svn: 156529
Switch over to the "*-apple-macosx" for desktop and "*-apple-ios" for iOS triples.
Also make the selection process for auto selecting platforms based off of an arch much better.
llvm-svn: 156354
Correctly specify the LLDB_OPT_SET's that the 'shlib' command option belongs to by using a newly added macro like this:
#define LLDB_OPT_NOT_10 ( LLDB_OPT_SET_FROM(1, 10) & ~LLDB_OPT_SET_10 )
rdar://problem/11393864
llvm-svn: 156337
No one was using it and Locker(pthread_mutex_t *) immediately asserts for
pthread_mutex_t's that don't come from a Mutex anyway. Rather than try to make
that work, we should maintain the Mutex abstraction and not pass around the
platform implementation...
Make Mutex::Locker::Lock take a Mutex & or a Mutex *, and remove the constructor
taking a pthread_mutex_t *. You no longer need to call Mutex::GetMutex to pass
your mutex to a Locker (you can't in fact, since I made it private.)
llvm-svn: 156221
should be MasterPlans that want to stay on the plan stack. So make all plans NOT
MasterPlans by default and then have the SB API's and the CommandObjectThread step
commands set this explicitly.
Also added a "clean up" phase to the Thread::ShouldStop so that if plans get stranded
on the stack, we can remove them. This is done by adding an IsPlanStale method to the
thread plans, and if the plan can know that it is no longer relevant, it returns true,
and the plan and its sub-plans will get discarded.
llvm-svn: 156101
since we now run the condition in the StopInfoBreakpoint's PerformAction, and don't need
to refer it to another "continue". Actually, we haven't needed to do this for a year or
so, I just hadn't gotten around to deleting the dead wood.
llvm-svn: 155967
Just call SBDebugger::SetTerminalWidth on the driver's SBDebugger, which does the same job, but no locks.
Also add the value checking to SetTerminalWidth you get with SetInternalVariable(..., "term-width", ...).
rdar://problem/11310563
llvm-svn: 155665
ask to continue that should short-circuit the thread plans for that thread. Also add a bit more explanation for
how this machinery is supposed to work.
Also pass eExecutionPolicyOnlyWhenNeeded, not eExecutionPolicyAlways when evaluating the expression for breakpoint
conditions.
llvm-svn: 155236
Error
Host::RunShellCommand (const char *command,
const char *working_dir,
int *status_ptr,
int *signo_ptr,
std::string *command_output_ptr,
uint32_t timeout_sec);
This will allow us to use this functionality in the host lldb_private::Platform, and also use it in our lldb-platform binary. It leverages the existing code in Host::LaunchProcess and ProcessLaunchInfo.
llvm-svn: 154730
the debug information individual Decls came from.
We've had a metadata infrastructure for a while,
which was intended to solve a problem we've since
dealt with in a different way. (It was meant to
keep track of which definition of an Objective-C
class was the "true" definition, but we now find
it by searching the symbols for the class symbol.)
The metadata is attached to the ExternalASTSource,
which means it has a one-to-one correspondence with
AST contexts.
I've repurposed the metadata infrastructure to
hold the object file and DIE offset for the DWARF
information corresponding to a Decl. There are
methods in ClangASTContext that get and set this
metadata, and the ClangASTImporter is capable of
tracking down the metadata for Decls that have been
copied out of the debug information into the
parser's AST context without using any additional
memory.
To see the metadata, you just have to enable the
expression log:
-
(lldb) log enable lldb expr
-
and watch the import messages. The high 32 bits
of the metadata indicate the index of the object
file in its containing DWARFDebugMap; I have also
added a log which you can use to track that mapping:
-
(lldb) log enable dwarf map
-
This adds 64 bits per Decl, which in my testing
hasn't turned out to be very much (debugging Clang
produces around 6500 Decls in my tests). To track
how much data is being consumed, I've also added a
global variable g_TotalSizeOfMetadata which tracks
the total number of Decls that have metadata in all
active AST contexts.
Right now this metadata is enormously useful for
tracking down bugs in the debug info parser. In the
future I also want to use this information to provide
more intelligent error messages instead of printing
empty source lines wherever Clang refers to the
location where something is defined.
llvm-svn: 154634
Cleaned up the Mutex::Locker and the ReadWriteLock classes a bit.
Also cleaned up the GDBRemoteCommunication class to not have so many packet functions. Used the "NoLock" versions of send/receive packet functions when possible for a bit of performance.
llvm-svn: 154458
The current ProcessGDBRemote function that updates the threads could end up with an empty list if any other thread had the sequence mutex. We now don't clear the thread list when we can't access it, and we also have changed how lldb_private::Process handles the return code from the:
virtual bool
Process::UpdateThreadList (lldb_private::ThreadList &old_thread_list,
lldb_private::ThreadList &new_thread_list) = 0;
A bool is now returned to indicate if the list was actually updated or not and the lldb_private::Process class will only update the stop ID of the validity of the thread list if "true" is returned.
The ProcessGDBRemote also got an extra assertion that will hopefully assert when running debug builds so we can find the source of this issue.
llvm-svn: 154365
Work around a deadlocking issue where "SBDebugger::MemoryPressureDetected ()" is being called and is causing a deadlock. We now just try and get the lock when trying to trim down the unique modules so we don't deadlock debugger GUI programs until we can find the root cause.
llvm-svn: 154339
nanoseconds in 32-bit expression would cause pthread_cond_timedwait
to time out immediately. Add explicit casts to the TimeValue::TimeValue
ctor that takes a struct timeval and change the NanoSecsPerSec etc
constants defined in TimeValue to be uint64_t so any other calculations
involving these should be promoted to 64-bit even when lldb is built
for 32-bit.
<rdar://problem/11204073>, <rdar://problem/11179821>, <rdar://problem/11194705>.
llvm-svn: 154250
spin up a temporary "private state thread" that will respond to events from the lower level process plugins. This check-in should work to do
that, but it is still buggy. However, if you don't call functions on the private state thread, these changes make no difference.
This patch also moves the code in the AppleObjCRuntime step-through-trampoline handler that might call functions (in the case where the debug
server doesn't support the memory allocate/deallocate packet) out to a safe place to do that call.
llvm-svn: 154230
This abstracts read/write locks on the current host system. It is currently backed by pthread_rwlock_t objects so it should work on all unix systems.
We also need a way to control multi-threaded access to the process through the public API when it is running. For example it isn't a good idea to try and get stack frames while the process is running. To implement this, the lldb_private::Process class now contains a ReadWriteLock member variable named m_run_lock which is used to control the public process state. The public process state represents the state of the process as the client knows it. The private is used to control the actual current process state. So the public state of the process can be stopped, yet the private state can be running when evaluating an expression for example.
Adding the read/write lock where readers are clients that want the process to stay stopped, and writers are clients that run the process, allows us to accurately control multi-threaded access to the process.
Switched the SBThread and SBFrame over to us shared pointers to the ExecutionContextRef class instead of making their own class to track this. This fixed an issue with assigning on SBFrame to another and will also centralize the code that tracks weak references to execution context objects into one location.
llvm-svn: 154099
correctly if the setter/getter were not present
in the debug information. The fixes are as follows:
- We not only look for the method by its full name,
but also look for automatically-generated methods
when searching for a selector in an Objective-C
interface. This is necessary to find accessors.
- Extract the getter and setter name from the
DW_TAG_APPLE_Property declaration in the DWARF
if they are present; generate them if not.
llvm-svn: 154067
Found an issue where we might still have shared pointer references to lldb_private::Thread objects where the object itself is not valid and has been removed from the Process. When a thread is removed from a process, it will call Thread::DestroyThread() which well set a boolean member variable which is exposed now via:
bool
Thread::IsValid() const;
We then check the thread validity before handing out a shared pointer.
llvm-svn: 154048
Fixed an issue where there were more than one way to get a CompileUnitSP created when using SymbolFileDWARF with SymbolFileDWARFDebugMap. This led to an assertion that would fire under certain conditions. Now there is only one way to create the compile unit and it will "do the right thing".
llvm-svn: 153908
ValueObject, and make sure that ValueObjects that
have null type names (because they have null types)
also have null qualified type names. This avoids
some potential crashes if
ValueObject::GetQualifiedTypeName tries to get the
name of their type by calling GetClangTypeImpl().
llvm-svn: 153718
Fixed an issue that could cause circular type parsing that will assert and kill LLDB.
Prior to this fix the DWARF parser would always create class types and not start their definitions (for both C++ and ObjC classes) until we were asked to complete the class later. When we had cases like:
class A
{
class B
{
};
};
We would alway try to complete A before specifying "A" as the decl context for B. Turns out we can just start the definition and still not complete the class since we can check the TagDecl::isCompleteDefinition() function. This only works for C++ types. This means we will not be pulling in the full definition of parent classes all the time and should help with our memory consumption and also reduce the amount of debug info we have to parse.
I also reduced redundant code that was checking in a lldb::clang_type_t was a possible C++ dynamic type since it was still completing the type, just to see if it was dynamic. This was fixed in another function that was checking for a type being dynamic as an ObjC or a C++ type, but there was dedicated fucntion for C++ that we missed.
llvm-svn: 153713
Symbol files (dSYM files on darwin) can now be specified during program execution:
(lldb) target symbols add /path/to/symfile/a.out.dSYM/Contents/Resources/DWARF/a.out
This command can be used when you have a debug session in progress and want to add symbols to get better debug info fidelity.
llvm-svn: 153693
Fixed an issue with stepping where the stack frame list could get changed out from underneath you when multiple threads start accessing frame info.
llvm-svn: 153627
with recent Clang. Clang is now stricter about
presence of complete types and about use of the
"template" keyword in C++ for template-dependent
types.
llvm-svn: 153563
indicates that the section is thread specific. Any functions the load a module
given a slide, will currently ignore any sections that are thread specific.
lldb_private::Section now has:
bool
Section::IsThreadSpecific () const
{
return m_thread_specific;
}
void
Section::SetIsThreadSpecific (bool b)
{
m_thread_specific = b;
}
The ELF plug-in has been modified to set this for the ".tdata" and the ".tbss"
sections.
Eventually we need to have each lldb_private::Thread subclass be able to
resolve a thread specific section, but for now they will just not resolve. The
code for that should be trivual to add, but the address resolving functions
will need to be changed to take a "ExecutionContext" object instead of just
a target so that thread specific sections can be resolved.
llvm-svn: 153537
A new setting enable-synthetic-value is provided on the target to disable this behavior.
There also is a new GetNonSyntheticValue() API call on SBValue to go back from synthetic to non-synthetic. There is no call to go from non-synthetic to synthetic.
The test suite has been changed accordingly.
Fallout from changes to type searching: an hack has to be played to make it possible to use maps that contain std::string due to the special name replacement operated by clang
Fixing a test case that was using libstdcpp instead of libc++ - caught as a consequence of said changes to type searching
llvm-svn: 153495
Fixed type lookups to "do the right thing". Prior to this fix, looking up a type using "foo::bar" would result in a type list that contains all types that had "bar" as a basename unless the symbol file was able to match fully qualified names (which our DWARF parser does not).
This fix will allow type matches to be made based on the basename and then have the types that don't match filtered out. Types by name can be fully qualified, or partially qualified with the new "bool exact_match" parameter to the Module::FindTypes() method.
This fixes some issue that we discovered with dynamic type resolution as well as improves the overall type lookups in LLDB.
llvm-svn: 153482
Adding a test case that checks that we do not complete types before due time. This should help us track cases similar to the cascading data formatters.
llvm-svn: 153363
This is the feature that allowed the user to have things like:
class Base { ... };
class Derived : public Base { ... };
and have formatters defined for Base work automatically for Derived.
This feature turned out to be too expensive since it requires completing types.
This patch takes care of removing cascading (other than typedefs chain cascading), updating the test suite accordingly, and adding required Cocoa class names to keep the AppKit formatters working
llvm-svn: 153272
Each platform now knows if it can handle an architecture and a platform can be found using an architecture. Each platform can look at the arch, vendor and OS and know if it should be used or not.
llvm-svn: 153104
Changes to synthetic children:
- the update(self): function can now (optionally) return a value - if it returns boolean value True, ValueObjectSyntheticFilter will not clear its caches across stop-points
this should allow better performance for Python-based synthetic children when one can be sure that the child ValueObjects have not changed
- making a difference between a synthetic VO and a VO with a synthetic value: now a ValueObjectSyntheticFilter will not return itself as its own synthetic value, but will (correctly)
claim to itself be synthetic
- cleared up the internal synthetic children architecture to make a more consistent use of pointers and references instead of shared pointers when possible
- major cleanup of unnecessary #include, data and functions in ValueObjectSyntheticFilter itself
- removed the SyntheticValueType enum and replaced it with a plain boolean (to which it was equivalent in the first place)
Some clean ups to the summary generation code
Centralized the code that clears out user-visible strings and data in ValueObject
More efficient summaries for libc++ containers
llvm-svn: 153061
Fixed a case where the source path remappings on the module were too expensive to
use when we try to verify (stat the file system) that the remapped path points to
a valid file. Now we will use the lldb_private::Module path remappings (if any) when
parsing the debug info without verifying that the paths exist so we don't slow down
line table parsing speeds.
llvm-svn: 153059
GetSupportFileAtIndex(), GetNumSupportFiles(), FindSupportFileIndex():
Add API support for getting the list of files in a compilation unit.
GetNumCompileUnits(), GetCompileUnitAtIndex():
Add API support for retrieving the compilation units in a module.
llvm-svn: 152942
Simplify the locking strategy for Module and its owned objects to always use the Module's mutex to avoid A/B deadlocks. We had a case where a symbol vendor was locking itself and then calling a function that would try to get it's Module's mutex and at the same time another thread had the Module mutex that was trying to get the SymbolVendor mutex. Now any classes that inherit from ModuleChild should use the module lock using code like:
void
ModuleChildSubclass::Function
{
ModuleSP module_sp(GetModule());
if (module_sp)
{
lldb_private::Mutex::Locker locker(module_sp->GetMutex());
... do work here...
}
}
This will help avoid deadlocks by using as few locks as possible for a module and all its child objects and also enforce detecting if a module has gone away (the ModuleSP will be returned empty if the weak_ptr does refer to a valid object anymore).
llvm-svn: 152679
std::string has a summary provider
std::vector std::list and std::map have both a summary and a synthetic children provider
Given the usage of a custom namespace (std::__1::classname) for the implementation of libc++, we keep both libstdcpp and libc++ formatters enabled at the same time since that raises no conflicts and enabled for seamless transition between the two
The formatters for libc++ reside in a libcxx category, and are loaded from libcxx.py (to be found in examples/synthetic)
The formatters-stl test cases have been divided to be separate for libcxx and libstdcpp. This separation is necessary because
(a) we need different compiler flags for libc++ than for libstdcpp
(b) libc++ inlines a lot more than libstdcpp and some code changes were required to accommodate this difference
llvm-svn: 152570
load notification for the first load) then we will set it the runtime to NULL and won't re-search for it.
Added a way for the dynamic loader to force a re-search, since it knows the world has changed.
llvm-svn: 152453
Get function boundaries from the LC_FUNCTION_STARTS load command. This helps to determine symbol sizes and also allows us to be able to debug stripped binaries.
If you have a stack backtrace that goes through a function that has been stripped from the symbol table, the variables for any functions above that stack frame will most likely be incorrect. It can also affect our ability to step in/out/through of a function.
llvm-svn: 152381
This solves an issue where a ValueObject was getting a wrong children count (usually, a huge value) and trying to resize the vector of children to fit that many ValueObject*
Added a loop detection algorithm to the synthetic children provider for std::list
Added a few more checks to the synthetic children provider for std::vector
Both std::list and std::vector's synthetic children providers now cache the count of children instead of recomputing it every time
std::map has a field that stores the count, so there is little need to cache it on our side
llvm-svn: 152371
This takes two important changes:
- Calling blocks is now supported. You need to
cast their return values, but that works fine.
- We now can correctly run JIT-compiled
expressions that use floating-point numbers.
Also, we have taken a fix that allows us to
ignore access control in Objective-C as in C++.
llvm-svn: 152286
This fix really needed to happen as a previous fix I had submitted for
calculating symbol sizes made many symbols appear to have zero size since
the function that was calculating the symbol size was calling another function
that would cause the calculation to happen again. This resulted in some symbols
having zero size when they shouldn't. This could then cause infinite stack
traces and many other side affects.
llvm-svn: 152244
Several places in the ScriptInterpreter interface used StringList objects where an std::string would suffice - Fixed
Refactoring calls that generated special-purposes functions in the Python interpreter to use helper functions instead of duplicating blobs of code
llvm-svn: 152164
This was done in SBTarget:
lldb::SBInstructionList
lldb::SBTarget::ReadInstructions (lldb::SBAddress base_addr, uint32_t count);
Also cleaned up a few files in the LLDB.framework settings.
llvm-svn: 152152
Fixed STDERR to not be opened as readable. Also cleaned up some of the code that implemented the file actions as some of the code was using the wrong variables, they now use the right ones (in for stdin, out for stdout, err for stderr).
llvm-svn: 152102
Add SBFrame::IsEqual(const SBFrame &that) method and export it to the Python binding.
Alos add a test case test_frame_api_IsEqual() to TestFrames.py file.
llvm-svn: 152050
so that the expression parser can look up members
of anonymous structs correctly. This meant creating
all the proper IndirectFieldDecls in each Record
after it has been completely populated with members.
llvm-svn: 151868
2) providing an updated list of tagged pointers values for the objc_runtime module - hopefully this one is final
3) changing ValueObject::DumpValueObject to use an Options class instead of providing a bulky list of parameters to pass around
this change had been laid out previously, but some clients of DumpValueObject() were still using the old prototype and some arguments
were treated in a special way and passed in directly instead of through the Options class
4) providing new GetSummaryAsCString() and GetValueAsCString() calls in ValueObject that are passed a formatter object and a destination string
and fill the string by formatting themselves using the formatter argument instead of the default for the current ValueObject
5) removing the option to have formats and summaries stick to a variable for the current stoppoint
after some debate, we are going with non-sticky: if you say frame variable --format hex foo, the hex format will only be applied to the current command execution and not stick when redisplaying foo
the other option would be full stickiness, which means that foo would be formatted as hex for its whole lifetime
we are open to suggestions on what feels "natural" in this regard
llvm-svn: 151801
allocations by section. We install these sections
in the target process and inform the JIT of their
new locations.
Also removed some unused variable warnings.
llvm-svn: 151789