unittests/ADT/TwineTest.cpp:106:38: error: field 'Count' will be initialized after base 'llvm::FormatAdapter<int>' [-Werror,-Wreorder]
explicit formatter(int &Count) : Count(Count), FormatAdapter(0) {}
llvm-svn: 290029
Re-apply r288561: Liveness tracking should be correct now after r290014.
Previously this pass was using up to 5% compile time in some cases which
is a bit much for what it is doing. The pass featured a full blown
data-flow analysis which in the default configuration was restricted to a
single block.
This rewrites the pass under the assumption that we only ever work on a
single block. This is done in a single pass maintaining a state machine
per general purpose register to catch LOH patterns.
Differential Revision: https://reviews.llvm.org/D27329
llvm-svn: 290026
These are unnecessary, the declarations already carry the 'extern C' property, and if there is mismatch
between declaration and definition then we will get linker errors via libclang.exports.
llvm-svn: 290025
Update the UnixAPIChecker to not diagnose for calls to functions that
are declared in C++ namespaces. This avoids false positives when a
namespaced function has the same name as a Unix API.
This address PR28331.
llvm-svn: 290023
BPI may trigger signed overflow UB while computing branch probabilities for
cold calls or to unreachables. For example, with our current choice of weights,
we'll crash if there are >= 2^12 branches to an unreachable.
Use a safer BranchProbability constructor which is better at handling fractions
with large denominators.
Changes since the initial commit:
- Use explicit casts to ensure that multiplication operands are 64-bit
ints.
rdar://problem/29368161
Differential Revision: https://reviews.llvm.org/D27862
llvm-svn: 290022
This reverts commit r290016. It breaks this bot, even though the test
passes locally:
http://bb.pgr.jp/builders/ninja-x64-msvc-RA-centos6/builds/32956/
AnalysisTests: /home/bb/ninja-x64-msvc-RA-centos6/llvm-project/llvm/lib/Support/BranchProbability.cpp:52: static llvm::BranchProbability llvm::BranchProbability::getBranchProbability(uint64_t, uint64_t): Assertion `Numerator <= Denominator && "Probability cannot be bigger than 1!"' failed.
llvm-svn: 290019
BPI may trigger signed overflow UB while computing branch probabilities
for cold calls or to unreachables. For example, with our current choice
of weights, we'll crash if there are >= 2^12 branches to an unreachable.
Use a safer BranchProbability constructor which is better at handling
fractions with large denominators.
rdar://problem/29368161
Differential Revision: https://reviews.llvm.org/D27862
llvm-svn: 290016
Still prints the empty/tombstone keys (which some people would prefer,
but I find pretty noisy) because I haven't yet found a reliable way to
skip them (it requires calling into the running process to do so, which
isn't ideal for a pretty printer (doesn't work on a core file, for
example) - and gdb's ability to do so (or my ability to figure out how
to get gdb to do so) is limited) left some breadcrumbs for the next
person who might try to address that.
llvm-svn: 290011
LLVM's JIT is now the foundation of dynamic-compilation features for many languages. Clang also has low-level support for dynamic compilation (ASTImporter and ExternalASTSource, notably). How the compiler is set up for dynamic parsing is generally left up to individual clients, for example LLDB's C/C++/Objective-C expression parser and the ROOT project.
Although this arrangement offers external clients the flexibility to implement dynamic features as they see fit, the lack of an in-tree client means that subtle bugs can be introduced that cause regressions in the external clients but aren't caught by tests (or users) until much later. LLDB for example regularly encounters complicated ODR violation scenarios where it is not immediately clear who is at fault.
Other external clients (notably, Cling) rely on similar functionality, and another goal is to break this functionality up into composable parts so that any client can be built easily on top of Clang without requiring extensive additional code.
I propose that the parts required to build a simple expression parser be added to Clang. Initially, I aim to have the following features:
- A piece that looks up external declarations from a variety of sources (e.g., from previous dynamic compilations, from modules, or from DWARF) and uses clear conflict resolution rules to reconcile differences, with easily understood errors. This functionality will be supported by in-tree tests.
- A piece that works hand in hand with the LLVM JIT to resolve the locations of external declarations so that e.g. variables can be redeclared and (for high-performance applications like DTrace) external variables can be accessed directly from the registers where they reside.
This commit adds a tester that parses a sequence of source files and then uses them as source data for an expression. External references are resolved using an ExternalASTSource that responds to name queries using an ASTImporter. This is the setup that LLDB uses, and the motivating reason for MinimalImport in ASTImporter. When complete, this tester will implement the first of the above goals.
Differential Revision: https://reviews.llvm.org/D27180
llvm-svn: 290004
The Mach-O command line flag like "-arch armv7m" does not match the
arch name part of its llvm Triple which is "thumbv7m-apple-darwin”.
I think the best way to fix this is to have
llvm::object::MachOObjectFile::getArchTriple() optionally return the
name of the Mach-O arch flag that would be used with -arch that
matches the CPUType and CPUSubType. Then change
llvm::object::MachOUniversalBinary::ObjectForArch::getArchTypeName()
to use that and change it to getArchFlagName() as the type name is
really part of the Triple and the -arch flag name is a Mach-O thing
for a specific Triple with a specific Mcpu value.
rdar://29663637
llvm-svn: 290001
Summary:
When reading the metadata bitcode, create a type declaration when
possible for composite types when we are importing. Doing this in
the bitcode reader saves memory. Also it works naturally in the case
when the type ODR map contains a definition for the same composite type
because it was used in the importing module (buildODRType will
automatically use the existing definition and not create a type
declaration).
For Chromium built with -g2, this reduces the aggregate size of the
generated native object files by 66% (from 31G to 10G). It reduced
the time through the ThinLTO link and backend phases by about 20% on
my machine.
Reviewers: mehdi_amini, dblaikie, aprantl
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D27775
llvm-svn: 289993
lambda expression is instantiated.
Rather than waiting until Sema::CheckCXXDefaultArgExpr tries to
transform the default arguments (which fails because it can't get the
template arguments that are used), transform the default arguments
earlier when the lambda expression is transformed in
TransformLambdaExpr.
rdar://problem/27535319
Differential Revision: https://reviews.llvm.org/D23096
llvm-svn: 289990
This patch is to add support of the 'is_device_ptr' clause in the 'target parallel' pragma.
Differential Revision: https://reviews.llvm.org/D27821
llvm-svn: 289989
This is recommit of r287553 after fixing the invalid loop info after eliminating an empty block and unit test failures in AVR and WebAssembly :
Summary: Merging an empty case block into the header block of switch could cause ISel to add COPY instructions in the header of switch, instead of the case block, if the case block is used as an incoming block of a PHI. This could potentially increase dynamic instructions, especially when the switch is in a loop. I added a test case which was reduced from the benchmark I was targetting.
Reviewers: t.p.northover, mcrosier, manmanren, wmi, joerg, davidxl
Subscribers: joerg, qcolombet, danielcdh, hfinkel, mcrosier, llvm-commits
Differential Revision: https://reviews.llvm.org/D22696
llvm-svn: 289988
This reverts commit 289920 (again).
I forgot to implement a Bitcode upgrade for the case where a DIGlobalVariable
has not DIExpression. Unfortunately it is not possible to safely upgrade
these variables without adding a flag to the bitcode record indicating which
version they are.
My plan of record is to roll the planned follow-up patch that adds a
unit: field to DIGlobalVariable into this patch before recomitting.
This way we only need one Bitcode upgrade for both changes (with a
version flag in the bitcode record to safely distinguish the record
formats).
Sorry for the churn!
llvm-svn: 289982