Currently, stack protector loads and stores are resolved during
LocalStackSlotAllocation (if the pass needs to run). When this is the
case, the base register assigned to the frame access is going to be one
of the vregs created during LocalStackSlotAllocation. This means that we
are keeping a pointer to the stack protector slot, and we're using this
pointer to load and store to it.
In case register pressure goes up, we may end up spilling this pointer
to the stack, which can be a security concern.
Instead, leave it to PEI to resolve the frame accesses. In order to do
that, we make all stack protector accesses go through frame index
operands, then PEI will resolve this using an offset from sp/fp/bp.
Differential Revision: https://reviews.llvm.org/D64759
llvm-svn: 367068
Summary:
This was originally reported in D62818.
https://rise4fun.com/Alive/oPH
InstCombine does the opposite fold, in hope that `C l>>/<< Y` expression
will be hoisted out of a loop if `Y` is invariant and `X` is not.
But as it is seen from the diffs here, if it didn't get hoisted,
the produced assembly is almost universally worse.
Much like with my recent "hoist add/sub by/from const" patches,
we should get almost universal win if we hoist constant,
there is almost always an "and/test by imm" instruction,
but "shift of imm" not so much, so we may avoid having to
materialize the immediate, and thus need one less register.
And since we now shift not by constant, but by something else,
the live-range of that something else may reduce.
Special care needs to be applied not to disturb x86 `BT` / hexagon `tstbit`
instruction pattern. And to not get into endless combine loop.
Reviewers: RKSimon, efriedma, t.p.northover, craig.topper, spatel, arsenm
Reviewed By: spatel
Subscribers: hiraditya, MaskRay, wuzish, xbolva00, nikic, nemanjai, jvesely, wdng, nhaehnle, javed.absar, tpr, kristof.beyls, jsji, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D62871
llvm-svn: 366955
This change make sure that llvm does not emit an invalid IT block
by putting the constant pool in the middle of an IT block.
We have code to try to avoid putting a constant island in the middle of an
IT block, but it only works if we see an IT between the one currently
referencing CPE and possible insertion point. If the first instruction
we look at is the VLDRD after the IT , we never see the IT and does not
realize that the instruction doing the load could be in an IT block itself.
Differential Revision: https://reviews.llvm.org/D64621
Change-Id: I24cecb37cded75e8992870bd997f6226853bd920
llvm-svn: 366905
While combining two loads into a single load, we often need to
reorder the pointer operands for the new load. This reordering was
broken in the cases where there was a chain of values that built up
the pointer.
Differential Revision: https://reviews.llvm.org/D65193
llvm-svn: 366881
ARM has code to recognise uses of the "returned" function parameter
attribute which guarantee that the value passed to the function in r0
will be returned in r0 unmodified. IPRA replaces the regmask on call
instructions, so needs to be told about this to avoid reverting the
optimisation.
Differential revision: https://reviews.llvm.org/D64986
llvm-svn: 366669
Summary:
Current PRE hoists common computations into
CMBB = DT->findNearestCommonDominator(MBB, MBB1).
However, if CMBB is in a hot loop body, we might get performance
degradation.
Differential Revision: https://reviews.llvm.org/D64394
llvm-svn: 366570
We'd like to remove this whole function, because these are properties of
functions, not the target as a whole. These two are easy to remove
because they are only used for emitting ARM build attributes, which
expects them to represent the defaults for the whole module, not just
the last function generated.
This is needed to get correct build attributes when using IPRA on ARM,
because IPRA causes resetTargetOptions to get called before
ARMAsmPrinter::emitAttributes.
Differential revision: https://reviews.llvm.org/D64929
llvm-svn: 366562
If a function definition is not exact, then the linker could select a
differently-compiled version of it, which could use different registers.
https://reviews.llvm.org/D64909
llvm-svn: 366557
Summary:
PerformVMOVRRDCombine ommits adding a offset
of 4 to the PointerInfo, when converting a
f64 = load[M]
to
{i32, i32} = {load[M], load[M + 4]}
Which would allow the machine scheduller
to break dependencies with the second load.
- pr42638
Reviewers: eli.friedman, dmgreen, ostannard
Reviewed By: ostannard
Subscribers: ostannard, javed.absar, kristof.beyls, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D64870
llvm-svn: 366423
The LocalStackSlotPass pre-allocates a stack protector and makes sure
that it comes before the local variables on the stack.
We need to make sure that later during PEI we don't re-allocate a new
stack protector slot. If that happens, the new stack protector slot will
end up being **after** the local variables that it should be protecting.
Therefore, we would have two slots assigned for two different stack
protectors, one at the top of the stack, and one at the bottom. Since
PEI will overwrite the assigned slot for the stack protector, the load
that is used to compare the value of the stack protector will use the
slot assigned by PEI, which is wrong.
For this, we need to check if the object is pre-allocated, and re-use
that pre-allocated slot.
Differential Revision: https://reviews.llvm.org/D64757
llvm-svn: 366371
This adjusts the way that we lower NEON shifts to use a DAG target node, not
via a neon intrinsic. This is useful for handling MVE shifts operations in the
same the way. It also renames some of the immediate shift nodes for
consistency, and moves some of the processing of immediate shifts into
LowerShift allowing it to capture more cases.
Differential Revision: https://reviews.llvm.org/D64426
llvm-svn: 366051
Two functional changes have been made here:
- Now search up from any add instruction to find the chains of
operations that we may turn into a smlad. This allows the
generation of a smlad which doesn't accumulate into a phi.
- The search function has been corrected to stop it falsely searching
up through an invalid path.
The bulk of the changes have been making the Reduction struct a class
and making it more C++y with getters and setters.
Differential Revision: https://reviews.llvm.org/D61780
llvm-svn: 365740
Summary: Unsafe does not map well alone for each of these three cases as it is missing NoNan context when accessed directly with clang. I have migrated the fold guards to reflect the expectations of handing nan and zero contexts directly (NoNan, NSZ) and some tests with it. Unsafe does include NSZ, however there is already precedent for using the target option directly to reflect that context.
Reviewers: spatel, wristow, hfinkel, craig.topper, arsenm
Reviewed By: arsenm
Subscribers: michele.scandale, wdng, javed.absar
Differential Revision: https://reviews.llvm.org/D64450
llvm-svn: 365679
I'm not sure if it's worth it or not to add a hook to disable the pass
for an arbitrary function.
This pass is taking up to 5% of compile time in tiny programs by
iterating through all of the physical registers in every register
class. This pass should be rewritten in terms of regunits. For now,
skip doing anything for entry point functions. The vast majority of
functions in the real world aren't callable, so just not running this
will give the majority of the benefit.
llvm-svn: 365255
The arm condition codes for GE is N==V (and for LT is N!=V). If the source of
flags cannot set V (overflow), such as a cmp against #0, then we can use the
simpler PL and MI conditions that only check N. As these PL/MI conditions are
simpler than GE/LT, other passes like the peephole optimiser can have a better
time optimising away the redundant CMPs.
The exception is the VSEL instruction, which cannot take the PL code, so there
the transform favours GE.
Differential Revision: https://reviews.llvm.org/D64160
llvm-svn: 365117
For Thumb2, we prefer low regs (costPerUse = 0) to allow narrow
encoding. However, current allocation order is like:
R0-R3, R12, LR, R4-R11
As a result, a lot of instructs that use R12/LR will be wide instrs.
This patch changes the allocation order to:
R0-R7, R12, LR, R8-R11
for thumb2 and -Osize.
In most cases, there is no extra push/pop instrs as they will be folded
into existing ones. There might be slight performance impact due to more
stack usage, so we only enable it when opt for min size.
https://reviews.llvm.org/D30324
llvm-svn: 365014
Summary:
This is the backend part of [[ https://bugs.llvm.org/show_bug.cgi?id=42457 | PR42457 ]].
In middle-end, we'd want to prefer the form with two adds - D63992,
but as this diff shows, not every target will prefer that pattern.
Out of 4 targets for which i added tests all seem to be ok with inc-of-add for scalars,
but only X86 prefer that same pattern for vectors.
Here i'm adding a new TLI hook, always defaulting to the inc-of-add,
but adding AArch64,ARM,PowerPC overrides to prefer inc-of-add only for scalars.
Reviewers: spatel, RKSimon, efriedma, t.p.northover, hfinkel
Reviewed By: efriedma
Subscribers: nemanjai, javed.absar, kristof.beyls, kbarton, jsji, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D64090
llvm-svn: 365010
On some occasions ReuseOrCreateCast may convert previously
expanded value to undefined. That value may be passed by
SCEVExpander as an argument to InsertBinop making IV chain
undefined.
Differential revision: https://reviews.llvm.org/D63928
llvm-svn: 365009
The BUNDLE itself should not have side effects, and this is a property
of instructions inside the bundle. The hasProperty check already
searches for any member instructions, which was pointless since it was
overridden by this bit.
Allows me to distinguish bundles that have side effects vs. do not in
a future patch. Also fixes an unnecessary scheduling barrier in the
bundle AMDGPU uses to get PC relative addresses.
llvm-svn: 364984
I initially committed it with --check-prefix instead of --check-prefixes
(again, shame on me, and utils/update_*.py not complaining!)
and did not have a moment to understand the failure,
so i reverted it initially in rL64939.
llvm-svn: 364945
As it is pointed out in https://reviews.llvm.org/D63992,
before we get to pick canonical variant in middle-end
we should ensure best codegen in backend.
llvm-svn: 364930
If you compile with `-mattr=+mve` (enabling integer MVE instructions
but not floating-point ones), then the scalar FP //registers// exist
and it's legal to move things in and out of them, load and store them,
but it's not legal to do arithmetic on them.
In D60708, the calls to `addRegisterClass` in ARMISelLowering that
enable use of the scalar FP registers became conditionalised on
`Subtarget->hasFPRegs()` instead of `Subtarget->hasVFP2Base()`, so
that loads, stores and moves of those registers would work. But I
didn't realise that that would also enable all the operations on those
types by default.
Now, if the target doesn't have basic VFP, we follow up those
`addRegisterClass` calls by turning back off all the nontrivial
operations you can perform on f32 and f64. That causes several
knock-on failures, which are fixed by allowing the `VMOVDcc` and
`VMOVScc` instructions to be selected even if all you have is
`HasFPRegs`, and adjusting several checks for 'is this a double in a
single-precision-only world?' to the more general 'is this any FP type
we can't do arithmetic on?'. Between those, the whole of the
`float-ops.ll` and `fp16-instructions.ll` tests can now run in
MVE-without-FP mode and generate correct-looking code.
One odd side effect is that I had to relax the check lines in that
test so that they permit test functions like `add_f` to be generated
as tailcalls to software FP library functions, instead of ordinary
calls. Doing that is entirely legal, but the mystery is why this is
the first RUN line that's needed the relaxation: on the usual kind of
non-FP target, no tailcalls ever seem to be generated. Going by the
llc messages, I think `SoftenFloatResult` must be perturbing the code
generation in some way, but that's as much as I can guess.
Reviewers: dmgreen, ostannard
Subscribers: javed.absar, kristof.beyls, hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D63938
llvm-svn: 364909
For a given floating point load / store pair, if the load value isn't used by any other operations,
then consider transforming the pair to integer load / store operations if the target deems the transformation profitable.
And we can exploiting much more when there are other operation nodes with chain operand between the load/store pair
so long as we keep the chain ordering original. We only replace the register used to load/store from float to integer.
I only add testcase in ARM because the TLI.isDesirableToTransformToIntegerOp hook is only enabled in ARM target.
Differential Revision: https://reviews.llvm.org/D60601
llvm-svn: 364883
MVE adds the lsll, lsrl and asrl instructions, which perform a shift on a 64 bit value separated into two 32 bit registers.
The Expand64BitShift function is modified to accept ISD::SHL, ISD::SRL and ISD::SRA and convert it into the appropriate opcode in ARMISD. An SHL is converted into an lsll, an SRL is converted into an lsrl for the immediate form and a negation and lsll for the register form, and SRA is converted into an asrl.
test/CodeGen/ARM/shift_parts.ll is added to test the logic of emitting these instructions.
Differential Revision: https://reviews.llvm.org/D63430
llvm-svn: 364654
Change the interface of CallLowering::lowerCall to accept several
virtual registers for each argument, instead of just one. This is a
follow-up to D46018.
CallLowering::lowerReturn was similarly refactored in D49660 and
lowerFormalArguments in D63549.
With this change, we no longer pack the virtual registers generated for
aggregates into one big lump before delegating to the target. Therefore,
the target can decide itself whether it wants to handle them as separate
pieces or use one big register.
ARM and AArch64 have been updated to use the passed in virtual registers
directly, which means we no longer need to generate so many
merge/extract instructions.
NFCI for AMDGPU, Mips and X86.
Differential Revision: https://reviews.llvm.org/D63551
llvm-svn: 364512
Change the interface of CallLowering::lowerCall to accept several
virtual registers for the call result, instead of just one. This is a
follow-up to D46018.
CallLowering::lowerReturn was similarly refactored in D49660 and
lowerFormalArguments in D63549.
With this change, we no longer pack the virtual registers generated for
aggregates into one big lump before delegating to the target. Therefore,
the target can decide itself whether it wants to handle them as separate
pieces or use one big register.
ARM and AArch64 have been updated to use the passed in virtual registers
directly, which means we no longer need to generate so many
merge/extract instructions.
NFCI for AMDGPU, Mips and X86.
Differential Revision: https://reviews.llvm.org/D63550
llvm-svn: 364511
Change the interface of CallLowering::lowerFormalArguments to accept
several virtual registers for each formal argument, instead of just one.
This is a follow-up to D46018.
CallLowering::lowerReturn was similarly refactored in D49660. lowerCall
will be refactored in the same way in follow-up patches.
With this change, we forward the virtual registers generated for
aggregates to CallLowering. Therefore, the target can decide itself
whether it wants to handle them as separate pieces or use one big
register. We also copy the pack/unpackRegs helpers to CallLowering to
facilitate this.
ARM and AArch64 have been updated to use the passed in virtual registers
directly, which means we no longer need to generate so many
merge/extract instructions.
AArch64 seems to have had a bug when lowering e.g. [1 x i8*], which was
put into a s64 instead of a p0. Added a test-case which illustrates the
problem more clearly (it crashes without this patch) and fixed the
existing test-case to expect p0.
AMDGPU has been updated to unpack into the virtual registers for
kernels. I think the other code paths fall back for aggregates, so this
should be NFC.
Mips doesn't support aggregates yet, so it's also NFC.
x86 seems to have code for dealing with aggregates, but I couldn't find
the tests for it, so I just added a fallback to DAGISel if we get more
than one virtual register for an argument.
Differential Revision: https://reviews.llvm.org/D63549
llvm-svn: 364510
The current implementation of ThumbRegisterInfo::saveScavengerRegister
is bad for two reasons: one, it's buggy, and two, it blocks using R12
for other optimizations. So this patch gets rid of it, and adds the
necessary support for using an ordinary emergency spill slot on Thumb1.
(Specifically, I think saveScavengerRegister was broken by r305625, and
nobody noticed for two years because the codepath is almost never used.
The new code will also probably not be used much, but it now has better
tests, and if we fail to emit a necessary emergency spill slot we get a
reasonable error message instead of a miscompile.)
A rough outline of the changes in the patch:
1. Gets rid of ThumbRegisterInfo::saveScavengerRegister.
2. Modifies ARMFrameLowering::determineCalleeSaves to allocate an
emergency spill slot for Thumb1.
3. Implements useFPForScavengingIndex, so the emergency spill slot isn't
placed at a negative offset from FP on Thumb1.
4. Modifies the heuristics for allocating an emergency spill slot to
support Thumb1. This includes fixing ExtraCSSpill so we don't try to
use "lr" as a substitute for allocating an emergency spill slot.
5. Allocates a base pointer in more cases, so the emergency spill slot
is always accessible.
6. Modifies ARMFrameLowering::ResolveFrameIndexReference to compute the
right offset in the new cases where we're forcing a base pointer.
7. Ensures we never generate a load or store with an offset outside of
its frame object. This makes the heuristics more straightforward.
8. Changes Thumb1 prologue and epilogue emission so it never uses
register scavenging.
Some of the changes to the emergency spill slot heuristics in
determineCalleeSaves affect ARM/Thumb2; hopefully, they should allow
the compiler to avoid allocating an emergency spill slot in cases
where it isn't necessary. The rest of the changes should only affect
Thumb1.
Differential Revision: https://reviews.llvm.org/D63677
llvm-svn: 364490
This allows later passes (in particular InstCombine) to optimize more
cases.
One that's important to us is `memcmp(p, q, constant) < 0` and memcmp(p, q, constant) > 0.
llvm-svn: 364412
"To" selects an odd-numbered GPR, and "Te" an even one. There are some
8.1-M instructions that have one too few bits in their register fields
and require registers of particular parity, without necessarily using
a consecutive even/odd pair.
Also, the constraint letter "t" should select an MVE q-register, when
MVE is present. This didn't need any source changes, but some extra
tests have been added.
Reviewers: dmgreen, samparker, SjoerdMeijer
Subscribers: javed.absar, eraman, kristof.beyls, hiraditya, cfe-commits, llvm-commits
Tags: #clang, #llvm
Differential Revision: https://reviews.llvm.org/D60709
llvm-svn: 364331
This provides the low-level support to start using MVE vector types in
LLVM IR, loading and storing them, passing them to __asm__ statements
containing hand-written MVE vector instructions, and *if* you have the
hard-float ABI turned on, using them as function parameters.
(In the soft-float ABI, vector types are passed in integer registers,
and combining all those 32-bit integers into a q-reg requires support
for selection DAG nodes like insert_vector_elt and build_vector which
aren't implemented yet for MVE. In fact I've also had to add
`arm_aapcs_vfpcc` to a couple of existing tests to avoid that
problem.)
Specifically, this commit adds support for:
* spills, reloads and register moves for MVE vector registers
* ditto for the VPT predication mask that lives in VPR.P0
* make all the MVE vector types legal in ISel, and provide selection
DAG patterns for BITCAST, LOAD and STORE
* make loads and stores of scalar FP types conditional on
`hasFPRegs()` rather than `hasVFP2Base()`. As a result a few
existing tests needed their llc command lines updating to use
`-mattr=-fpregs` as their method of turning off all hardware FP
support.
Reviewers: dmgreen, samparker, SjoerdMeijer
Subscribers: javed.absar, kristof.beyls, hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D60708
llvm-svn: 364329
A minor iteration on the MVE VPT Block pass to enable more efficient VPT Block
code generation: consecutive VPT predicated statements, predicated on the same
condition, will be placed within the same VPT Block. This essentially is also
an exercise to write some more tests for the next step, which should be more
generic also merging instructions when they are not consecutive.
Differential Revision: https://reviews.llvm.org/D63711
llvm-svn: 364298
If an FP_EXTEND or FP_ROUND isel dag node converts directly between
f16 and f32 when the target CPU has no instruction to do it in one go,
it has to be done in two steps instead, going via f32.
Previously, this was done implicitly, because all such CPUs had the
storage-only implementation of f16 (i.e. the only thing you can do
with one at all is to convert it to/from f32). So isel would legalize
the f16 into an f32 as soon as it saw it, by inserting an fp16_to_fp
node (or vice versa), and then the fp_extend would already be f32->f64
rather than f16->f64.
But that technique can't support a target CPU which has full f16
support but _not_ f64, such as some variants of Arm v8.1-M. So now we
provide custom lowering for FP_EXTEND and FP_ROUND, which checks
support for f16 and f64 and decides on the best thing to do given the
combination of flags it gets back.
Reviewers: dmgreen, samparker, SjoerdMeijer
Subscribers: javed.absar, kristof.beyls, hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D60692
llvm-svn: 364294
Introduce three pseudo instructions to be used during DAG ISel to
represent v8.1-m low-overhead loops. One maps to set_loop_iterations
while loop_decrement_reg is lowered to two, so that we can separate
the decrement and branching operations. The pseudo instructions are
expanded pre-emission, where we can still decide whether we actually
want to generate a low-overhead loop, in a new pass:
ARMLowOverheadLoops. The pass currently bails, reverting to an sub,
icmp and br, in the cases where a call or stack spill/restore happens
between the decrement and branching instructions, or if the loop is
too large.
Differential Revision: https://reviews.llvm.org/D63476
llvm-svn: 364288
The ARMDisassembler changes allow changing between ARM and Thumb mode
based on the MCSubtargetInfo, rather than the Target, which simplifies
the other changes a bit.
I'm not really happy with adding more target-specific logic to
tools/llvm-objdump/, but there isn't any easy way around it: the logic
in question specifically applies to disassembling an object file, and
that code simply isn't located in lib/Target, at least at the moment.
Differential Revision: https://reviews.llvm.org/D60927
llvm-svn: 363903
This allows targets to make more decisions about reserved registers
after isel. For example, now it should be certain there are calls or
stack objects in the frame or not, which could have been introduced by
legalization.
Patch by Matthias Braun
llvm-svn: 363757
Summary:
When identifing instructions that can be folded into a MOVCC instruction,
checking for a predicate operand is not enough, also need to check for
thumb2 function, with restrict-IT, is the machine instruction eligible for
ARMv8 IT or not.
Notes in ARMv8-A Architecture Reference Manual, section "Partial deprecation of IT"
https://usermanual.wiki/Pdf/ARM20Architecture20Reference20ManualARMv8.1667877052.pdf
"ARMv8-A deprecates some uses of the T32 IT instruction. All uses of IT that apply to
instructions other than a single subsequent 16-bit instruction from a restricted set
are deprecated, as are explicit references to the PC within that single 16-bit
instruction. This permits the non-deprecated forms of IT and subsequent instructions
to be treated as a single 32-bit conditional instruction."
Reviewers: efriedma, lebedev.ri, t.p.northover, jmolloy, aemerson, compnerd, stoklund, ostannard
Reviewed By: ostannard
Subscribers: ostannard, javed.absar, kristof.beyls, hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D63474
llvm-svn: 363739
Summary:
Their names began with a mishmash of `MVE_`, `t2` and no prefix at
all. Now they all start with `MVE_`, which seems like a reasonable
choice on the grounds that (a) NEON is the thing they're most at risk
of being confused with, and (b) MVE implies Thumb-2, so a prefix
indicating MVE is strictly more specific than one indicating Thumb-2.
Reviewers: ostannard, SjoerdMeijer, dmgreen
Subscribers: javed.absar, kristof.beyls, hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D63492
llvm-svn: 363690
Some GEPs were not being split, presumably because that split would just be
undone by the DAGCombiner. Not performing those splits can prevent important
optimizations, such as preventing the element indices / member offsets from
being (partially) folded into load/store instruction immediates. This patch:
- Makes the splits also occur in the cases where the base address and the GEP
are in the same BB.
- Ensures that the DAGCombiner doesn't reassociate them back again.
Differential Revision: https://reviews.llvm.org/D60294
llvm-svn: 363544
This patch changes MIR stack-id from an integer to an enum,
and adds printing/parsing support for this in MIR files. The default
stack-id '0' is now renamed to 'default'.
This should make MIR tests that have stack objects with different stack-ids
more descriptive. It also clarifies code operating on StackID.
Reviewers: arsenm, thegameg, qcolombet
Reviewed By: arsenm
Differential Revision: https://reviews.llvm.org/D60137
llvm-svn: 363533
Third time's the charm.
This was reverted in r363220 due to being suspected of an internal benchmark
regression and a test failure, none of which turned out to be caused by this.
llvm-svn: 363529
Current findBestLoopTop can find and move one kind of block to top, a latch block has one successor. Another common case is:
* a latch block
* it has two successors, one is loop header, another is exit
* it has more than one predecessors
If it is below one of its predecessors P, only P can fall through to it, all other predecessors need a jump to it, and another conditional jump to loop header. If it is moved before loop header, all its predecessors jump to it, then fall through to loop header. So all its predecessors except P can reduce one taken branch.
Differential Revision: https://reviews.llvm.org/D43256
llvm-svn: 363471
Initial commit of a new pass to create vector predication blocks, called VPT
blocks, that are supported by the Armv8.1-M MVE architecture.
This is a first naive implementation. I.e., for 2 consecutive predicated
instructions I1 and I2, for example, it will generate 2 VPT blocks:
VPST
I1
VPST
I2
A more optimal implementation would obviously put instructions in the same VPT
block when they are predicated on the same condition and when it is allowed to
do this:
VPTT
I1
I2
We will address this optimisation with follow up patches when the groundwork is
in. Creating VPT Blocks is very similar to IT Blocks, which is the reason I
added this to Thumb2ITBlocks.cpp. This allows reuse of the def use analysis
that we need for the more optimal implementation.
VPT blocks cannot be nested in IT blocks, and vice versa, and so these 2 passes
cannot interact with each other. Instructions allowed in VPT blocks must
be MVE instructions that are marked as VPT compatible.
Differential Revision: https://reviews.llvm.org/D63247
llvm-svn: 363370
Summary:
Relate bug: https://bugs.llvm.org/show_bug.cgi?id=37472
The shrink wrapping pass prematurally restores the stack, at a point where the stack might still be accessed.
Taking an exception can cause the stack to be corrupted.
As a first approach, this patch is overly conservative, assuming that any instruction that may load or store could access
the stack.
Reviewers: dmgreen, qcolombet
Reviewed By: qcolombet
Subscribers: simpal01, efriedma, eli.friedman, javed.absar, llvm-commits, eugenis, chill, carwil, thegameg
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D63152
llvm-svn: 363265
We have observed some failures with internal builds with this revision.
- Performance regressions:
- llvm's SingleSource/Misc evalloop shows performance regressions (although these may be red herrings).
- Benchmarks for Abseil's SwissTable.
- Correctness:
- Failures for particular libicu tests when building the Google AppEngine SDK (for PHP).
hwennborg has already been notified, and is aware of reproducer failures.
llvm-svn: 363220
This adds support for the new family of conditional selection /
increment / negation instructions; the low-overhead branch
instructions (e.g. BF, WLS, DLS); the CLRM instruction to zero a whole
list of registers at once; the new VMRS/VMSR and VLDR/VSTR
instructions to get data in and out of 8.1-M system registers,
particularly including the new VPR register used by MVE vector
predication.
To support this, we also add a register name 'zr' (used by the CSEL
family to force one of the inputs to the constant 0), and operand
types for lists of registers that are also allowed to include APSR or
VPR (used by CLRM). The VLDR/VSTR instructions also need a new
addressing mode.
The low-overhead branch instructions exist in their own separate
architecture extension, which we treat as enabled by default, but you
can say -mattr=-lob or equivalent to turn it off.
Reviewers: dmgreen, samparker, SjoerdMeijer, t.p.northover
Reviewed By: samparker
Subscribers: miyuki, javed.absar, kristof.beyls, hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D62667
llvm-svn: 363039
This behavior was added in r130928 for both FastISel and SD, and then
disabled in r131156 for FastISel.
This re-enables it for FastISel with the corresponding fix.
This is triggered only when FastISel can't lower the arguments and falls
back to SelectionDAG for it.
FastISel contains a map of "register fixups" where at the end of the
selection phase it replaces all uses of a register with another
register that FastISel sometimes pre-assigned. Code at the end of
SelectionDAGISel::runOnMachineFunction is doing the replacement at the
very end of the function, while other pieces that come in before that
look through the MachineFunction and assume everything is done. In this
case, the real issue is that the code emitting COPY instructions for the
liveins (physreg to vreg) (EmitLiveInCopies) is checking if the vreg
assigned to the physreg is used, and if it's not, it will skip the COPY.
If a register wasn't replaced with its assigned fixup yet, the copy will
be skipped and we'll end up with uses of undefined registers.
This fix moves the replacement of registers before the emission of
copies for the live-ins.
The initial motivation for this fix is to enable tail calls for
swiftself functions, which were blocked because we couldn't prove that
the swiftself argument (which is callee-save) comes from a function
argument (live-in), because there was an extra copy (vreg to vreg).
A few tests are affected by this:
* llvm/test/CodeGen/AArch64/swifterror.ll: we used to spill x21
(callee-save) but never reload it because it's attached to the return.
We now don't even spill it anymore.
* llvm/test/CodeGen/*/swiftself.ll: we tail-call now.
* llvm/test/CodeGen/AMDGPU/mubuf-legalize-operands.ll: I believe this
test was not really testing the right thing, but it worked because the
same registers were re-used.
* llvm/test/CodeGen/ARM/cmpxchg-O0.ll: regalloc changes
* llvm/test/CodeGen/ARM/swifterror.ll: get rid of a copy
* llvm/test/CodeGen/Mips/*: get rid of spills and copies
* llvm/test/CodeGen/SystemZ/swift-return.ll: smaller stack
* llvm/test/CodeGen/X86/atomic-unordered.ll: smaller stack
* llvm/test/CodeGen/X86/swifterror.ll: same as AArch64
* llvm/test/DebugInfo/X86/dbg-declare-arg.ll: stack size changed
Differential Revision: https://reviews.llvm.org/D62361
llvm-svn: 362963
These caused a build failure because I managed not to notice they
depended on a later unpushed commit in my current stack. Sorry about
that.
llvm-svn: 362956
This adds support for the new family of conditional selection /
increment / negation instructions; the low-overhead branch
instructions (e.g. BF, WLS, DLS); the CLRM instruction to zero a whole
list of registers at once; the new VMRS/VMSR and VLDR/VSTR
instructions to get data in and out of 8.1-M system registers,
particularly including the new VPR register used by MVE vector
predication.
To support this, we also add a register name 'zr' (used by the CSEL
family to force one of the inputs to the constant 0), and operand
types for lists of registers that are also allowed to include APSR or
VPR (used by CLRM). The VLDR/VSTR instructions also need some new
addressing modes.
The low-overhead branch instructions exist in their own separate
architecture extension, which we treat as enabled by default, but you
can say -mattr=-lob or equivalent to turn it off.
Reviewers: dmgreen, samparker, SjoerdMeijer, t.p.northover
Reviewed By: samparker
Subscribers: miyuki, javed.absar, kristof.beyls, hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D62667
llvm-svn: 362953
This change adds two FP16 extraction and two insertion patterns
(one per possible vector length).
Extractions are handled by copying a Q/D register into one of VFP2
class registers, where single FP32 sub-registers can be accessed. Then
the extraction of even lanes are simple sub-register extractions
(because we don't care about the top parts of registers for FP16
operations). Odd lanes need an additional VMOVX instruction.
Unfortunately, insertions cannot be handled in the same way, because:
* There is no instruction to insert FP16 into an even lane (VINS only
works with odd lanes)
* The patterns for odd lanes will have a form of a DAG (not a tree),
and will not be implementable in pure tablegen
Because of this insertions are handled in the same way as 16-bit
integer insertions (with conversions between FP registers and GPRs
using VMOVHR instructions).
Without these patterns the ARM backend would sometimes fail during
instruction selection.
This patch also adds patterns which combine:
* an FP16 element extraction and a store into a single VST1
instruction
* an FP16 load and insertion into a single VLD1 instruction
Differential Revision: https://reviews.llvm.org/D62651
llvm-svn: 362482
Summary:
- pr42062
When compiling for MinSize,
ARMTargetLowering::LowerCall decides to indirect
multiple calls to a same function. However,
it disconsiders the limitation that thumb1
indirect calls require the callee to be in a
register from r0 to r3 (llvm limiation).
If all those registers are used by arguments, the
compiler dies with "error: run out of registers
during register allocation".
This patch tells the function
IsEligibleForTailCallOptimization if we intend to
perform indirect calls, as to avoid tail call
optimization.
Reviewers: dmgreen, efriedma
Reviewed By: efriedma
Subscribers: javed.absar, kristof.beyls, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D62683
llvm-svn: 362366
This adds:
- LLVM subtarget features to make all the new instructions conditional on,
- CPU and FPU names for use on clang's command line, with default FPUs set
so that "armv8.1-m.main+fp" and "armv8.1-m.main+fp.dp" will select the right
FPU features,
- architecture extension names "mve" and "mve.fp",
- ABI build attribute support for v8.1-M (a new value for Tag_CPU_arch) and MVE
(a new actual tag).
Patch mostly by Simon Tatham.
Differential Revision: https://reviews.llvm.org/D60698
llvm-svn: 362090
To determine the list of clobbered registers, the RegUsageInfoCollector pass
uses the list of callee saved registers provided by the target and then augments
it with the list of registers which have all their subregisters saved. It then
basically does the difference between all the registers and the saved registers
to come up with what is clobbered (plus it checks that the register is defined
within that functions).
The patch fixes a bug where when register does not have any subregister lane,
hence when checking if any of its subregister are not saved, we would find none
and think the register is saved as well.
That's obviously wrong.
The code was actually kind of checking for something like that with the
CoveredBySubRegs bit. What this bit says is that a register is completely
covered by its subregisters.
We required that this bit was set, to check that a register was saved by its
subregister lanes, since without this bit, we potentially would miss to check
some part of the register.
However, this bit is used de facto on registers that don't have any
subregisters (e.g., on ARM) and the code was not prepared for that.
This patch fixes this by checking that a register has subregisters before
declaring it saved when none of its lanes are modified.
llvm-svn: 361901
This patch add the ISD::LRINT and ISD::LLRINT along with new
intrinsics. The changes are straightforward as for other
floating-point rounding functions, with just some adjustments
required to handle the return value being an interger.
The idea is to optimize lrint/llrint generation for AArch64
in a subsequent patch. Current semantic is just route it to libm
symbol.
Reviewed By: craig.topper
Differential Revision: https://reviews.llvm.org/D62017
llvm-svn: 361875
Those two subtarget features were awkward because their semantics are
reversed: each one indicates the _lack_ of support for something in
the architecture, rather than the presence. As a consequence, you
don't get the behavior you want if you combine two sets of feature
bits.
Each SubtargetFeature for an FP architecture version now comes in four
versions, one for each combination of those options. So you can still
say (for example) '+vfp2' in a feature string and it will mean what
it's always meant, but there's a new string '+vfp2d16sp' meaning the
version without those extra options.
A lot of this change is just mechanically replacing positive checks
for the old features with negative checks for the new ones. But one
more interesting change is that I've rearranged getFPUFeatures() so
that the main FPU feature is appended to the output list *before*
rather than after the features derived from the Restriction field, so
that -fp64 and -d32 can override defaults added by the main feature.
Reviewers: dmgreen, samparker, SjoerdMeijer
Subscribers: srhines, javed.absar, eraman, kristof.beyls, hiraditya, zzheng, Petar.Avramovic, cfe-commits, llvm-commits
Tags: #clang, #llvm
Differential Revision: https://reviews.llvm.org/D60691
llvm-svn: 361845
This was reverted in r360086 as it was supected of causing mysterious test
failures internally. However, it was never concluded that this patch was the
root cause.
> The code was previously checking that candidates for sinking had exactly
> one use or were a store instruction (which can't have uses). This meant
> we could sink call instructions only if they had a use.
>
> That limitation seemed a bit arbitrary, so this patch changes it to
> "instruction has zero or one use" which seems more natural and removes
> the need to special-case stores.
>
> Differential revision: https://reviews.llvm.org/D59936
llvm-svn: 361811
This add patterns for fp16 round and ceil etc. Same as the float and double
patterns.
Differential Revision: https://reviews.llvm.org/D62326
llvm-svn: 361718
Promote a number of fp16 math intrinsics to float, so that the relevant float
math routines can be used. Copysign is expanded so as to be handled in-place.
Differential Revision: https://reviews.llvm.org/D62325
llvm-svn: 361717
The previous patch added a member set to store instructions that we
could allow to wrap. But this wasn't cleared between searches meaning
that they could get promoted, incorrectly, during the promotion of a
separate valid chain.
Differential Revision: https://reviews.llvm.org/D62254
llvm-svn: 361462
Does not affect update_llc_test_checks, or the actual output,
but is not accepted by the actual FileCheck.
Sorry, i should have noticed this before committing,
not the very next second after..
llvm-svn: 361398
PrepareConstants step converts add/sub with 'negative' immediates to
sub/add with a 'positive' imm to make promotion more simple. nuw
already states that the add shouldn't cause an unsigned wrap, so
it shouldn't need any tweaking. Plus, we also don't allow a sub with
a 'negative' immediate to be safe wrap, so this functionality has
been removed. The PrepareConstants step now just handles the add
instructions that we've determined would be safe if they wrap around
zero.
Differential Revision: https://reviews.llvm.org/D62057
llvm-svn: 361227
This patch add the ISD::LROUND and ISD::LLROUND along with new
intrinsics. The changes are straightforward as for other
floating-point rounding functions, with just some adjustments
required to handle the return value being an interger.
The idea is to optimize lround/llround generation for AArch64
in a subsequent patch. Current semantic is just route it to libm
symbol.
llvm-svn: 360889
This patch adds a simple Cortex-M4 schedule, renaming the existing M3
schedule to M4 and filling in the latencies as-per the Cortex-M4 TRM:
https://developer.arm.com/docs/ddi0439/latest
Most of these are 1, with the important exception being loads taking 2
cycles. A few others are also higher, but I don't believe they make a
large difference. I've repurposed the M3 schedule as the latencies are
mostly the same between the two cores, with the M4 having more FP and
DSP instructions. We also turn on MISched and UseAA for the cores that
now use this.
It also adds some schedule Write's to various instruction to make things
simpler.
Differential Revision: https://reviews.llvm.org/D54142
llvm-svn: 360768
The 3-field form was introduced by D3499 in 2014 and the legacy 2-field
form was planned to be removed in LLVM 4.0
For the textual format, this patch migrates the existing 2-field form to
use the 3-field form and deletes the compatibility code.
test/Verifier/global-ctors-2.ll checks we have a friendly error message.
For bitcode, lib/IR/AutoUpgrade UpgradeGlobalVariables will upgrade the
2-field form (add i8* null as the third field).
Reviewed By: rnk, dexonsmith
Differential Revision: https://reviews.llvm.org/D61547
llvm-svn: 360742
When breaking up loads and stores of aggregates, the IRTranslator uses
LLT::scalar(64) for the index type of the G_GEP instructions that
compute the addresses. This is unnecessarily large for 32-bit targets.
Use the int ptr type provided by the DataLayout instead.
Note that we're already doing the right thing when translating
getelementptr instructions from the IR. This is just an oversight when
generating new ones while translating loads/stores.
Both x86 and AArch64 already have tests confirming that the old
behaviour is preserved for 64-bit targets.
Differential Revision: https://reviews.llvm.org/D61852
llvm-svn: 360656
Summary:
X86TargetLowering::LowerAsmOperandForConstraint had better support than
TargetLowering::LowerAsmOperandForConstraint for arbitrary depth
getelementpointers for "i", "n", and "s" extended inline assembly
constraints. Hoist its support from the derived class into the base
class.
Link: https://github.com/ClangBuiltLinux/linux/issues/469
Reviewers: echristo, t.p.northover
Reviewed By: t.p.northover
Subscribers: t.p.northover, E5ten, kees, jyknight, nemanjai, javed.absar, eraman, hiraditya, jsji, llvm-commits, void, craig.topper, nathanchance, srhines
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D61560
llvm-svn: 360604
When deciding the safety of generating smlad, we checked for any
writes within the block that may alias with any of the loads that
need to be widened. This is overly conservative because it only
matters when there's a potential aliasing write to a location
accessed by a pair of loads.
Now we check for aliasing writes only once, during setup. If two
loads are found to have an aliasing write between them, we don't add
these loads to LoadPairs. This means that later during the transform,
we can safely widened a pair without worrying about aliasing.
However, to maintain correctness, we also need to change the way that
wide loads are inserted because the order is now important.
The MatchSMLAD method has also been changed, absorbing
MatchReductions and AddMACCandidate to hopefully improve readability.
Differential Revision: https://reviews.llvm.org/D6102
llvm-svn: 360567
This fix allows the scheduler to take into account the number of instances of
each ProcResource specified. Previously a declaration in a scheduler of
ProcResource<1> would be treated identically to a declaration of
ProcResource<2>. Now the hazard recognizer would report a hazard only after all
of the resource instances are busy.
Patch by Jackson Woodruff and Momchil Velikov.
Differential Revision: https://reviews.llvm.org/D51160
llvm-svn: 360441
Add an Argument that has the SExtAttr attached, as well as SIToFP
instructions, as values that generate sign bits. SIToFP doesn't
strictly do this and could be treated as a sink to be sign-extended.
Differential Revision: https://reviews.llvm.org/D61381
llvm-svn: 360331
Using SP in this position is unpredictable in ARMv7. CMP and CMN are not
affected, and of course v8 relaxes this requirement, but that's handled
elsewhere.
llvm-svn: 360242