This is mostly useful if alloca element type is not integer
and then casted to an integer for load or store. We now can
vectorize an [i32] alloca but cannot do so for [float].
There also a separate patch needed to properly lower 64 bit
types after they vectorized. At the moment these are lowered
via scratch anyway.
Differential Revision: https://reviews.llvm.org/D79641
Separate functions that require shared state into a class to avoid
needing to pass them though multiple functions just to be available
where needed.
The main motivation for this is that we would like to remove the
limitation that accumulator values be dynamic constant, which would
require additional shared state between call eliminations in the same
function, compounding this issue.
Differential Revision: https://reviews.llvm.org/D79299
I noticed that std::error_code() does one-time initialization. Avoid
that overhead with Expected<T> and llvm::Error. Also, it is consistent
with the virtual interface and ELF, and generally cleaner.
Reviewed By: MaskRay
Differential Revision: https://reviews.llvm.org/D79643
Summary:
The WebAssembly backend automatically lowers atomic operations and TLS
to nonatomic operations and non-TLS data when either are present and
the atomics or bulk-memory features are not present, respectively. The
resulting object is no longer thread-safe, so the linker has to be
told not to allow it to be linked into a module with shared
memory. This was previously done by disallowing the 'atomics' feature,
which prevented any objct with its atomic operations or TLS removed
from being linked with any object containing atomics or TLS, and
therefore preventing it from being linked into a module with shared
memory since shared memory requires atomics.
However, as of https://github.com/WebAssembly/threads/issues/144, the
validation rules are relaxed to allow atomic operations to validate
with unshared memories, which makes it perfectly safe to link an
object with stripped atomics and TLS with another object that still
contains TLS and atomics as long as the resulting module has an
unshared memory. To allow this kind of link, this patch disallows a
pseudo-feature 'shared-mem' rather than 'atomics' to communicate to
the linker that the object is not thread-safe. This means that the
'atomics' feature is available to accurately reflect whether or not an
object has atomics enabled.
As a drive-by tweak, this change also requires that bulk-memory be
enabled in addition to atomics in order to use shared memory. This is
because initializing shared memories requires bulk-memory operations.
Reviewers: aheejin, sbc100
Subscribers: dschuff, jgravelle-google, hiraditya, sunfish, jfb, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D79542
The code to prevent using `PPCXCOFFMCAsmInfo` with little-endian targets
used an incorrect check. Also, there does not appear to be sufficient
earlier checking to prevent failing this check, so the check here is
upgraded to be a `report_fatal_error`.
`PPCAIXAsmPrinter` was also missing a check against use with
little-endian targets. This patch adds such a check in.
Summary:
This patch introduces the constants defined to identify DWARF sections
in XCOFF into `llvm/BinaryFormat/XCOFF.h` and adds (NFC) placeholder
code to `llvm/lib/MC/MCObjectFileInfo.cpp` where the DWARF sections for
XCOFF are to be set up.
Reviewers: jasonliu, sfertile, daltenty, DiggerLin, Xiangling_L
Reviewed By: jasonliu, sfertile, DiggerLin
Differential Revision: https://reviews.llvm.org/D79220
Summary:
`AsmPrinter::emitGlobalIndirectSymbol` is dependent on
`MCStreamer::emitAssignment` to produce `.set` directives for alias
symbols; however, the `.set` pseudo-op on AIX is documented as not
usable with external relocatable terms or expressions, which limits its
applicability in generating alias symbols.
Disable generating aliases on AIX until a different implementation
strategy is available.
Reviewers: cebowleratibm, jasonliu, sfertile, daltenty, DiggerLin
Reviewed By: jasonliu
Differential Revision: https://reviews.llvm.org/D79044
This fixes a verifier failure on a bot:
http://green.lab.llvm.org/green/job/test-suite-verify-machineinstrs-aarch64-O0-g/
```
*** Bad machine code: MBB has duplicate entries in its successor list. ***
- function: foo
- basic block: %bb.5 indirectgoto (0x7fe3d687ca08)
```
One of the GCC torture suite tests (pr70460.c) has an indirectbr instruction
which has duplicate blocks in its destination list.
According to the langref this is allowed:
> Blocks are allowed to occur multiple times in the destination list, though
> this isn’t particularly useful.
(https://www.llvm.org/docs/LangRef.html#indirectbr-instruction)
We don't allow this in MIR. So, when we translate such an instruction, the
verifier screams.
This patch makes `translateIndirectBr` check if a successor has already been
added to a block. If the successor is present, it is skipped rather than added
twice.
Differential Revision: https://reviews.llvm.org/D79609
As with the extractelement patterns that are currently in vector-combine,
there are going to be several possible variations on this theme. This
should be the clearest, simplest example.
Scalarization is the right direction for target-independent canonicalization,
and InstCombine has some of those folds already, but it doesn't do this.
I proposed a similar transform in D50992. Here in vector-combine, we can
check the cost model to be sure it's profitable, so there should be less risk.
Differential Revision: https://reviews.llvm.org/D79452
Summary:
If the only use of a value is a start or end lifetime intrinsic then mark the intrinsic as trivially dead. This should allow for that value to then be removed as well.
Currently, this only works for allocas, globals, and arguments.
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D79355
As suggested in D79116 - there's shared logic between the
existing code and potential new folds. This could go in
ValueTracking if it seems generally useful.
This does the same thing as {vex2}. Which is give an error
if the instruction can't be done with VEX. It doesn't force
the instruction to use 2 byte VEX. That's already the preference
if its possible. Therefore {vex} is a clearer name.
them in a special text section.
For sampleFDO, because the optimized build uses profile generated from
previous release, previously we couldn't tell a function without profile
was truely cold or just newly created so we had to treat them conservatively
and put them in .text section instead of .text.unlikely. The result was when
we persuing the best performance by locking .text.hot and .text in memory,
we wasted a lot of memory to keep cold functions inside.
In https://reviews.llvm.org/D66374, we introduced profile symbol list to
discriminate functions being cold versus functions being newly added.
This mechanism works quite well for regular use cases in AutoFDO. However,
in some case, we can only have a partial profile when optimizing a target.
The partial profile may be an aggregated profile collected from many targets.
The profile symbol list method used for regular sampleFDO profile is not
applicable to partial profile use case because it may be too large and
introduce many false positives.
To solve the problem for partial profile use case, we provide an option called
--profile-unknown-in-special-section. For functions without profile, we will
still treat them conservatively in compiler optimizations -- for example,
treat them as warm instead of cold in inliner. When we use profile info to
add section prefix for functions, we will discriminate functions known to be
not cold versus functions without profile (being unknown), and we will put
functions being unknown in a special text section called .text.unknown.
Runtime system will have the flexibility to decide where to put the special
section in order to achieve a balance between performance and memory saving.
Differential Revision: https://reviews.llvm.org/D62540
FoldBranchToCommonDest clones instructions to a different basic block,
but handles debug intrinsics in a separate path. Previously, when
cloning debug intrinsics, their operands were not updated to reference
the correct cloned values. As a result, we would emit debug.value
intrinsics with broken operand references which are discarded in later
passes. This leads to incorrect debuginfo that reports incorrect values
for variables.
Fix this by remapping debug intrinsic operands when cloning them.
Fixes https://bugs.llvm.org/show_bug.cgi?id=45667.
Differential Revision: https://reviews.llvm.org/D79602
If the SimplifyMultipleUseDemandedBits calls BITCASTs that peek through back to the original type then we can remove the BITCASTs entirely.
Differential Revision: https://reviews.llvm.org/D79572
Reduces time to link PGO instrumented net_unittets.exe by 11% (9.766s ->
8.672s, best of three). Reduces peak memory by 65.7MB (2142.71MB ->
2076.95MB).
Use a more compact struct, BulkPublic, for faster sorting. Sort in
parallel. Construct the hash buckets in parallel. Try to use one vector
to hold all the publics instead of copying them from one to another.
Allocate all the memory needed to serialize publics up front, and then
serialize them in place in parallel.
Reviewed By: aganea, hans
Differential Revision: https://reviews.llvm.org/D79467
With a fix to uninitialized EndOffset.
DW_OP_call_ref is the only operation that has an operand which depends
on the DWARF format. The patch fixes handling that operation in DWARF64
units.
Differential Revision: https://reviews.llvm.org/D79501
No changes relative to last time, but after a mitigation for
an AMDGPU regression landed.
---
If SimplifyInstruction() does not succeed in simplifying the
instruction, it will compute the known bits of the instruction
in the hope that all bits are known and the instruction can be
folded to a constant. I have removed a similar optimization
from InstCombine in D75801, and would like to drop this one as well.
On average, we spend ~1% of total compile-time performing this
known bits calculation. However, if we introduce some additional
statistics for known bits computations and how many of them succeed
in simplifying the instruction we get (on test-suite):
instsimplify.NumKnownBits: 216
instsimplify.NumKnownBitsComputed: 13828375
valuetracking.NumKnownBitsComputed: 45860806
Out of ~14M known bits calculations (accounting for approximately
one third of all known bits calculations), only 0.0015% succeed in
producing a constant. Those cases where we do succeed to compute
all known bits will get folded by other passes like InstCombine
later. On test-suite, only lencod.test and GCC-C-execute-pr44858.test
show a hash difference after this change. On lencod we see an
improvement (a loop phi is optimized away), on the GCC torture
test a regression (a function return value is determined only
after IPSCCP, preventing propagation from a noinline function.)
There are various regressions in InstSimplify tests. However, all
of these cases are already handled by InstCombine, and corresponding
tests have already been added there.
Differential Revision: https://reviews.llvm.org/D79294
DW_OP_call_ref is the only operation that has an operand which depends
on the DWARF format. The patch fixes handling that operation in DWARF64
units.
Differential Revision: https://reviews.llvm.org/D79501
This is preparation for D79294, which removes an expensive
InstSimplify optimization, on the assumption that it will be
picked up by InstCombine instead. Of course, this does not hold
up if a backend performs non-trivial IR expansions without running
a canonicalization pipeline afterwards, which turned up as an
issue in the context of AMDGPU div/rem expansion.
This patch mitigates the issue by explicitly performing a known
bits calculation where it matters. No test changes, as those would
only be visible after the other patch lands.
Differential Revision: https://reviews.llvm.org/D79596
Check for `DynSecSize % sizeof(Elf_Dyn) != 0` is unneeded in this context.
1. If the .dynamic section is acquired from program headers, the .dynamic
section is "cut off" by
```
makeArrayRef(..., Phdr.p_filesz / sizeof(Elf_Dyn));
DynSeSize = Phdr.p_filesz;
```
2. If the .dynamic section is acquired from section headers, the .dynamic
section is checked in `getSectionContentsAsArray<Elf_Dyn>(&Sec)`.
Reviewed By: MaskRay
Differential Revision: https://reviews.llvm.org/D79560
This patch removes FC0.ExitBlock and FC1GuardBlock from DT and LI
after fusion of guarded loops. They become unreachable and LI
verification failed when they happened to be inside another loop.
Reviewed By: kbarton
Differential Revision: https://reviews.llvm.org/D78679
CorrectExtraCFGEdges function.
The latter was a workaround for "Various pieces of code" leaving bogus
extra CFG edges in place. Where by "various" it meant only
IfConverter::MergeBlocks, which failed to clear all of the successors
of dead blocks it emptied out. This wouldn't matter a whole lot,
except that the dead blocks remained listed as predecessors of
still-useful blocks, inhibiting optimizations.
This fix slightly changed two thumb tests, because the correct CFG
successors allowed for the "diamond" if-conversion pattern to be
detected, when it could only use "simple" before.
Additionally, the removal of a now-redundant call to analyzeBranch
(with AllowModify=true) in BranchFolder::OptimizeFunction caused a
later check for an empty block in BranchFolder::OptimizeBlock to
fail. Correct this by moving the call to analyzeBranch in
OptimizeBlock higher.
Differential Revision: https://reviews.llvm.org/D79527
In a recent patch we introduced a problem with abstract attributes that
were assumed dead at some point. Since `Attributor::updateAA` was
introduced in 95e0d28b71, we did not
remember the dependence on the liveness AA when an abstract attribute
was assumed dead and therefore not updated.
Explicit reproducer added in liveness.ll.
---
Single run of the Attributor module and then CGSCC pass (oldPM)
for SPASS/clause.c (~10k LLVM-IR loc):
Before:
```
calls to allocation functions: 509242 (345483/s)
temporary memory allocations: 98666 (66937/s)
peak heap memory consumption: 18.60MB
peak RSS (including heaptrack overhead): 103.29MB
total memory leaked: 269.10KB
```
After:
```
calls to allocation functions: 529332 (355494/s)
temporary memory allocations: 102107 (68574/s)
peak heap memory consumption: 19.40MB
peak RSS (including heaptrack overhead): 102.79MB
total memory leaked: 269.10KB
```
Difference:
```
calls to allocation functions: 20090 (1339333/s)
temporary memory allocations: 3441 (229400/s)
peak heap memory consumption: 801.45KB
peak RSS (including heaptrack overhead): 0B
total memory leaked: 0B
```
Once we hit AT_NULL, we need to bail out of the loop; not just the
enclosing switch. This fixes basic usage (e.g. `cc --version`) when
AT_EXECPATH isn't present on older branches (e.g. under
emu-user-static, at the moment), where we would previously run off
the end of ::environ.
Patch By: kevans
Reviewed By: arichardson
Differential Revision: https://reviews.llvm.org/D79239
Summary:
Update the check for the default exit block to not only check that the
terminator is not unreachable, but also check that unreachable block has
*only* the unreachable instruction.
Reviewers: chandlerc
Subscribers: hiraditya, uabelho, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D78277
Summary:
This patch fix the following issues with visitExtractElementInst:
1. Restrict VectorUtils::findScalarElement to fixed-length vector.
For scalable type, the number of elements in shuffle mask is
unknown at compile-time.
2. Fix out-of-range calculation for fixed-length vector.
3. Skip scalable type when analysis rely on fixed number of elements.
4. Add unit tests to check functionality of extractelement for scalable type.
Reviewers: sdesmalen, efriedma, spatel, nikic
Reviewed By: efriedma
Subscribers: tschuett, hiraditya, rkruppe, psnobl, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D78267
Summary:
This patch fixes the following issues in visitInsertElementInst:
1. Bail out for scalable type when analysis requires fixed size number of vector elements.
2. Use cast<FixedVectorType> to get vector number of elements. This ensure assertion
on scalable vector type.
3. For scalable type, avoid folding a chain of insertelement into splat:
insertelt(insertelt(insertelt(insertelt X, %k, 0), %k, 1), %k, 2) ...
->
shufflevector(insertelt(X, %k, 0), undef, zero)
The length of scalable vector is unknown at compile-time, therefore we don't know if
given insertelement sequence is valid for splat.
Reviewers: sdesmalen, efriedma, spatel, nikic
Reviewed By: sdesmalen, efriedma
Subscribers: tschuett, hiraditya, rkruppe, psnobl, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D78895
The original patch (rG86dfbc676ebe) exposed an existing bug:
we could wrongly cast a constant expression to BinaryOperator
because the pattern matching allows that. This adds a check
for that case, and there's a reduced test case to verify no
crashing.
Original commit message:
This builds on the or-reduction bailout that was added with D67841.
We still do not have IR-level load combining, although that could
be a target-specific enhancement for -vector-combiner.
The heuristic is narrowly defined to catch the motivating case from
PR39538:
https://bugs.llvm.org/show_bug.cgi?id=39538
...while preserving existing functionality.
That is, there's an unmodified test of pure load/zext/store that is
not seen in this patch at llvm/test/Transforms/SLPVectorizer/X86/cast.ll.
That's the reason for the logic difference to require the 'or'
instructions. The chances that vectorization would actually help a
memory-bound sequence like that seem small, but it looks nicer with:
vpmovzxwd (%rsi), %xmm0
vmovdqu %xmm0, (%rdi)
rather than:
movzwl (%rsi), %eax
movl %eax, (%rdi)
...
In the motivating test, we avoid creating a vector mess that is
unrecoverable in the backend, and SDAG forms the expected bswap
instructions after load combining:
movzbl (%rdi), %eax
vmovd %eax, %xmm0
movzbl 1(%rdi), %eax
vmovd %eax, %xmm1
movzbl 2(%rdi), %eax
vpinsrb $4, 4(%rdi), %xmm0, %xmm0
vpinsrb $8, 8(%rdi), %xmm0, %xmm0
vpinsrb $12, 12(%rdi), %xmm0, %xmm0
vmovd %eax, %xmm2
movzbl 3(%rdi), %eax
vpinsrb $1, 5(%rdi), %xmm1, %xmm1
vpinsrb $2, 9(%rdi), %xmm1, %xmm1
vpinsrb $3, 13(%rdi), %xmm1, %xmm1
vpslld $24, %xmm0, %xmm0
vpmovzxbd %xmm1, %xmm1 # xmm1 = xmm1[0],zero,zero,zero,xmm1[1],zero,zero,zero,xmm1[2],zero,zero,zero,xmm1[3],zero,zero,zero
vpslld $16, %xmm1, %xmm1
vpor %xmm0, %xmm1, %xmm0
vpinsrb $1, 6(%rdi), %xmm2, %xmm1
vmovd %eax, %xmm2
vpinsrb $2, 10(%rdi), %xmm1, %xmm1
vpinsrb $3, 14(%rdi), %xmm1, %xmm1
vpinsrb $1, 7(%rdi), %xmm2, %xmm2
vpinsrb $2, 11(%rdi), %xmm2, %xmm2
vpmovzxbd %xmm1, %xmm1 # xmm1 = xmm1[0],zero,zero,zero,xmm1[1],zero,zero,zero,xmm1[2],zero,zero,zero,xmm1[3],zero,zero,zero
vpinsrb $3, 15(%rdi), %xmm2, %xmm2
vpslld $8, %xmm1, %xmm1
vpmovzxbd %xmm2, %xmm2 # xmm2 = xmm2[0],zero,zero,zero,xmm2[1],zero,zero,zero,xmm2[2],zero,zero,zero,xmm2[3],zero,zero,zero
vpor %xmm2, %xmm1, %xmm1
vpor %xmm1, %xmm0, %xmm0
vmovdqu %xmm0, (%rsi)
movl (%rdi), %eax
movl 4(%rdi), %ecx
movl 8(%rdi), %edx
movbel %eax, (%rsi)
movbel %ecx, 4(%rsi)
movl 12(%rdi), %ecx
movbel %edx, 8(%rsi)
movbel %ecx, 12(%rsi)
Differential Revision: https://reviews.llvm.org/D78997
Summary:
This helps detect some missed BFI updates during CodeGenPrepare.
This is debug build only and disabled behind a flag.
Fix a missed update in CodeGenPrepare::dupRetToEnableTailCallOpts().
Reviewers: davidxl
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D77417
For empty directories (except the first one) we've been adding a file
with the same name as the directory to the result VFS mapping.
Differential Revision: https://reviews.llvm.org/D79551
Summary:
Avoid relocating DW_AT_call_pc, e.g. when a call PC is equal to the
function's low_pc as is the case in the test:
```
__Z5func1v:
0000000100007f94 b __Z5func2v
```
rdar://62952440
Reviewers: friss, JDevlieghere
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D79536