Rework the TTI cache and software prefetching APIs to prepare for the
introduction of a general system model. Changes include:
- Marking existing interfaces const and/or override as appropriate
- Adding comments
- Adding BasicTTIImpl interfaces that delegate to a subtarget
implementation
- Adding a default "no information" subtarget implementation
Only a handful of targets use these interfaces currently: AArch64,
Hexagon, PPC and SystemZ. AArch64 already has a custom subtarget
implementation, so its custom TTI implementation is migrated to use
the new facilities in BasicTTIImpl to invoke its custom subtarget
implementation. The custom TTI implementations continue to exist for
the other targets with this change. They are not moved over to
subtarget-based implementations.
The end goal is to have the default subtarget implementation defer to
the system model defined by the target. With this change, the default
subtarget implementation essentially returns "no information" for
these interfaces. None of the existing users of TTI will hit that
implementation because they define their own custom TTI
implementations and won't use the BasicTTIImpl implementations.
Once system models are in place for the targets that use these
interfaces, their custom TTI implementations can be removed.
Differential Revision: https://reviews.llvm.org/D63614
llvm-svn: 365676
Deleted code was introduced as a work around for a bug in the gold linker
(http://sourceware.org/PR16794). Test case that was given as a reason for
this part of code, the one on previous link, now works for the gold.
This condition is too strict and when a code is compiled with debug info
it forces generation of numerous relocations with symbol for architectures
that do not have relocation addend.
Reviewers: arsenm, espindola
Reviewed By: MaskRay
Differential Revision: https://reviews.llvm.org/D64327
llvm-svn: 365618
Stubs out a number of the classes needed to produce a new object file format
(XCOFF) for the powerpc-aix target. For testing input is an empty module which
produces an object file with just a file header.
Differential Revision: https://reviews.llvm.org/D61694
llvm-svn: 365541
Summary:
This makes it so that IR files using triples without an environment work
out of the box, without normalizing them.
Typically, the MSVC behavior is more desirable. For example, it tends to
enable things like constant merging, use of associative comdats, etc.
Addresses PR42491
Reviewers: compnerd
Subscribers: hiraditya, dexonsmith, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D64109
llvm-svn: 365387
Mac Catalyst is a new MachO platform in macOS Catalina.
It always uses the build_version MachO load command.
Differential Revision: https://reviews.llvm.org/D64107
llvm-svn: 364981
Summary:
These are output by clang -S, so can now be roundtripped thru clang.
(partially) fixes: https://bugs.llvm.org/show_bug.cgi?id=34544
Reviewers: dschuff
Subscribers: sbc100, jgravelle-google, aheejin, sunfish, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D63901
llvm-svn: 364658
The weak alias should have the characteristics set to
`IMAGE_EXTERN_WEAK_SEARCH_ALIAS` to indicate that the weak external here
is a symbol alias and that the symbol is aliased to a locally defined
symbol. We were previously setting the characteristics to
`IMAGE_EXTERN_WEAK_SEARCH_LIBRARY` which indicates that the symbol
should be looked for in the libraries.
llvm-svn: 364370
Summary:
The list of relocations with addend in lld was missing `R_WASM_MEMORY_ADDR_REL_SLEB`,
causing `wasm-ld` to generate corrupted output. This fixes that problem and while
we're at it pulls the list of such relocations into the Wasm.h header, to avoid
duplicating it in multiple places.
Reviewers: sbc100
Differential Revision: https://reviews.llvm.org/D63696
llvm-svn: 364367
Summary:
The directive defines a symbol as an group/local memory (LDS) symbol.
LDS symbols behave similar to common symbols for the purposes of ELF,
using the processor-specific SHN_AMDGPU_LDS as section index.
It is the linker and/or runtime loader's job to "instantiate" LDS symbols
and resolve relocations that reference them.
It is not possible to initialize LDS memory (not even zero-initialize
as for .bss).
We want to be able to link together objects -- starting with relocatable
objects, but possible expanding to shared objects in the future -- that
access LDS memory in a flexible way.
LDS memory is in an address space that is entirely separate from the
address space that contains the program image (code and normal data),
so having program segments for it doesn't really make sense.
Furthermore, we want to be able to compile multiple kernels in a
compilation unit which have disjoint use of LDS memory. In that case,
we may want to place LDS symbols differently for different kernels
to save memory (LDS memory is very limited and physically private to
each kernel invocation), so we can't simply place LDS symbols in a
.lds section.
Hence this solution where LDS symbols always stay undefined.
Change-Id: I08cbc37a7c0c32f53f7b6123aa0afc91dbc1748f
Reviewers: arsenm, rampitec, t-tye, b-sumner, jsjodin
Subscribers: kzhuravl, jvesely, wdng, yaxunl, dstuttard, tpr, rupprecht, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D61493
llvm-svn: 364296
llvm-mc or clang with -g normally produces debug info describing the
assembler source itself; however, if that source already contains some
.file/.loc directives, we should instead emit the debug info described
by those directives. For certain assembler sources seen in the wild
(particularly in the Chrome build) this was causing a crash due to
incorrect assumptions about legal sequences of assembler source text.
Fixes PR38994.
Differential Revision: https://reviews.llvm.org/D63573
llvm-svn: 364039
This patch allows clang users to print out a list of supported CPU models using
clang [--target=<target triple>] --print-supported-cpus
Then, users can select the CPU model to compile to using
clang --target=<triple> -mcpu=<model> a.c
It is a handy feature to help cross compilation.
llvm-svn: 363464
We should keep the symbol type (STT_GNU_IFUNC) for a local ifunc because
it may result in an IRELATIVE reloc that the dynamic loader will use to
resolve the address at startup time.
There is another problem that is not fixed by this patch: a PC relative
relocation should also create a relocation with the ifunc symbol.
llvm-svn: 362767
Summary:
(1) Function descriptor on AIX
On AIX, a called routine may have 2 distinct symbols associated with it:
* A function descriptor (Name)
* A function entry point (.Name)
The descriptor structure on AIX is the same as those in the ELF V1 ABI:
* The address of the entry point of the function.
* The TOC base address for the function.
* The environment pointer.
The descriptor symbol uses the same name as the source level function in C.
The function entry point is analogous to the symbol we would generate for a
function in a non-descriptor-based ABI, except that it is renamed by
prepending a ".".
Which symbol gets referenced depends on the context:
* Taking the address of the function references the descriptor symbol.
* Calling the function references the entry point symbol.
(2) Speaking of implementation on AIX, for direct function call target, we
create proper MCSymbol SDNode(e.g . ".foo") while constructing SDAG to
replace original TargetGlobalAddress SDNode. Then down the path, we can
take advantage of this MCSymbol.
Patch by: Xiangling_L
Reviewed by: sfertile, hubert.reinterpretcast, jasonliu, syzaara
Differential Revision: https://reviews.llvm.org/D62532
llvm-svn: 362735
Testing with debuggers shows that our previous behavior was correct.
The reason I thought MSVC did things differently is that MSVC prefers to
use the 0xB combined code offset and code length update opcode when
inline sites are discontiguous.
Keep the test changes, and update the llvm-pdbutil inline line table
dumper to account for this new interpretation of the opcodes.
llvm-svn: 362277
After improving the inline line table dumper in llvm-pdbutil and looking
at MSVC's inline line tables, it is clear that setting the length of the
inlined code region does not update the code offset. This means that the
delta to the beginning of a new discontiguous inlined code region should
be calculated relative to the last code offset, excluding the length.
Implementing this is a one line fix for MC: simply don't update
LastLabel.
While I'm updating these test cases, switch them to use llvm-objdump -d
and llvm-pdbutil. This allows us to show offsets of each instruction and
correlate the line table offsets to the actual code.
llvm-svn: 362264
D18885 emitted 5 bytes for call *foo@tlsdesc(%rax). It should use the
2-byte form instead and let R_X86_64_TLSDESC_CALL apply to the beginning
of the call instruction.
The 2-byte form was deliberately chosen to make ->LE and ->IE relaxation work:
0: 48 8d 05 00 00 00 00 lea 0x0(%rip),%rax # 7 <.text+0x7>
3: R_X86_64_GOTPC32_TLSDESC a-0x4
7: ff 10 callq *(%rax)
7: R_X86_64_TLSDESC_CALL a
=>
0: 48 c7 c0 fc ff ff ff mov $0xfffffffffffffffc,%rax
7: 66 90 xchg %ax,%ax
Also change the symbol type to STT_TLS when VK_TLSCALL or VK_TLSDESC is
seen.
Reviewed By: compnerd
Differential Revision: https://reviews.llvm.org/D62512
llvm-svn: 361910
Those two subtarget features were awkward because their semantics are
reversed: each one indicates the _lack_ of support for something in
the architecture, rather than the presence. As a consequence, you
don't get the behavior you want if you combine two sets of feature
bits.
Each SubtargetFeature for an FP architecture version now comes in four
versions, one for each combination of those options. So you can still
say (for example) '+vfp2' in a feature string and it will mean what
it's always meant, but there's a new string '+vfp2d16sp' meaning the
version without those extra options.
A lot of this change is just mechanically replacing positive checks
for the old features with negative checks for the new ones. But one
more interesting change is that I've rearranged getFPUFeatures() so
that the main FPU feature is appended to the output list *before*
rather than after the features derived from the Restriction field, so
that -fp64 and -d32 can override defaults added by the main feature.
Reviewers: dmgreen, samparker, SjoerdMeijer
Subscribers: srhines, javed.absar, eraman, kristof.beyls, hiraditya, zzheng, Petar.Avramovic, cfe-commits, llvm-commits
Tags: #clang, #llvm
Differential Revision: https://reviews.llvm.org/D60691
llvm-svn: 361845
This provides the correct file path for the original source, rather
than the preprocessed source.
Part of the fix for PR41839.
Differential Revision: https://reviews.llvm.org/D62074
llvm-svn: 361248
This option provides only the base filename, not a full relative path.
Part of the fix for PR41839.
Differential Revision: https://reviews.llvm.org/D62071
llvm-svn: 361245
This patch implements a limited form of autolinking primarily designed to allow
either the --dependent-library compiler option, or "comment lib" pragmas (
https://docs.microsoft.com/en-us/cpp/preprocessor/comment-c-cpp?view=vs-2017) in
C/C++ e.g. #pragma comment(lib, "foo"), to cause an ELF linker to automatically
add the specified library to the link when processing the input file generated
by the compiler.
Currently this extension is unique to LLVM and LLD. However, care has been taken
to design this feature so that it could be supported by other ELF linkers.
The design goals were to provide:
- A simple linking model for developers to reason about.
- The ability to to override autolinking from the linker command line.
- Source code compatibility, where possible, with "comment lib" pragmas in other
environments (MSVC in particular).
Dependent library support is implemented differently for ELF platforms than on
the other platforms. Primarily this difference is that on ELF we pass the
dependent library specifiers directly to the linker without manipulating them.
This is in contrast to other platforms where they are mapped to a specific
linker option by the compiler. This difference is a result of the greater
variety of ELF linkers and the fact that ELF linkers tend to handle libraries in
a more complicated fashion than on other platforms. This forces us to defer
handling the specifiers to the linker.
In order to achieve a level of source code compatibility with other platforms
we have restricted this feature to work with libraries that meet the following
"reasonable" requirements:
1. There are no competing defined symbols in a given set of libraries, or
if they exist, the program owner doesn't care which is linked to their
program.
2. There may be circular dependencies between libraries.
The binary representation is a mergeable string section (SHF_MERGE,
SHF_STRINGS), called .deplibs, with custom type SHT_LLVM_DEPENDENT_LIBRARIES
(0x6fff4c04). The compiler forms this section by concatenating the arguments of
the "comment lib" pragmas and --dependent-library options in the order they are
encountered. Partial (-r, -Ur) links are handled by concatenating .deplibs
sections with the normal mergeable string section rules. As an example, #pragma
comment(lib, "foo") would result in:
.section ".deplibs","MS",@llvm_dependent_libraries,1
.asciz "foo"
For LTO, equivalent information to the contents of a the .deplibs section can be
retrieved by the LLD for bitcode input files.
LLD processes the dependent library specifiers in the following way:
1. Dependent libraries which are found from the specifiers in .deplibs sections
of relocatable object files are added when the linker decides to include that
file (which could itself be in a library) in the link. Dependent libraries
behave as if they were appended to the command line after all other options. As
a consequence the set of dependent libraries are searched last to resolve
symbols.
2. It is an error if a file cannot be found for a given specifier.
3. Any command line options in effect at the end of the command line parsing apply
to the dependent libraries, e.g. --whole-archive.
4. The linker tries to add a library or relocatable object file from each of the
strings in a .deplibs section by; first, handling the string as if it was
specified on the command line; second, by looking for the string in each of the
library search paths in turn; third, by looking for a lib<string>.a or
lib<string>.so (depending on the current mode of the linker) in each of the
library search paths.
5. A new command line option --no-dependent-libraries tells LLD to ignore the
dependent libraries.
Rationale for the above points:
1. Adding the dependent libraries last makes the process simple to understand
from a developers perspective. All linkers are able to implement this scheme.
2. Error-ing for libraries that are not found seems like better behavior than
failing the link during symbol resolution.
3. It seems useful for the user to be able to apply command line options which
will affect all of the dependent libraries. There is a potential problem of
surprise for developers, who might not realize that these options would apply
to these "invisible" input files; however, despite the potential for surprise,
this is easy for developers to reason about and gives developers the control
that they may require.
4. This algorithm takes into account all of the different ways that ELF linkers
find input files. The different search methods are tried by the linker in most
obvious to least obvious order.
5. I considered adding finer grained control over which dependent libraries were
ignored (e.g. MSVC has /nodefaultlib:<library>); however, I concluded that this
is not necessary: if finer control is required developers can fall back to using
the command line directly.
RFC thread: http://lists.llvm.org/pipermail/llvm-dev/2019-March/131004.html.
Differential Revision: https://reviews.llvm.org/D60274
llvm-svn: 360984
R_ARM_NONE can be used to create references among sections. When
--gc-sections is used, the referenced section will be retained if the
origin section is retained.
Add a generic MCFixupKind FK_NONE as this kind of no-op relocation is
ubiquitous on ELF and COFF, and probably available on many other binary
formats. See D62014.
Reviewed By: peter.smith
Differential Revision: https://reviews.llvm.org/D61992
llvm-svn: 360980
On PowerPC64 ELFv2 ABI, the top 3 bits of st_other encode the local
entry offset. A versioned symbol alias created by .symver should copy
the bits from the source symbol.
This partly fixes PR41048. A full fix needs tracking of .set assignments
and updating st_other fields when finish() is called, see D56586.
Patch by Alfredo Dal'Ava Júnior
Differential Revision: https://reviews.llvm.org/D59436
llvm-svn: 360442
The primary fix here is to WinException.cpp: we need to exclude jump
tables when computing the length of a function, or else we fail to
correctly compute the length. (We can only compute the number of bytes
consumed by certain assembler directives after the entire file is
parsed. ".p2align" is one of those directives, and is used by jump table
generation.)
The secondary fix, to MCWin64EH, is to make sure we don't silently
miscompile if we hit a similar situation in the future.
It's possible we could extend ARM64EmitUnwindInfo so it allows function
bodies that contain assembler directives, but that's a lot more
complicated; see the FIXME in MCWin64EH.cpp.
Fixes https://bugs.llvm.org/show_bug.cgi?id=41581 .
Differential Revision: https://reviews.llvm.org/D61095
llvm-svn: 359849
About the compressed sections spec says:
(https://docs.oracle.com/cd/E37838_01/html/E36783/section_compression.html)
sh_addralign fields of the section header for a compressed section
reflect the requirements of the compressed section.
Currently, llvm-mc always puts uncompressed section alignment to sh_addralign.
It is not correct. zlib styled section contains an Elfxx_Chdr header,
so we should either use 4 or 8 values depending on the target
(Uncompressed section alignment is stored in ch_addralign field of the compression header).
GNU assembler version 2.31.1 also has this issue,
but in 2.32.51 it was already fixed. This is how it was found
during debugging of the https://bugs.llvm.org/show_bug.cgi?id=40482
actually.
Differential revision: https://reviews.llvm.org/D60965
llvm-svn: 358960
Another attempt to land the changes in debug line header to prevent duplicate
files in Dwarf 5. I rolled back my previous commit because of a mistake in
generating the object file in a test. Meanwhile, I addressed some offline
comments and changed the implementation; the largest difference is that
MCDwarfLineTableHeader does not keep DwarfVersion but gets it as a parameter. I
also merged the patch to fix two lld tests that will strt to fail into this
patch.
Original Commit:
https://reviews.llvm.org/D59515
Original Message:
Motivation: In previous dwarf versions, file name indexes started from 1, and
the primary source file was not explicit. Dwarf 5 standard (6.2.4) prescribes
the primary source file to be explicitly given an entry with an index number 0.
The current implementation honors the specification by just duplicating the
main source file, once with index number 0, and later maybe with another
index number. While this is compliant with the letter of the standard, the
duplication causes problems for consumers of this information such as lldb.
(Some files are duplicated, where only some of them have a line table although
all refer to the same file)
With this change, dwarf 5 debug line section files always start from 0, and
the zeroth entry is not duplicated whenever possible. This requires different
handling of dwarf 4 and dwarf 5 during generation (e.g. when a function returns
an index zero for a file name, it signals an error in dwarf 4, but not in dwarf
5) However, I think the minor complication is worth it, because it enables all
consumers (lldb, gdb, dwarfdump, objdump, and so on) to treat all files in the
file name list homogenously.
llvm-svn: 358732
Summary:
This ensures that object files will continue to validate as
WebAssembly modules in the presence of bulk memory operations. Engines
that don't support bulk memory operations will not recognize the
DataCount section and will report validation errors, but that's ok
because object files aren't supposed to be run directly anyway.
Reviewers: aheejin, dschuff, sbc100
Subscribers: jgravelle-google, hiraditya, sunfish, rupprecht, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D60623
llvm-svn: 358315
the MCDwarf.h include.
This removes 50 transitive dependencies for a modification of
MCDwarf.h in a build of llc for a pair of out of line functions
and reduces the build overhead of 'touch MCDwarf.h" by 15% without
impacting test time of check-llvm.
llvm-svn: 358264
This removes 50 transitive dependencies for a modification of
MCDwarf.h in a build of llc for a single out of line function
and reduces the build overhead by 20% without impacting test
time of check-llvm.
llvm-svn: 358258
This special section is named .symtab_shndx, according to gABI Chapter 4
Sections, and the name is used by some other tools. Though the section
type SHT_SYMTAB_SHNDX is what really matters, let's fix the typo
introduced in rL204769 :)
llvm-svn: 358247