This commit adds the pre-UAL aliases of fconsts and fconstd for
vmov.f32 and vmov.f64. They use an InstAlias rather than a
MnemonicAlias to properly support the predicate operand.
We need to support encoded 8-bit constants in order to implement the
pre-UAL fconsts/fconstd aliases for vmov.f32/vmov.f64, so this
commit also fixes parsing of encoded floating point constants used
in vmov.f32/vmov.f64 instructions. Now we can support assembly code
like this:
fconsts s0, #0x70
which is equivalent to vmov.f32 s0, #1.0.
Most of the code was already in place to support this feature.
Previously the code was trying to accept encoded 8-bit float
constants for the vmov.f32/vmov.f64 instructions. It looks like the
support for parsing encoded floats was lost in a refactoring in
commit r148556 and we did not have any tests in place to catch it.
The change in this commit is to keep the parsed value as a 32-bit
float instead of a 64-bit double because that is what the isFPImm()
function expects to find. There is no loss of precision by using a
32-bit float here because we are still limited to an 8-bit encoded
value in the end.
Additionally, we explicitly reject encoded 8-bit floats for
vmovf.32/64. This is the same as the current behavior, but we now do
it explicitly rather than accidently.
llvm-svn: 198697
These instructions are deprecated oddities, but we still need to be able to
disassemble (and reassemble) them if and when they're encountered.
Patch by Amaury de la Vieuville.
llvm-svn: 183011
For bit patterns that aren't representable using the 8-bit floating point
representation for vmov.f32, but are representable via vmov.i32, treat
the .f32 syntax as an alias. Most importantly, this covers the case
'vmov.f32 Vd, #0.0'.
rdar://10616677
llvm-svn: 148556
When matching operands for a candidate opcode match in the auto-generated
AsmMatcher, check each operand against the expected operand match class.
Previously, operands were classified independently of the opcode being
handled, which led to difficulties when operand match classes were
more complicated than simple subclass relationships.
llvm-svn: 125245
Unfortunately, while this is the "right" thing to do, it breaks some ARM
asm parsing tests because MemMode5 and ThumbMemModeReg are ambiguous. This
is tricky to resolve since neither is a subset of the other.
XFAIL the test for now. The old way was broken in other ways, just ways
we didn't happen to be testing, and our ARM asm parsing is going to require
significant revisiting at a later point anyways.
llvm-svn: 123786
instructions have to distinguish between lists of single- and double-precision
registers in order for the ASM matcher to do a proper job. In all other
respects, a list of single- or double-precision registers are the same as a list
of GPR registers.
llvm-svn: 119460
vldr.64 d1, [r0, #-32]
The problem was with how the addressing mode 5 encodes the offsets. This change
makes sure that the way offsets are handled in addressing mode 5 is consistent
throughout the MC code. It involves re-refactoring the "getAddrModeImmOpValue"
method into an "Imm12" and "addressing mode 5" version. But not to worry! The
majority of the duplicated code has been unified.
llvm-svn: 118144
with immediates up to 16-bits in size. The same logic is applied to other LDR
encodings, e.g. VLDR, but which use a different immediate bit width (8-bits in
VLDR's case). Removing the "12" allows it to be more generic.
llvm-svn: 118094