down to pass builder in ltobackend.
Currently CodeGenOpts like UnrollLoops/VectorizeLoop/VectorizeSLP in clang
are not passed down to pass builder in ltobackend when new pass manager is
used. This is inconsistent with the behavior when new pass manager is used
and thinlto is not used. Such inconsistency causes slp vectorization pass
not being enabled in ltobackend for O3 + thinlto right now. This patch
fixes that.
Differential Revision: https://reviews.llvm.org/D72386
The language wording change forgot to update overload resolution to rank
implicit conversion sequences based on qualification conversions in
reference bindings. The anticipated resolution for that oversight is
implemented here -- we order candidates based on qualification
conversion, not only on top-level cv-qualifiers, including ranking
reference bindings against non-reference bindings if they differ in
non-top-level qualification conversions.
For OpenCL/C++, this allows reference binding between pointers with
differing (nested) address spaces. This makes the behavior of reference
binding consistent with that of implicit pointer conversions, as is the
purpose of this change, but that pre-existing behavior for pointer
conversions is itself probably not correct. In any case, it's now
consistently the same behavior and implemented in only one place.
This reinstates commit de21704ba9,
reverted in commit d8018233d1, with
workarounds for some overload resolution ordering problems introduced by
CWG2352.
If an SGPR vector is indexed with a VGPR, the actual indexing will be
done on the SGPR and produce an SGPR. A copy needs to be inserted
inside the waterwall loop to the VGPR result.
An undefined weak does not fetch the lazy definition. A lazy weak symbol
should be considered undefined, and thus preemptible if .dynsym exists.
D71795 is not quite an NFC. It errors on an R_X86_64_PLT32 referencing
an undefined weak symbol. isPreemptible is false (incorrect) => R_PLT_PC
is optimized to R_PC => in isStaticLinkTimeConstant, an error is emitted
when an R_PC is applied on an undefined weak (considered absolute).
qemu has a very small maximum packet size (4096) and it actually
only uses half of that buffer for some implementation reason,
so when lldb asks for the register target definitions, the x86_64
definition is larger than 4096/2 and we need to fetch it in two parts.
This patch and test is fixing a bug in
GDBRemoteCommunicationClient::ReadExtFeature when reading a target
file in multiple parts. lldb was assuming that it would always
get back the maximum packet size response (4096) instead of
using the actual size received and asking for the next group of
bytes.
We now have two tests in gdb_remote_client for unique features
of qemu - TestNestedRegDefinitions.py would test the ability
of lldb to follow multiple levels of xml includes; I opted to
create a separate TestRegDefinitionInParts.py test to test this
wrinkle in qemu's gdb remote serial protocol stub implementation.
Instead of combining both tests into a single test file.
<rdar://problem/49537922>
explicit functions that are not candidates.
It's not always obvious that the reason a conversion was not possible is
because the function you wanted to call is 'explicit', so explicitly say
if that's the case.
It would be nice to rank the explicit candidates higher in the
diagnostic if an implicit conversion sequence exists for their
arguments, but unfortunately we can't determine that without potentially
triggering non-immediate-context errors that we're not permitted to
produce.
Summary: Some data values have a different storage width than the corresponding MLIR type, e.g. bfloat is currently stored as a double.
Reviewed By: nicolasvasilache
Differential Revision: https://reviews.llvm.org/D72478
For arguments that are not expected to be materialized with
G_CONSTANT, this was emitting predicates which could never match. It
was first adding a meaningless LLT check, which would always fail due
to the operand not being a register.
Infer the cases where a literal should check for an immediate operand,
instead of a register This avoids needing to invent a special way of
representing timm literal values.
Also handle immediate arguments in GIM_CheckLiteralInt. The comments
stated it handled isImm() and isCImm(), but that wasn't really true.
This unblocks work on the selection of all of the complicated AMDGPU
intrinsics in future commits.
The current implementation assumes there is an instruction associated
with the transform, but this is not the case for
timm/TargetConstant/immarg values. These transforms should directly
operate on a specific MachineOperand in the source
instruction. TableGen would assert if you attempted to define an
equivalent GISDNodeXFormEquiv using timm when it failed to find the
instruction matcher.
Specially recognize SDNodeXForms on timm, and pass the operand index
to the render function.
Ideally this would be a separate render function type that looks like
void renderFoo(MachineInstrBuilder, const MachineOperand&), but this
proved to be somewhat mechanically painful. Add an optional operand
index which will only be passed if the transform should only look at
the one source operand.
Theoretically it would also be possible to only ever pass the
MachineOperand, and the existing renderers would check the parent. I
think that would be somewhat ugly for the standard usage which may
want to inspect other operands, and I also think MachineOperand should
eventually not carry a pointer to the parent instruction.
Use it in one sample pattern. This isn't a great example, since the
transform exists to satisfy DAG type constraints. This could also be
avoided by just changing the MachineInstr's arbitrary choice of
operand type from i16 to i32. Other patterns have nontrivial uses, but
this serves as the simplest example.
One flaw this still has is if you try to use an SDNodeXForm defined
for imm, but the source pattern uses timm, you still see the "Failed
to lookup instruction" assert. However, there is now a way to avoid
it.
Only PPC seems to be using it, and only checks some simple cases and
doesn't distinguish between FP. Just switch to using LLT to simplify
use from GlobalISel.
We were seeing some occasional build failures that would come and go.
It appeared to be this missing dependence.
Differential Revision: https://reviews.llvm.org/D72419
This change fixes the build on Windows, so that cblas_interface.dll
exports functions correctly and an implib is created and installed
correctly.
Currently, LLVM cannot be consumed on Windows after it has been
installed in a location because cblas_interface.lib is not
created/installed, thus failing the import check in `LLVMExports.cmake`.
Differential Revision: https://reviews.llvm.org/D72384
This change introduces three new builtins (which work on both pointers
and integers) that can be used instead of common bitwise arithmetic:
__builtin_align_up(x, alignment), __builtin_align_down(x, alignment) and
__builtin_is_aligned(x, alignment).
I originally added these builtins to the CHERI fork of LLVM a few years ago
to handle the slightly different C semantics that we use for CHERI [1].
Until recently these builtins (or sequences of other builtins) were
required to generate correct code. I have since made changes to the default
C semantics so that they are no longer strictly necessary (but using them
does generate slightly more efficient code). However, based on our experience
using them in various projects over the past few years, I believe that adding
these builtins to clang would be useful.
These builtins have the following benefit over bit-manipulation and casts
via uintptr_t:
- The named builtins clearly convey the semantics of the operation. While
checking alignment using __builtin_is_aligned(x, 16) versus
((x & 15) == 0) is probably not a huge win in readably, I personally find
__builtin_align_up(x, N) a lot easier to read than (x+(N-1))&~(N-1).
- They preserve the type of the argument (including const qualifiers). When
using casts via uintptr_t, it is easy to cast to the wrong type or strip
qualifiers such as const.
- If the alignment argument is a constant value, clang can check that it is
a power-of-two and within the range of the type. Since the semantics of
these builtins is well defined compared to arbitrary bit-manipulation,
it is possible to add a UBSAN checker that the run-time value is a valid
power-of-two. I intend to add this as a follow-up to this change.
- The builtins avoids int-to-pointer casts both in C and LLVM IR.
In the future (i.e. once most optimizations handle it), we could use the new
llvm.ptrmask intrinsic to avoid the ptrtoint instruction that would normally
be generated.
- They can be used to round up/down to the next aligned value for both
integers and pointers without requiring two separate macros.
- In many projects the alignment operations are already wrapped in macros (e.g.
roundup2 and rounddown2 in FreeBSD), so by replacing the macro implementation
with a builtin call, we get improved diagnostics for many call-sites while
only having to change a few lines.
- Finally, the builtins also emit assume_aligned metadata when used on pointers.
This can improve code generation compared to the uintptr_t casts.
[1] In our CHERI compiler we have compilation mode where all pointers are
implemented as capabilities (essentially unforgeable 128-bit fat pointers).
In our original model, casts from uintptr_t (which is a 128-bit capability)
to an integer value returned the "offset" of the capability (i.e. the
difference between the virtual address and the base of the allocation).
This causes problems for cases such as checking the alignment: for example, the
expression `if ((uintptr_t)ptr & 63) == 0` is generally used to check if the
pointer is aligned to a multiple of 64 bytes. The problem with offsets is that
any pointer to the beginning of an allocation will have an offset of zero, so
this check always succeeds in that case (even if the address is not correctly
aligned). The same issues also exist when aligning up or down. Using the
alignment builtins ensures that the address is used instead of the offset. While
I have since changed the default C semantics to return the address instead of
the offset when casting, this offset compilation mode can still be used by
passing a command-line flag.
Reviewers: rsmith, aaron.ballman, theraven, fhahn, lebedev.ri, nlopes, aqjune
Reviewed By: aaron.ballman, lebedev.ri
Differential Revision: https://reviews.llvm.org/D71499
As an intermediate step, some TLI functions can be converted to using
LLT instead of MVT. Move this somewhere out of GlobalISel so DAG
functions can use these.
When these arguments are broken down by the EVT based callbacks, the
pointer information is lost. Hack around this by coercing the register
types to be the expected pointer element type when building the
remerge operations.
This should be legal, but will require future selection work. 16-bit
shift amounts were already removed from being legal, but this didn't
adjust the transformation rules.
The external instantiation of std::string is a problem for libc++.
Additions and removals of inline functions in string can cause ABI
breakages, including introducing new symbols.
This patch aims to:
(1) Make clear which functions are explicitly instatiated.
(2) Prevent new functions from being accidentally instantiated.
(3) Allow a migration path for adding or removing functions from the
explicit instantiation over time.
Although this new formulation is uglier, it is preferable from a
maintainability and readability standpoint because it explicitly
enumerates the functions we've chosen to expose in our ABI. Changing
this list is non-trivial and requires thought and planning.
(3) is achieved by making it possible to control the extern template declaration
separately from it's definition. Meaning we could add a new definition to
the dylib, wait for it to roll out, then add the extern template
declaration to the header. Similarly, we could remove existing extern
template declarations while still keeping the definition to prevent ABI
breakages.
Summary:
This reduces the complexity of OperationPrinter and simplifies the code by quite a bit. The SSANameState is now held by ModuleState. This is in preparation for a future revision that molds ModuleState into something that can be used by users for caching the printer state, as well as for implementing printAsOperand style methods.
Depends On D72292
Reviewed By: antiagainst
Differential Revision: https://reviews.llvm.org/D72293
Summary:
In commit b91f239485 I updated the
MipsDelaySlotFiller to skip BUNDLE instructions.
However, in addition to not considering BUNDLE instructions for the delay
slot, we also need to ensure that the register def-use information is
updated. Not updating this information caused run-time crashes (when using
the out-of-tree CHERI backend) since later definitions could be overwritten
with earlier register values.
Reviewers: atanasyan
Reviewed By: atanasyan
Differential Revision: https://reviews.llvm.org/D72254
The ONE expansion calls OGT/OLT libcalls which will signal for QNAN.
The UEQ expansion uses unord and eq libcalls which won't signal.
We should probably use those libcalls for ONE with appropriate
logic.
Quiet OGT/OLT/OLE/OGE have similar issue, but not sure how to fix
those yet.
This adds support for selecting a large chunk of the load/store *roW patterns.
This is pretty much a straight port of AArch64DAGToDAGISel::SelectAddrModeWRO
into GISel. The code is very similar to the XRO code. The main difference is
that in the *roW patterns, we want to try and fold in an extend, and *possibly*
a shift along with it. A good portion of this patch is refactoring the existing
XRO code.
- Add selectAddrModeWRO
- Factor out the code from selectAddrModeShiftedExtendXReg which is used by both
selectAddrModeXRO and selectAddrModeWRO into selectExtendedSHL.
This is similar to the function of the same name in AArch64DAGToDAGISel.
- Add support for extends to the factored out code in selectExtendedSHL.
- Teach getExtendTypeForInst how to handle AND masks that are intended to be
used in loads/stores (necessary for this addressing mode.)
- Make getExtendTypeForInst not static because moving it made an annoying diff
and I wanted to have the WRO/XRO functions close to each other while I was
writing the code.
Differential Revision: https://reviews.llvm.org/D72426
Summary:
Extend D71677 to apply to all branch-target operands, rather than special-casing call instructions.
Also add a regression test for llvm.org/PR44272, since this finishes fixing it.
Reviewers: thakis, rnk
Reviewed By: thakis
Subscribers: merge_guards_bot, hiraditya, cfe-commits, llvm-commits
Tags: #clang, #llvm
Differential Revision: https://reviews.llvm.org/D72417
The patch gives out the details of the znver2 scheduler model.
There are few improvements with respect to execution units, latencies and
throughput when compared with znver1.
The tests that were present for znver1 for llvm-mca tool were replicated.
The latencies, execution units, timeline and throughput information are updated for znver2.
Reviewers: craig.topper, Simon Pilgrim
Differential Revision: https://reviews.llvm.org/D66088
Fix a conditional that guarded code for execution only on 32-bit ELF by
checking that the Subtarget was not 64-bit and not-Darwin. By adding a new
target ABI (AIX), the condition is no longer correct. This code is dead for
AIX, due to a 'report_fatal_error' for thread local storage usage earlier in the
pipeline, but needs to be modifed as part of Darwins removal from the
PowerPC backend.
If we're doing a compare that only tests the sign bit and only the sign bit is demanded, we can just bypass the node. This removes one of the blend dependencies in our v2i64->v2f32 uint_to_fp codegen on pre-sse4.2 targets.
Differential Revision: https://reviews.llvm.org/D72356