This avoids regressions in a future patch. I'm confused by the use of
the gfx9 usage legacy_mad. Was this a pointless instruction rename, or
uses fmul_legacy handling? Why is regular mac avilable in that case?
This essentially reverts some of the SimplifyLibcalls part changes of D45736 [SimplifyLibcalls] Replace locked IO with unlocked IO.
C11 7.21.5.2 The fflush function
> If stream is a null pointer, the fflush function performs this flushing action on all streams for which the behavior is defined above.
i.e. fopen'ed FILE* is inherently captured.
POSIX.1-2017 getc_unlocked, getchar_unlocked, putc_unlocked, putchar_unlocked - stdio with explicit client locking
> These functions can safely be used in a multi-threaded program if and only if they are called while the invoking thread owns the ( FILE *) object, as is the case after a successful call to the flockfile() or ftrylockfile() functions.
After a thread fopen'ed a FILE*, when it is calling foobar() which is now replaced by foobar_unlocked(),
if another thread is concurrently calling fflush(0), the behavior is undefined.
C11 7.22.4.4 The exit function
> Next, all open streams with unwritten buffered data are flushed, all open streams are closed, and all files created by the tmpfile function are removed.
The replacement is only feasible if the program is single threaded, or exit or fflush(0) is never called.
See also http://lists.llvm.org/pipermail/llvm-commits/Week-of-Mon-20180528/556615.html
for how the replacement makes libc interceptors difficult to implement.
dalias: in a worst case, it's unbounded data corruption because of concurrent access to pointers
without synchronization. f->wpos or rpos could get outside of the buffer, thread A could do
f->wpos += j after knowing j is in bounds, while thread B also changes it concurrently.
This can produce exploitable conditions depending on libc internals.
Revert the SimplifyLibcalls part change because the cons obviously
overweigh the pros. Even when the replacement is feasible, the benefit
is indemonstrable, more so in an application instead of an artificial
glibc benchmark. Theoretically the replacement could be beneficial when
calling getc_unlocked/putc_unlocked in a loop, but then it is better
using a blocked IO operation and the user is likely aware of that.
The function attribute inference is still useful and thus kept.
Reviewed By: xbolva00
Differential Revision: https://reviews.llvm.org/D75933
Summary:
This patch extends the TargetMachine to let targets specify the integer size
used by the sjljehprepare pass. This is 64bit for the VE target and otherwise
defaults to 32bit for all targets, which was hard-wired before.
Reviewed By: arsenm
Differential Revision: https://reviews.llvm.org/D71337
Summary: Rewrite the fsub-0.0 idiom to fneg and always emit fneg for fp
negation. This also extends the scalarization cost in instcombine for unary
operators to result in the same IR rewrites for fneg as for the idiom.
Reviewed By: cameron.mcinally
Differential Revision: https://reviews.llvm.org/D75467
In case the source value ends up in a VGPR, insert a readfirstlane to
avoid producing an illegal copy later. If it turns out to be
unnecessary, it can be folded out.
Swap the compare operands if LHS is spilled while updating the CCMask:s of
the CC users. This is relatively straight forward since the live-in lists for
the CC register can be assumed to be correct during register allocation
(thanks to 659efa2).
Also fold a spilled operand of an LOCR/SELR into an LOC(G).
Review: Ulrich Weigand
Differential Revision: https://reviews.llvm.org/D67437
SimplifyAddWithRemainder currently also matches for vector types, but
tries to create an integer constant, which causes a crash.
By using Constant::getIntegerValue() we can support both the scalar and
vector cases.
The 2 added test cases crash without the fix.
Reviewers: spatel, lebedev.ri
Reviewed By: spatel, lebedev.ri
Differential Revision: https://reviews.llvm.org/D75906
SimplifyCFG should not merge empty return blocks and leave a CallBr behind
with a duplicated destination since the verifier will then trigger an
assert. This patch checks for this case and avoids the transformation.
CodeGenPrepare has a similar check which also has a FIXME comment about why
this is needed. It seems perhaps better if these two passes would eventually
instead update the CallBr instruction instead of just checking and avoiding.
This fixes https://bugs.llvm.org/show_bug.cgi?id=45062.
Review: Craig Topper
Differential Revision: https://reviews.llvm.org/D75620
It seems like the SLPVectorizer is currently not aware of vector
versions of functions provided by libraries like Accelerate [1].
This patch updates SLPVectorizer to use the same infrastructure
the LoopVectorizer uses to detect vectorizable library functions.
For calls, it computes the cost of an intrinsic call (existing behavior)
and the cost of a vector function library call, if available. Like
LoopVectorizer, it assumes the cost of the vector function is simply the
cost of a call to a vector function.
[1] https://developer.apple.com/documentation/accelerate
Reviewers: ABataev, RKSimon, spatel
Reviewed By: ABataev
Differential Revision: https://reviews.llvm.org/D75878
Summary:
When SI_INDIRECT_DST_V* pseudos has indexes in VGPR, they get expanded into the self-looped basic block that modifies EXEC in a loop.
To keep EXEC consistent it is stored before and then re-stored after the pseudo expansion result.
%95:vreg_512 = SI_INDIRECT_DST_V16 %93:vreg_512(tied-def 0), %94:sreg_32, 0, killed %1500:vgpr_32
results to
s_mov_b64 s[6:7], exec
BB0_16:
v_readfirstlane_b32 s8, v28
v_cmp_eq_u32_e32 vcc, s8, v28
s_and_saveexec_b64 vcc, vcc
s_set_gpr_idx_on s8, gpr_idx(DST)
v_mov_b32_e32 v6, v25
s_set_gpr_idx_off
s_xor_b64 exec, exec, vcc
s_cbranch_execnz BB0_16
; %bb.17:
s_mov_b64 exec, s[6:7]
The bug appeared in case this expansion occurs in the ELSE block of the CF.
Originally
%110:vreg_512 = SI_INDIRECT_DST_V16 %103:vreg_512(tied-def 0), %85:vgpr_32, 0, %107:vgpr_32,
%112:sreg_64 = SI_ELSE %108:sreg_64, %bb.19, 0, implicit-def dead $exec, implicit-def dead $scc, implicit $exec
expanded to
****************** <== here exec has "THEN" context
s_mov_b64 s[6:7], exec
BB0_16:
v_readfirstlane_b32 s8, v28
v_cmp_eq_u32_e32 vcc, s8, v28
s_and_saveexec_b64 vcc, vcc
s_set_gpr_idx_on s8, gpr_idx(DST)
v_mov_b32_e32 v6, v25
s_set_gpr_idx_off
s_xor_b64 exec, exec, vcc
s_cbranch_execnz BB0_16
; %bb.17:
s_or_saveexec_b64 s[4:5], s[4:5] <-- exec mask is restored for "ELSE" but immediately overwritten.
s_mov_b64 exec, s[6:7]
The rest of the "ELSE" block is executed not by the workitems which constitute the "else mask" but by those which constitute "then mask"
SILowerControlFlow::emitElse always considers the basic block begin() as an insertion point for s_or_saveexec.
Proposed fix: The SI_INDIRECT_DST_V* procedure should split the reminder block to create landing pad for the EXEC restoration.
Reviewers: rampitec, vpykhtin, nhaehnle
Reviewed By: vpykhtin
Subscribers: arsenm, kzhuravl, jvesely, wdng, yaxunl, dstuttard, tpr, t-tye, hiraditya, kerbowa, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D75472
On some Arm cores there is a performance penalty when forwarding from an
S register to a D register. Calculating VMAX in a D register creates
false forwarding hazards, so don't do that unless we're on a core which
specifically asks for it.
Patch by James Greenhalgh
Differential Revision: https://reviews.llvm.org/D75248
For pre-AVX512 targets, combine binary shuffles to X86ISD::VPERM2X128 if possible. This mainly helps optimize the blend(extract_subvector(x,1),y) pattern.
At some point soon we're going to have make a decision about when to combine AVX512 shuffles more aggressively - we bail out if there is any change in element size (to protect predicate mask merging) which means we miss out on a lot of optimizations.
Iterate through the loop and check that the observable values
produced are the same whether tail predication happens or not.
We want to find out if the tail-predicated version of this loop will
produce the same values as the loop in its original form. For this to
be true, the newly inserted implicit predication must not change the
the (observable) results.
We're doing this because many instructions in the loop will not be
predicated and so the conversion from VPT predication to tail
predication can result in different values being produced, because of
falsely predicated lanes not being updated in the converted form.
A masked load, whether through VPT or tail predication, will write
zeros to any of the falsely predicated bytes. So, from the loads, we
know that the false lanes are zeroed and here we're trying to track
that those false lanes remain zero, or where they change, the
differences are masked away by their user(s).
All MVE loads and stores have to be predicated, so we know that any
load operands, or stored results are equivalent already. Other
explicitly predicated instructions will perform the same operation in
the original loop and the tail-predicated form too. Because of this,
we can insert loads, stores and other predicated instructions into
our KnownFalseZeros set and build from there.
Differential Revision: https://reviews.llvm.org/D75452
When hashing on MachineOperand::MO_ConstantPoolIndex, now MIR-Canon and
MIRVRegNamer will no longer result in a hash collision.
Differential Revision: https://reviews.llvm.org/D74449
When expanding scalar packed operations, we should not introduce
illegal vector casts LegalizerHelper introduces. We're not in a
legalizer context, and there's no RegBankSelect apply or legalize
worklist.
We weren't considering the packed case correctly, and this was passing
through to the selector. The selector only checked the size, so this
would incorrectly compile to a single 32-bit scalar add.
As usual, the LegalizerHelper is somewhat awkward to use from
applyMappingImpl. I think this is the first place we've needed
multi-step legalization here though.
a tail call
Previosly ARC optimizer removed the autoreleaseRV/retainRV pair in the
following code, which caused the object returned by @something to be
placed in the autorelease pool because the call to @something isn't a
tail call:
```
%call = call i8* @something(...)
%2 = call i8* @objc_retainAutoreleasedReturnValue(i8* %call)
%3 = call i8* @objc_autoreleaseReturnValue(i8* %2)
ret i8* %3
```
Fix the bug by checking whether @something is a tail call.
rdar://problem/59275894
Most importantly, this fixes ret i8. Also make sure to handle
signext/zeroext for odd types > i32. Some of the corresponding
argument passing fixes also need to be handled.
Interpret these as extending to the next multiple of 32-bits. This had
no effect with i48 for example, which is really split into {i32, i16},
which should extend the high part.
Use a hack to only enable this for GlobalISel.
Technically this also works with SelectionDAG, but the divergence
selection isn't reliable enough and a few cases fail, but I have no
desire to spend time writing the manual expansion code for it. The DAG
actually does a better job since it catches using v_add_lshl_u32 in
the mixed SGPR/VGPR cases.
If we don't need the upper subvector elements of the BLENDI node then use a smaller vector size.
This causes a couple of minor regressions in insertelement-ones.ll which are more examples of PR26018; given how cheap allones generation is I don't consider that a showstopper, just an annoyance (and there's plenty of other poor codegen cases in that file).
If we're inserting a scalar that is smaller than the element
size of the final VT, the value of the extra bits doesn't matter.
Previously we any_extended in the scalar domain before inserting.
This patch changes this to use a broadcast of the original
scalar type and then a bitcast to the final type. This might
enable the use of a broadcast load.
This recovers regressions from 07d68c24aa
and 9fcd212e2f without relying on
alignment of the load.
Differential Revision: https://reviews.llvm.org/D75835
Summary: As discussed in D75505, it's not particularly useful to change the type of a load to/from floating-point/integer because it's followed by a bitcast, and it might lead to surprising code generation. Check that this doesn't generally happen.
Reviewers: lebedev.ri
Subscribers: jkorous, dexonsmith, ributzka, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D75644
If a call argument has the "returned" attribute, we can simplify
the call to the value of that argument. The "-inst-simplify" pass
already handled this for the constant integer argument case via
known bits, which is invoked in SimplifyInstruction. However,
non-constant (or non-int) arguments are not handled at all right now.
This addresses one of the regressions from D75801.
Differential Revision: https://reviews.llvm.org/D75815
When simplifying a call without uses, replaceInstUsesWith() is
going to do nothing, but we'll skip all following folds. We can
only run into this problem with calls that both simplify and are
not trivially dead if unused, which currently seems to happen only
with calls to undef, as the test diff shows. When extending
SimplifyCall() to handle "returned" attributes, this becomes a much
bigger problem, so I'm fixing this first.
Differential Revision: https://reviews.llvm.org/D75814
As pointed out by jdoerfert on D75815, we must be careful when
simplifying musttail calls: We can only replace the return value
if we can eliminate the call entirely. As we can't make this
guarantee for all consumers of InstSimplify, this patch disables
simplification of musttail calls. Without this patch, musttail
simplification currently results in module verification errors.
Differential Revision: https://reviews.llvm.org/D75824