This patch almost entirely rewrites the unique_ptr tests. There are a couple
of reasons for this:
A) Most of the *.fail.cpp tests were either incorrect or could be better written
as a *.pass.cpp test that uses <type_traits> to check if certain operations
are valid (Ex. Using static_assert(!std::is_copy_constructible_v<T>) instead
of writing a failure test).
B) [unique.ptr.runtime] has very poor test coverage. Many of the constructors
and assignment operators have to tests at all. The special members that have
tests have very few test cases and are typically way out of date.
C) The tests for [unique.ptr.single] and [unique.ptr.runtime] are largely
duplicates of each other. This means common requirements have two different
sets of tests in two different test files. This makes the tests harder to
maintain than if there was a single copy.
To address (A) this patch changes almost all of the *.fail.cpp tests into
.pass.cpp tests using type traits; Allowing the *.fail.cpp tests to be removed.
The address (B) and (C) the tests for [unique.ptr.single] and [unique.ptr.runtime]
have been combined into a single directory, allowing both specializations to share
common tests. Tests specific to the single/runtime specializations are given the
suffix "*.single.pass.cpp" or "*.runtime.pass.cpp".
Finally the unique.ptr test have been moved into the correct directory according
to the standard. Specifically they have been removed from "utilities/memory" into
"utilities/smartptr".
PS. This patch also adds newly written tests for upcoming unique_ptr changes/fixes.
However since these tests don't currently pass they are guarded by the macro
TEST_WORKAROUND_UPCOMING_UNIQUE_PTR_CHANGES. This allows other STL's to validate
the tests before libc++ implements the changes. The relevant libc++ changes should
land in the next week.
llvm-svn: 300388
This is a version of D32090 that unifies all of the
`getInstrProf*SectionName` helper functions. (Note: the build failures
which D32090 would have addressed were fixed with r300352.)
We should unify these helper functions because they are hard to use in
their current form. E.g we recently introduced more helpers to fix
section naming for COFF files. This scheme doesn't totally succeed at
hiding low-level details about section naming, so we should switch to an
API that is easier to maintain.
This is not an NFC commit because it fixes llvm-cov's testing support
for COFF files (this falls out of the API change naturally). This is an
area where we lack tests -- I will see about adding one as a follow up.
Testing: check-clang, check-profile, check-llvm.
Differential Revision: https://reviews.llvm.org/D32097
llvm-svn: 300381
The modules side of r299226, which serializes #pragma pack state,
doesn't work well.
The main purpose was to make -include and -include-pch match semantics
(the PCH side). We also started serializing #pragma pack in PCMs, in
the hopes of making modules and non-modules builds more consistent. But
consider:
$ cat a.h
$ cat b.h
#pragma pack(push, 2)
$ cat module.modulemap
module M {
module a { header "a.h" }
module b { header "b.h" }
}
$ cat t.cpp
#include "a.h"
#pragma pack(show)
As of r299226, the #pragma pack(show) gives "2", even though we've only
included "a.h".
- With -fmodules-local-submodule-visibility, this is clearly wrong. We
should get the default state (8 on x86_64).
- Without -fmodules-local-submodule-visibility, this kind of matches how
other things work (as if include-the-whole-module), but it's still
really terrible, and it doesn't actually make modules and non-modules
builds more consistent.
This commit disables the serialization for modules, essentially a
partial revert of r299226.
Going forward:
1. Having this #pragma pack stuff escape is terrible design (or, more
often, a horrible bug). We should prioritize adding warnings (maybe
-Werror by default?).
2. If we eventually reintroduce this for modules, it should only apply
to -fmodules-local-submodule-visibility, and it should be tracked on
a per-submodule basis.
llvm-svn: 300380
The attribute was fairly dubious as: a) we shouldn't tell the compiler
when to inline functions, b) GCC complains that the function may be
not always inlinable.
llvm-svn: 300377
When checking if we should return a constant, we create some temporary APInts to see if we know all bits. But the exact computations we do are needed in several other locations in the same code.
This patch moves them to named temporaries so we can reuse them.
Ideally we'd write directly to KnownZero/One, but we currently seem to only write those variables after all the simplifications checks and I didn't want to change that with this patch.
Differential Revision: https://reviews.llvm.org/D32094
llvm-svn: 300376
Summary:
This patch removes the hand maintained config files in favor of auto-generating the config file. We will still need to maintain the defines for the Xcode builds on Mac, but all CMake builds use the generated header instead.
This will enable finer grained platform support tests and enable supporting LLDB on more platforms with less manual maintenance.
I have only tested this patch on Darwin, and any help testing it out on other platforms would be greatly appreciated. I've probably messed something up somewhere.
Reviewers: labath, zturner
Reviewed By: labath
Subscribers: krytarowski, emaste, srhines, lldb-commits, mgorny
Differential Revision: https://reviews.llvm.org/D31969
llvm-svn: 300372
If a pointer is 1-byte aligned, there's no use in checking its
alignment. Somewhat surprisingly, ubsan can spend a significant amount
of time doing just that!
This loosely depends on D30283.
Testing: check-clang, check-ubsan, and a stage2 ubsan build.
Differential Revision: https://reviews.llvm.org/D30285
llvm-svn: 300371
This patch teaches ubsan to insert an alignment check for the 'this'
pointer at the start of each method/lambda. This allows clang to emit
significantly fewer alignment checks overall, because if 'this' is
aligned, so are its fields.
This is essentially the same thing r295515 does, but for the alignment
check instead of the null check. One difference is that we keep the
alignment checks on member expressions where the base is a DeclRefExpr.
There's an opportunity to diagnose unaligned accesses in this situation
(as pointed out by Eli, see PR32630).
Testing: check-clang, check-ubsan, and a stage2 ubsan build.
Along with the patch from D30285, this roughly halves the amount of
alignment checks we emit when compiling X86FastISel.cpp. Here are the
numbers from patched/unpatched clangs based on r298160.
------------------------------------------
| Setup | # of alignment checks |
------------------------------------------
| unpatched, -O0 | 24326 |
| patched, -O0 | 12717 | (-47.7%)
------------------------------------------
Differential Revision: https://reviews.llvm.org/D30283
llvm-svn: 300370
This avoids the confusing 'CS.paramHasAttr(ArgNo + 1, Foo)' pattern.
Previously we were testing return value attributes with index 0, so I
introduced hasReturnAttr() for that use case.
llvm-svn: 300367
Now that the libObect support for wasm is better we can
have readobj and nm produce more useful output too.
Differential Revision: https://reviews.llvm.org/D31514
llvm-svn: 300365
...when C1 differs from C2 by one bit and C1 <u C2:
http://rise4fun.com/Alive/Vuo
And move related folds to a helper function. This reduces code duplication and
will make it easier to remove the scalar-only restriction as a follow-up step.
llvm-svn: 300364
We currently only support folding a subtract into a select but not a PHI. This fixes that.
I had to fix an assumption in FoldOpIntoPhi that assumed the PHI node was always in operand 0. Now we pass it in like we do for FoldOpIntoSelect. But we still require some dancing to find the Constant when we create the BinOp or ConstantExpr. This is based code is similar to what we do for selects.
Since I touched all call sites, this also renames FoldOpIntoPhi to foldOpIntoPhi to match coding standards.
Differential Revision: https://reviews.llvm.org/D31686
llvm-svn: 300363
If a kernel's pointer argument is known to be readonly
set access qualifier accordingly. This allows RT not to
flush caches before dispatches.
Differential Revision: https://reviews.llvm.org/D32091
llvm-svn: 300362
When using ASan and UBSan together, the common sanitizer tool name is
set to "AddressSanitizer". That means that when a UBSan diagnostic is
printed out, it looks like this:
SUMMARY: AddressSanitizer: ...
This can confuse users. Fix it so that we always use the correct tool
name when printing out UBSan diagnostics.
Differential Revision: https://reviews.llvm.org/D32066
llvm-svn: 300358
This diff removes unnecessary using of unique_ptr with ClangMoveActionFactory (pico cleanup).
NFC
Test plan: make check-clang-tools
Differential revision: https://reviews.llvm.org/D32063
llvm-svn: 300356
One of the ValueTracking unittests creates a named ArrayRef initialized by a std::initializer_list. The underlying array for an std::initializer_list is only guaranteed to have a lifetime as long as the initializer_list object itself. So this can leave the ArrayRef pointing at an array that no long exists.
This fixes this to just create an explicit array instead of an ArrayRef.
Differential Revision: https://reviews.llvm.org/D32089
llvm-svn: 300354
Currently this code always makes 2 or 3 calls to tryFactorization regardless of whether the LHS/RHS are BinaryOperators. We make 3 calls when both operands are BinaryOperators with the same opcode. Or surprisingly, when neither are BinaryOperators. This is because getBinOpsForFactorization returns Instruction::BinaryOpsEnd when the operand is not a BinaryOperator. If both LHS and RHS are not BinaryOperators then they both have an Opcode of Instruction::BinaryOpsEnd. When this happens we rely on tryFactorization to early out due to A/B/C/D being null. Similar behavior occurs for the other calls, we rely on getBinOpsForFactorization having made A/B or C/D null to get tryFactorization to early out.
We also rely on these null checks to check the result of getIdentityValue and early out for it.
This patches refactors this to pull these checks up to SimplifyUsingDistributiveLaws so we don't rely on BinaryOpsEnd as a sentinel or this A/B/C/D null behavior. I think this makes this code easier to reason about. Should also give a tiny performance improvement for cases where the LHS or RHS isn't a BinaryOperator.
Differential Revision: https://reviews.llvm.org/D31913
llvm-svn: 300353
This change really saves just one foldingset lookup, but makes
SCEVRewriteVisitor "feature compatible" with the handwritten logic in
ScalarEvolutionNormalization, so that I can change
ScalarEvolutionNormalization to use SCEVRewriteVisitor in a next step.
This is a non-functional change, but _may_ improve performance in some
pathological cases, but that's unlikely.
llvm-svn: 300348
CodeGenFunction::EmitObjCForCollectionStmt currently emits lifetime markers for the loop variable in an inconsistent way: lifetime.start is emitted before the loop is entered, but lifetime.end is emitted inside the loop. AddressSanitizer uses these markers to track out-of-scope accesses to local variables, and we get false positives in Obj-C foreach loops (in the 2nd iteration of the loop). This patch keeps the loop variable alive for the whole loop by extending ForScope and registering the cleanup function inside EmitAutoVarAlloca.
Differential Revision: https://reviews.llvm.org/D32029
llvm-svn: 300340
It won't compile after the recent changes I've made, and I think
keeping it in provides very little value.
Instead I've added (in an earlier commit) a C++ unit test to check the
Denormalize(Normalized(X)) == X property for specific instances of X,
which is what the assert was trying to do anyway.
llvm-svn: 300339
The PostIncTransform class was not pulling its weight, so delete it
and use free functions instead.
This also makes the use of `function_ref` more idiomatic. We were
storing an instance of function_ref in the PostIncTransform class
before, which was fine in that specific case, but the usage after this
change is more obviously okay.
llvm-svn: 300338