This patch is to implement sema and parsing for 'teams distribute parallel for simd' pragma.
Differential Revision: https://reviews.llvm.org/D27084
llvm-svn: 288294
If 'omp cancel' construct is used in a worksharing construct it may
cause hanging of the software in case if reduction clause is used. Patch fixes this problem by avoiding extra reduction processing for branches that were canceled.
llvm-svn: 287227
Summary:
r286944 introduced bugs detected by ASAN as use-after-return.
r287025 have not fixed them completely.
This reverts commit r286944 and r287025.
Reviewers: ABataev
Subscribers: cfe-commits
Differential Revision: https://reviews.llvm.org/D26720
llvm-svn: 287069
If 'omp cancel' construct is used in a worksharing construct it may cause
hanging of the software in case if reduction clause is used. Patch fixes
this problem by avoiding extra reduction processing for branches that
were canceled.
llvm-svn: 286944
can be used to improve the locations when generating remarks for loops.
Depends on the companion LLVM change r286227.
Patch by Florian Hahn.
Differential Revision: https://reviews.llvm.org/D25764
llvm-svn: 286456
After some changes in codegen capturing of VLA variables in OpenMP regions was broken, causing compiler crash. Patch fixes this issue.
llvm-svn: 286103
After some changes in codegen capturing of VLA variables in OpenMP
regions was broken, causing compiler crash. Patch fixes this issue.
llvm-svn: 286098
constexpr variable.
When compiling a constexpr NSString initialized with an objective-c
string literal, CodeGen emits objc_storeStrong on an uninitialized
alloca, which causes a crash.
This patch folds the code in EmitScalarInit into EmitStoreThroughLValue
and fixes the crash by calling objc_retain on the string instead of
using objc_storeStrong.
rdar://problem/28562009
Differential Revision: https://reviews.llvm.org/D25547
llvm-svn: 284516
access, by Erich Keane
OpenMP creates a variable array type with a a null size-expr. The Debug
generation failed to due to this. This patch corrects the openmp
implementation, updates the tests, and adds a new one for this
condition.
Differential Revision: https://reviews.llvm.org/D25373
llvm-svn: 284110
This reverts commit r279003 as it breaks some of our buildbots (e.g.
clang-cmake-aarch64-quick, clang-x86_64-linux-selfhost-modules).
The error is in OpenMP/teams_distribute_simd_ast_print.cpp:
clang: /home/buildslave/buildslave/clang-cmake-aarch64-quick/llvm/include/llvm/ADT/DenseMap.h:527:
bool llvm::DenseMapBase<DerivedT, KeyT, ValueT, KeyInfoT, BucketT>::LookupBucketFor(const LookupKeyT&, const BucketT*&) const
[with LookupKeyT = clang::Stmt*; DerivedT = llvm::DenseMap<clang::Stmt*, long unsigned int>;
KeyT = clang::Stmt*; ValueT = long unsigned int;
KeyInfoT = llvm::DenseMapInfo<clang::Stmt*>;
BucketT = llvm::detail::DenseMapPair<clang::Stmt*, long unsigned int>]:
Assertion `!KeyInfoT::isEqual(Val, EmptyKey) && !KeyInfoT::isEqual(Val, TombstoneKey) &&
"Empty/Tombstone value shouldn't be inserted into map!"' failed.
llvm-svn: 279045
This patch is to implement sema and parsing for 'teams distribute simd’ pragma.
This patch is originated by Carlo Bertolli.
Differential Revision: https://reviews.llvm.org/D23528
llvm-svn: 279003
Summary: This patch adds support for the use_device_ptr clause. It includes changes in SEMA that could not be tested without codegen, namely, the use of the first private logic and mappable expressions support.
Reviewers: hfinkel, carlo.bertolli, arpith-jacob, kkwli0, ABataev
Subscribers: caomhin, cfe-commits
Differential Revision: https://reviews.llvm.org/D22691
llvm-svn: 276977
Summary:
This patch fixes a bug in the map of array sections whose base is a reference to a pointer. The existing mapping support was not prepared to deal with it, causing the compiler to crash.
Mapping a reference to a pointer enjoys the same characteristics of a regular pointer, i.e., it is passed by value. Therefore, the reference has to be materialized in the target region.
Reviewers: hfinkel, carlo.bertolli, kkwli0, ABataev
Subscribers: caomhin, cfe-commits
Differential Revision: https://reviews.llvm.org/D22690
llvm-svn: 276933
This patch is to implement sema and parsing for 'target parallel for simd' pragma.
Differential Revision: http://reviews.llvm.org/D22096
llvm-svn: 275365
http://reviews.llvm.org/D21904
This patch is similar to the implementation of 'private' clause: it adds a list of private pointers to be used within the target data region to store the device pointers returned by the runtime.
Please refer to the following document for a full description of what the runtime witll return in this case (page 10 and 11):
https://github.com/clang-omp/OffloadingDesign
I am happy to answer any question related to the runtime interface to help reviewing this patch.
llvm-svn: 275271
Summary: This patch is an implementation of sema and parsing for the OpenMP composite pragma 'distribute simd'.
Differential Revision: http://reviews.llvm.org/D22007
llvm-svn: 274604
Summary: This patch is an implementation of sema and parsing for the OpenMP composite pragma 'distribute parallel for simd'.
Differential Revision: http://reviews.llvm.org/D21977
llvm-svn: 274530
[OpenMP] Initial implementation of parse and sema for composite pragma 'distribute parallel for'
This patch is an initial implementation for #distribute parallel for.
The main differences that affect other pragmas are:
The implementation of 'distribute parallel for' requires blocking of the associated loop, where blocks are "distributed" to different teams and iterations within each block are scheduled to parallel threads within each team. To implement blocking, sema creates two additional worksharing directive fields that are used to pass the team assigned block lower and upper bounds through the outlined function resulting from 'parallel'. In this way, scheduling for 'for' to threads can use those bounds.
As a consequence of blocking, the stride of 'distribute' is not 1 but it is equal to the blocking size. This is returned by the runtime and sema prepares a DistIncrExpr variable to hold that value.
As a consequence of blocking, the global upper bound (EnsureUpperBound) expression of the 'for' is not the original loop upper bound (e.g. in for(i = 0 ; i < N; i++) this is 'N') but it is the team-assigned block upper bound. Sema creates a new expression holding the calculation of the actual upper bound for 'for' as UB = min(UB, PrevUB), where UB is the loop upper bound, and PrevUB is the team-assigned block upper bound.
llvm-svn: 273884
http://reviews.llvm.org/D21564
This patch is an initial implementation for #distribute parallel for.
The main differences that affect other pragmas are:
The implementation of 'distribute parallel for' requires blocking of the associated loop, where blocks are "distributed" to different teams and iterations within each block are scheduled to parallel threads within each team. To implement blocking, sema creates two additional worksharing directive fields that are used to pass the team assigned block lower and upper bounds through the outlined function resulting from 'parallel'. In this way, scheduling for 'for' to threads can use those bounds.
As a consequence of blocking, the stride of 'distribute' is not 1 but it is equal to the blocking size. This is returned by the runtime and sema prepares a DistIncrExpr variable to hold that value.
As a consequence of blocking, the global upper bound (EnsureUpperBound) expression of the 'for' is not the original loop upper bound (e.g. in for(i = 0 ; i < N; i++) this is 'N') but it is the team-assigned block upper bound. Sema creates a new expression holding the calculation of the actual upper bound for 'for' as UB = min(UB, PrevUB), where UB is the loop upper bound, and PrevUB is the team-assigned block upper bound.
llvm-svn: 273705
Summary:
This patch fixes an issue detected when firstprivate variables are passed to an OpenMP outlined function vararg list. Currently they are not compatible with what the runtime library expects causing malfunction in some targets.
This patch fixes the issue by moving the casting logic already in place for offloading to the common code that creates the outline function and arguments and updates the regression tests accordingly.
Reviewers: hfinkel, arpith-jacob, carlo.bertolli, kkwli0, ABataev
Subscribers: cfe-commits, caomhin
Differential Revision: http://reviews.llvm.org/D21150
llvm-svn: 272900
directives.
'kmp_task_t' record type added a new field for 'priority' clause and
changed the representation of pointer to destructors for privates used
within loop-based directives.
Old representation:
typedef struct kmp_task { /* GEH: Shouldn't this be
aligned somehow? */
void *shareds; /**< pointer to block of
pointers to shared vars */
kmp_routine_entry_t routine; /**< pointer to routine
to call for executing task */
kmp_int32 part_id; /**< part id for the
task */
kmp_routine_entry_t destructors; /* pointer to function to
invoke deconstructors of firstprivate C++ objects */
/* private vars */
} kmp_task_t;
New representation:
typedef struct kmp_task { /* GEH: Shouldn't this be
aligned somehow? */
void *shareds; /**< pointer to block of
pointers to shared vars */
kmp_routine_entry_t routine; /**< pointer to routine
to call for executing task */
kmp_int32 part_id; /**< part id for the
task */
kmp_cmplrdata_t data1; /* Two known
optional additions: destructors and priority */
kmp_cmplrdata_t data2; /* Process
destructors first, priority second */
/* future data */
/* private vars */
} kmp_task_t;
Also excessive initialization of 'destructors' fields to 'null' was
removed from codegen if it is known that no destructors shal be used.
Currently a special bit is used in 'kmp_tasking_flags_t' bitfields
('destructors_thunk' bitfield).
llvm-svn: 271201
Summary: This patch implements the code generation for the `target update` directive. The implemntation relies on the logic already in place for target data standalone directives, i.e. target enter/exit data.
Reviewers: hfinkel, carlo.bertolli, arpith-jacob, kkwli0, ABataev
Subscribers: caomhin, cfe-commits
Differential Revision: http://reviews.llvm.org/D20650
llvm-svn: 270886
Summary:
The patch contains the parsing and sema support for the `from` clause.
Patch based on the original post by Kelvin Li.
Reviewers: hfinkel, carlo.bertolli, kkwli0, arpith-jacob, ABataev
Subscribers: caomhin, cfe-commits
Differential Revision: http://reviews.llvm.org/D18488
llvm-svn: 270882
Summary:
The patch contains the parsing and sema support for the `to` clause.
Patch based on the original post by Kelvin Li.
Reviewers: carlo.bertolli, hfinkel, kkwli0, arpith-jacob, ABataev
Subscribers: caomhin, cfe-commits
Differential Revision: http://reviews.llvm.org/D18597
llvm-svn: 270880
Summary:
This patch is to add parsing and sema support for `target update` directive. Support for the `to` and `from` clauses will be added by a different patch. This patch also adds support for other clauses that are already implemented upstream and apply to `target update`, e.g. `device` and `if`.
This patch is based on the original post by Kelvin Li.
Reviewers: hfinkel, carlo.bertolli, kkwli0, arpith-jacob, ABataev
Subscribers: caomhin, cfe-commits
Differential Revision: http://reviews.llvm.org/D15944
llvm-svn: 270878
Getting accurate locations for loops is important, because those locations are
used by the frontend to generate optimization remarks. Currently, optimization
remarks for loops often appear on the wrong line, often the first line of the
loop body instead of the loop itself. This is confusing because that line might
itself be another loop, or might be somewhere else completely if the body was
an inlined function call. This happens because of the way we find the loop's
starting location. First, we look for a preheader, and if we find one, and its
terminator has a debug location, then we use that. Otherwise, we look for a
location on an instruction in the loop header.
The fallback heuristic is not bad, but will almost always find the beginning of
the body, and not the loop statement itself. The preheader location search
often fails because there's often not a preheader, and even when there is a
preheader, depending on how it was formed, it sometimes carries the location of
some preceeding code.
I don't see any good theoretical way to fix this problem. On the other hand,
this seems like a straightforward solution: Put the debug location in the
loop's llvm.loop metadata. When emitting debug information, this commit causes
us to add the debug location as an operand to each loop's llvm.loop metadata.
Thus, we now generate this metadata for all loops (not just loops with
optimization hints) when we're otherwise generating debug information.
The remark test case changes depend on the companion LLVM commit r270771.
llvm-svn: 270772
directives.
If firstprivate variable is is captured by value in outlined region and then used as firstprivate variable in inner worksharing directive, the copy for this firstprivate variable was not created. Fixed this bug.
llvm-svn: 270536
For better performance and to unify code with offloading part we pass
scalar firstprivate values by value, instead of by reference. It will
remove some extra copying operations.
llvm-svn: 269751
directives.
OpenMP 4.5 supports clause 'priority' in task-based directives. Patch
adds initial codegen support for this clause in codegen.
llvm-svn: 269050
schedule modifiers.
Runtime library expects some additional data in schedule argument for
loop-based directives, that have additional schedule modifiers
'monotonic|nonmonotonic'.
llvm-svn: 269035
OpenMP 4.5 adds taskloop/taskloop simd directives. These directives
allow to use lastprivate clause. Patch adds codegen for this clause.
llvm-svn: 268618
OpenMP 4.5 defines 'taskloop simd' directive, which is combined
directive for 'taskloop' and 'simd' directives. Patch adds initial
codegen support for this directive and its 2 basic clauses 'safelen' and
'simdlen'.
llvm-svn: 267872
directive.
OpenMP 4.5 defines 'taskloop' directive and 2 additional clauses
'grainsize' and 'num_tasks' for this directive. Patch adds codegen for
these clauses.
These clauses are generated as arguments of the '__kmpc_taskloop'
libcall and are encoded the following way:
void __kmpc_taskloop(ident_t *loc, int gtid, kmp_task_t *task, int if_val, kmp_uint64 *lb, kmp_uint64 *ub, kmp_int64 st, int nogroup, int sched, kmp_uint64 grainsize, void *task_dup);
If 'grainsize' is specified, 'sched' argument must be set to '1' and
'grainsize' argument must be set to the value of the 'grainsize' clause.
If 'num_tasks' is specified, 'sched' argument must be set to '2' and
'grainsize' argument must be set to the value of the 'num_tasks' clause.
It is possible because these 2 clauses are mutually exclusive and can't
be used at the same time on the same directive.
If none of these clauses is specified, 'sched' argument must be set to
'0'.
llvm-svn: 267862
Summary:
This patch adds support for the target exit data directive code generation.
Given that, apart from the employed runtime call, target exit data requires the same code generation pattern as target enter data, the OpenMP codegen entry point was renamed and reused for both.
Reviewers: hfinkel, carlo.bertolli, arpith-jacob, kkwli0, ABataev
Subscribers: cfe-commits, fraggamuffin, caomhin
Differential Revision: http://reviews.llvm.org/D17369
llvm-svn: 267814
Summary: This patch adds support for the target enter data directive code generation.
Reviewers: hfinkel, carlo.bertolli, arpith-jacob, kkwli0, ABataev
Subscribers: cfe-commits, fraggamuffin, caomhin
Differential Revision: http://reviews.llvm.org/D17368
llvm-svn: 267812
Summary:
This patch adds support for the target data directive code generation.
Part of the already existent functionality related with data maps is moved to a new function so that it could be reused.
Reviewers: hfinkel, carlo.bertolli, arpith-jacob, kkwli0, ABataev
Subscribers: cfe-commits, fraggamuffin, caomhin
Differential Revision: http://reviews.llvm.org/D17367
llvm-svn: 267811
declare reductions.
If reduction clause is applied to instance of class with user-defined
reduction operation without initialization clause, it may cause a crash.
Patch fixes this issue.
llvm-svn: 267695
Currently there is a problem with codegen of inlined directives inside
lambdas, it may cause a crash during codegen because of incorrect
capturing of variables. Patch fixes this problem.
llvm-svn: 267677