This reverts commit ada6595a526d71df04988eb0a4b4fe84df398ded.
This needs a simple probability check because there are some cases where it is
not profitable.
llvm-svn: 291695
The new matchers work after legalization to make them simpler, and to avoid
blocking other optimizations.
Differential Revision: https://reviews.llvm.org/D27779
llvm-svn: 291693
The removed assert seems bogus - it's perfectly legal for the roots of the
vectorized subtrees to be equal even if the original scalar values aren't,
if the original scalars happen to be equivalent.
This fixes PR31599.
Differential Revision: https://reviews.llvm.org/D28539
llvm-svn: 291692
Now we only support returning Optional<> values and have changed all clients over to use Optional::getValueOr().
Differential Revision: https://reviews.llvm.org/D28569
llvm-svn: 291686
Summary:
Revert LowerTypeTests: Split the pass in two: a resolution phase and a lowering phase.
This change separates how type identifiers are resolved from how intrinsic
calls are lowered. All information required to lower an intrinsic call
is stored in a new TypeIdLowering data structure. The idea is that this
data structure can either be initialized using the module itself during
regular LTO, or using the module summary in ThinLTO backends.
Original URL: https://reviews.llvm.org/D28341
Reviewers: pcc
Subscribers: mehdi_amini, llvm-commits
Differential Revision: https://reviews.llvm.org/D28532
llvm-svn: 291684
Decompressor intention is to reduce duplication of code.
Currently LLD has own implementation of decompressor
for compressed debug sections.
This class helps to avoid it and share the code.
LLD patch for reusing it is D28106
Differential revision: https://reviews.llvm.org/D28105
llvm-svn: 291675
A store of an extracted element or a load which gets inserted into a vector,
will be combined into a vector load/store element instruction.
Therefore, isFoldableMemAccessOffset(), which is called by LSR, should
return false in these cases.
Reviewer: Ulrich Weigand
llvm-svn: 291673
Here's my second try at making @llvm.assume processing more efficient. My
previous attempt, which leveraged operand bundles, r289755, didn't end up
working: it did make assume processing more efficient but eliminating the
assumption cache made ephemeral value computation too expensive. This is a
more-targeted change. We'll keep the assumption cache, but extend it to keep a
map of affected values (i.e. values about which an assumption might provide
some information) to the corresponding assumption intrinsics. This allows
ValueTracking and LVI to find assumptions relevant to the value being queried
without scanning all assumptions in the function. The fact that ValueTracking
started doing O(number of assumptions in the function) work, for every
known-bits query, has become prohibitively expensive in some cases.
As discussed during the review, this is a pragmatic fix that, longer term, will
likely be replaced by a more-principled solution (perhaps based on an extended
SSA form).
Differential Revision: https://reviews.llvm.org/D28459
llvm-svn: 291671
DAG patterns optimization: truncate + unsigned saturation supported by VPMOVUS* instructions in AVX-512.
And VPACKUS* instructions on SEE* targets.
Differential Revision: https://reviews.llvm.org/D28216
llvm-svn: 291670
the latter to the Transforms library.
While the loop PM uses an analysis to form the IR units, the current
plan is to have the PM itself establish and enforce both loop simplified
form and LCSSA. This would be a layering violation in the analysis
library.
Fundamentally, the idea behind the loop PM is to *transform* loops in
addition to running passes over them, so it really seemed like the most
natural place to sink this was into the transforms library.
We can't just move *everything* because we also have loop analyses that
rely on a subset of the invariants. So this patch splits the the loop
infrastructure into the analysis management that has to be part of the
analysis library, and the transform-aware pass manager.
This also required splitting the loop analyses' printer passes out to
the transforms library, which makes sense to me as running these will
transform the code into LCSSA in theory.
I haven't split the unittest though because testing one component
without the other seems nearly intractable.
Differential Revision: https://reviews.llvm.org/D28452
llvm-svn: 291662
The code emiited by Clang's intrinsics for (v)cvtsi2ss, (v)cvtsi2sd,
(v)cvtsd2ss and (v)cvtss2sd is lowered to a code sequence that includes
redundant (v)movss/(v)movsd instructions. This patch adds patterns for
optimizing these sequences.
Differential revision: https://reviews.llvm.org/D28455
llvm-svn: 291660
updated instructions:
pmulld, pmullw, pmulhw, mulsd, mulps, mulpd, divss, divps, divsd, divpd, addpd and subpd.
special optimization case which replaces pmulld with pmullw\pmulhw\pshuf seq.
In case if the real operands bitwidth <= 16.
Differential Revision: https://reviews.llvm.org/D28104
llvm-svn: 291657
Summary:
In this change we move the definition of the log reading routines from
the tools directory in LLVM to {include/llvm,lib}/XRay. We improve the
documentation a little bit for the publicly accessible headers, and
adjust the top-matter. This also leads to some refactoring and cleanup
in the tooling code.
In particular, we do the following:
- Rename the class from LogReader to Trace, as it better represents
the logical set of records as opposed to a log.
- Use file type detection instead of asking the user to say what
format the input file is. This allows us to keep the interface
simple and encapsulate the logic of loading the data appropriately.
In future changes we increase the API surface and write dedicated unit
tests for the XRay library.
Depends on D24376.
Reviewers: dblaikie, echristo
Subscribers: mehdi_amini, mgorny, llvm-commits, varno
Differential Revision: https://reviews.llvm.org/D28345
llvm-svn: 291652
arguments much like the CGSCC pass manager.
This is a major redesign following the pattern establish for the CGSCC layer to
support updates to the set of loops during the traversal of the loop nest and
to support invalidation of analyses.
An additional significant burden in the loop PM is that so many passes require
access to a large number of function analyses. Manually ensuring these are
cached, available, and preserved has been a long-standing burden in LLVM even
with the help of the automatic scheduling in the old pass manager. And it made
the new pass manager extremely unweildy. With this design, we can package the
common analyses up while in a function pass and make them immediately available
to all the loop passes. While in some cases this is unnecessary, I think the
simplicity afforded is worth it.
This does not (yet) address loop simplified form or LCSSA form, but those are
the next things on my radar and I have a clear plan for them.
While the patch is very large, most of it is either mechanically updating loop
passes to the new API or the new testing for the loop PM. The code for it is
reasonably compact.
I have not yet updated all of the loop passes to correctly leverage the update
mechanisms demonstrated in the unittests. I'll do that in follow-up patches
along with improved FileCheck tests for those passes that ensure things work in
more realistic scenarios. In many cases, there isn't much we can do with these
until the loop simplified form and LCSSA form are in place.
Differential Revision: https://reviews.llvm.org/D28292
llvm-svn: 291651
These are interesting again because the user may not be aware that this
is a common reason preventing LICM.
A const is removed from an instruction pointer declaration in order to
pass it to ORE.
Differential Revision: https://reviews.llvm.org/D27940
llvm-svn: 291649
Even with aggressive fusion enabled, this requires duplicating
the fmul, or increases an fadd to another fma which is not an
improvement.
llvm-svn: 291642
This was reverted because it would miscompile code where the cmp had
multiple uses. That was due to a deficiency in the existing code, which
was fixed in r291630 (see the PR for details).
This re-commit includes an extra test for the kind of code that got
miscompiled: @test_sub_1_setcc_jcc.
llvm-svn: 291640
We would miscompile the following:
void g(int);
int f(volatile long long *p) {
bool b = __atomic_fetch_add(p, 1, __ATOMIC_SEQ_CST) < 0;
g(b ? 12 : 34);
return b ? 56 : 78;
}
into
pushq %rax
lock incq (%rdi)
movl $12, %eax
movl $34, %edi
cmovlel %eax, %edi
callq g(int)
testq %rax, %rax <---- Bad.
movl $56, %ecx
movl $78, %eax
cmovsl %ecx, %eax
popq %rcx
retq
because the code failed to take into account that the cmp has multiple
uses, replaced one of them, and left the other one comparing garbage.
llvm-svn: 291630
We were starting to get some name clashes between llvm-pdbdump
and the common CodeView framework, so I took this opportunity
to rename a bunch of files to more accurately describe their
usage. This also helps in llvm-pdbdump to distinguish
between different files and whether they are used for pretty
dump mode or raw dump mode.
llvm-svn: 291627
This creates a centralized class in which to store type records.
It stores types as an array of entries, which matches the
notion of a type stream being a topologically sorted DAG.
Logic to build up such a database was already being used in
CVTypeDumper, so CVTypeDumper is now updated to to read from
a TypeDatabase which is filled out by an earlier visitor in
the pipeline.
Differential Revision: https://reviews.llvm.org/D28486
llvm-svn: 291626
This patch reverts r291588: [PGO] Turn off comdat renaming in IR PGO by default,
as we are seeing some hash mismatches in our internal tests.
llvm-svn: 291621
Some of the callers are artificially limiting this transform to integer types;
this should make it easier to incrementally remove that restriction.
llvm-svn: 291620
Summary:
This fixes Transforms/LoopUnroll/runtime-loop3.ll which failed with
EXTENSIVE_DEBUG, because the cloned basic blocks were not added to the
correct sub-loops in LoopUnrollRuntime.cpp.
Reviewers: dexonsmith, mzolotukhin
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D28482
llvm-svn: 291619
Summary:
Previously if you had
* a function with the fast-math-enabled attr, followed by
* a function without the fast-math attr,
the second function would inherit the first function's fast-math-ness.
This means that mixing fast-math and non-fast-math functions in a module
was completely broken unless you explicitly annotated every
non-fast-math function with "unsafe-fp-math"="false". This appears to
have been broken since r176986 (March 2013), when the resetTargetOptions
function was introduced.
This patch tests the correct behavior as best we can. I don't think I
can test FPDenormalMode and NoTrappingFPMath, because they aren't used
in any backends during function lowering. Surprisingly, I also can't
find any uses at all of LessPreciseFPMAD affecting generated code.
The NVPTX/fast-math.ll test changes are an expected result of fixing
this bug. When FMA is disabled, we emit add as "add.rn.f32", which
prevents fma combining. Before this patch, fast-math was enabled in all
functions following the one which explicitly enabled it on itself, so we
were emitting plain "add.f32" where we should have generated
"add.rn.f32".
Reviewers: mkuper
Subscribers: hfinkel, majnemer, jholewinski, nemanjai, llvm-commits
Differential Revision: https://reviews.llvm.org/D28507
llvm-svn: 291618
The original code considered only v2i64 as slow for this feature. This patch
consider all 128-bit long vector types as slow candidates.
In internal tests, extending this feature to all 128-bit vector types
resulted in an overall improvement of 1% on Exynos M1.
Differential revision: https://reviews.llvm.org/D27998
llvm-svn: 291616
Move the code to update LoopInfo for cloned basic blocks to
addClonedBlockToLoopInfo, as suggested in
https://reviews.llvm.org/D28482.
llvm-svn: 291614
Summary:
Convention wisdom says that bytes in Function are precious, and the
vast, vast majority of globals do not live in special sections. Even
when they do, they tend to live in the same section. Store the section
name on the LLVMContext in a StringSet, and maintain a map from
GlobalObject* to section name like we do for metadata, prefix data, etc.
The fact that we've survived this long wasting at least three pointers
of space in Function suggests that Function bytes are perhaps not as
precious as we once thought. Given that most functions have metadata
attachments when debug info is enabled, we might consider adding a
pointer here to make that access more efficient.
Reviewers: jlebar, dexonsmith, mehdi_amini
Subscribers: mehdi_amini, aprantl, llvm-commits
Differential Revision: https://reviews.llvm.org/D28150
llvm-svn: 291613
When choosing the best successor for a block, ordinarily we would have preferred
a block that preserves the CFG unless there is a strong probability the other
direction. For small blocks that can be duplicated we now skip that requirement
as well.
Differential revision: https://reviews.llvm.org/D27742
llvm-svn: 291609
If a vector index is out of bounds, the result is supposed to be
undefined but is not undefined behavior. Change the legalization
for indexing the vector on the stack so that an out of bounds
index does not create an out of bounds memory access.
llvm-svn: 291604
When we collect 2 uses of a function in FindUses and then RAUW when we
visit the first, we end up visiting the wrapper (because the second was
RAUW'd). We still want to use RAUW instead of just Use->set() because
it has special handling for Constants, so this patch just ensures that
only one use of each constant is added to the work list.
Differential Revision: https://reviews.llvm.org/D28504
llvm-svn: 291603