Summary:
Extract the logic for doing reassociations
from DAGCombiner::reassociateOps into a helper
function DAGCombiner::reassociateOpsCommutative,
and use that helper to trigger reassociation
on the original operand order, or the commuted
operand order.
Codegen is not identical since the operand order will
be different when doing the reassociations for the
commuted case. That causes some unfortunate churn in
some test cases. Apart from that this should be NFC.
Reviewers: spatel, craig.topper, tstellar
Reviewed By: spatel
Subscribers: dmgreen, dschuff, jvesely, nhaehnle, javed.absar, sbc100, jgravelle-google, hiraditya, aheejin, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D61199
llvm-svn: 359476
See https://reviews.llvm.org/D47106 for details.
Reviewed By: probinson
Differential Revision: https://reviews.llvm.org/D47171
This commit drops that patch's changes to:
llvm/test/CodeGen/NVPTX/f16x2-instructions.ll
llvm/test/CodeGen/NVPTX/param-load-store.ll
For some reason, the dos line endings there prevent me from commiting
via the monorepo. A follow-up commit (not via the monorepo) will
finish the patch.
llvm-svn: 336843
This replaces most argument uses with loads, but for
now not all.
The code in SelectionDAG for calling convention lowering
is actively harmful for amdgpu_kernel. It attempts to
split the argument types into register legal types, which
results in low quality code for arbitary types. Since
all kernel arguments are passed in memory, we just want the
raw types.
I've tried a couple of methods of mitigating this in SelectionDAG,
but it's easier to just bypass this problem alltogether. It's
possible to hack around the problem in the initial lowering,
but the real problem is the DAG then expects to be able to use
CopyToReg/CopyFromReg for uses of the arguments outside the block.
Exposing the argument loads in the IR also has the advantage
that the LoadStoreVectorizer can merge them.
I'm not sure the best approach to dealing with the IR
argument list is. The patch as-is just leaves the IR arguments
in place, so all the existing code will still compute the same
kernarg size and pointlessly lowers the arguments.
Arguably the frontend should emit kernels with an empty argument
list in the first place. Alternatively a dummy array could be
inserted as a single argument just to reserve space.
This does have some disadvantages. Local pointer kernel arguments can
no longer have AssertZext placed on them as the equivalent !range
metadata is not valid on pointer typed loads. This is mostly bad
for SI which needs to know about the known bits in order to use the
DS instruction offset, so in this case this is not done.
More importantly, this skips noalias arguments since this pass
does not yet convert this to the equivalent !alias.scope and !noalias
metadata. Producing this metadata correctly seems to be tricky,
although this logically is the same as inlining into a function which
doesn't exist. Additionally, exposing these loads to the vectorizer
may result in degraded aliasing information if a pointer load is
merged with another argument load.
I'm also not entirely sure this is preserving the current clover
ABI, although I would greatly prefer if it would stop widening
arguments and match the HSA ABI. As-is I think it is extending
< 4-byte arguments to 4-bytes but doesn't align them to 4-bytes.
llvm-svn: 335650
Try to avoid mutually exclusive features. Don't use
a real default GPU, and use a fake "generic". The goal
is to make it easier to see which set of features are
incompatible between feature strings.
Most of the test changes are due to random scheduling changes
from not having a default fullspeed model.
llvm-svn: 310258
Currently the default C calling convention functions are treated
the same as compute kernels. Make this explicit so the default
calling convention can be changed to a non-kernel.
Converted with perl -pi -e 's/define void/define amdgpu_kernel void/'
on the relevant test directories (and undoing in one place that actually
wanted a non-kernel).
llvm-svn: 298444
Summary:
For shrinking SOPK instructions, we were creating a hint to tell the
register allocator to use the register allocated for src0 for the dst
operand as well. However, this seems to not work sometimes depending
on the order virtual registers are assigned physical registers.
To fix this, I've added a second allocation hint which does the reverse,
asks that the register allocated for dst is used for src0.
Reviewers: arsenm
Subscribers: arsenm, llvm-commits, kzhuravl
Differential Revision: https://reviews.llvm.org/D23862
llvm-svn: 279968
COPY was lacking a scheduling class, define it to avoid regressions in
the upcoming change to the bidirectional MachineScheduler. Approved by
tstellar on IRC.
Differential Revision: http://reviews.llvm.org/D21540
llvm-svn: 273751
In the case where op = add, y = base_ptr, and x = offset, this
transform:
(op y, (op x, c1)) -> (op (op x, y), c1)
breaks the canonical form of add by putting the base pointer in the
second operand and the offset in the first.
This fix is important for the R600 target, because for some address
spaces the base pointer and the offset are stored in separate register
classes. The old pattern caused the ISel code for matching addressing
modes to put the base pointer and offset in the wrong register classes,
which required no-trivial code transformations to fix.
llvm-svn: 262148
The VOP3 encoding of these allows any SGPR pair for the i1
output, but this was forced before to always use vcc.
This doesn't yet try to use this, but does add the operand
to the definitions so the main change is adding vcc to the
output of the VOP2 encoding.
llvm-svn: 246358