I have added tests to:
CodeGen/AArch64/sve-intrinsics-int-arith.ll
for doing simple integer add operations on tuple types. Since these
tests introduced new warnings due to incorrect use of
getVectorNumElements() I have also fixed up these warnings in the
same patch. These fixes are:
1. In narrowExtractedVectorBinOp I have changed the code to bail out
early for scalable vector types, since we've not yet hit a case that
proves the optimisations are profitable for scalable vectors.
2. In DAGTypeLegalizer::WidenVecRes_CONCAT_VECTORS I have replaced
calls to getVectorNumElements with getVectorMinNumElements in cases
that work with scalable vectors. For the other cases I have added
asserts that the vector is not scalable because we should not be
using shuffle vectors and build vectors in such cases.
Differential revision: https://reviews.llvm.org/D84016
Optimize some specific immediates selection by materializing them with sub/mvn
instructions as opposed to loading them from the constant pool.
Patch by Ben Shi, powerman1st@163.com.
Differential Revision: https://reviews.llvm.org/D83745
Previous patches fixed up all the warnings in this test:
llvm/test/CodeGen/AArch64/sve-sext-zext.ll
and this change simply checks that no new warnings are added in future.
Differential revision: https://reviews.llvm.org/D83205
In DAGTypeLegalizer::SplitVecOp_EXTRACT_SUBVECTOR I have replaced
calls to getVectorNumElements with getVectorMinNumElements, since
this code path works for both fixed and scalable vector types. For
scalable vectors the index will be multiplied by VSCALE.
Fixes warnings in this test:
sve-sext-zext.ll
Differential revision: https://reviews.llvm.org/D83198
The current modeling of LLVM IR types in MLIR is based on the LLVMType class
that wraps a raw `llvm::Type *` and delegates uniquing, printing and parsing to
LLVM itself. This is model makes thread-safe type manipulation hard and is
being progressively replaced with a cleaner MLIR model that replicates the type
system. In the new model, LLVMType will no longer have an underlying LLVM IR
type. Restrict access to this type in the current model in preparation for the
change.
Reviewed By: nicolasvasilache
Differential Revision: https://reviews.llvm.org/D84389
In addition to removing phi nodes this patch removes any
landing pad that the dead exit block might have. Without
this fix Verifier complains about a new switch instruction
jumps to a block with a landing pad.
Differential Revision: https://reviews.llvm.org/D84320
cmake was still considering the empty value of ${fake_version_inc}
even if it was not defined.
Reviewed By: vsapsai
Differential Revision: https://reviews.llvm.org/D82847
This introduces the printRelocationsHelper() which now contains the common
code used by both GNU and LLVM output styles.
Differential revision: https://reviews.llvm.org/D83935
Libunwind uses _LIBUNWIND_IS_BAREMETAL in a lot of places but there is no cmake variable to set it. This patch adds such a variable. It is quite like what LIBCXXABI_BAREMETAL does in libcxxabi.
Reviewed By: compnerd, #libunwind
Differential Revision: https://reviews.llvm.org/D84759
Operating on indices and extent tensors directly, the type conversion is no
longer needed for the supported cases.
Differential Revision: https://reviews.llvm.org/D84442
This adds conversions for const_size and to_extent_tensor. Also, cast-like operations are now folded away if the source and target types are the same.
Differential Revision: https://reviews.llvm.org/D84745
If the mask input to getV4X86ShuffleImm8 only refers to a single source element (+ undefs) then canonicalize to a full broadcast.
getV4X86ShuffleImm8 defaults to inline values for undefs, which can be useful for shuffle widening/narrowing but does leave SimplifyDemanded* calls thinking the shuffle depends on unnecessary elements.
I'm still investigating what we should do more generally to avoid these undemanded elements, but broadcast cases was a simpler win.
Conversion of `spv.BranchConditional` now supports branch weights
that are mapped to weights vector in `llvm.cond_br`.
Reviewed By: antiagainst
Differential Revision: https://reviews.llvm.org/D84657
Summary:
It returned an invalid location in case of a constrained-parameter
with no explicit arguments.
Reviewers: hokein
Subscribers: cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D84613
...which is set based on HAVE_RPC_XDR_H. At least Fedora 32 does not have a
/usr/include/rpc/xdr.h, so failed this test introduced with
<https://reviews.llvm.org/D83358> "[Sanitizers] Add interceptor for
xdrrec_create".
Differential Revision: https://reviews.llvm.org/D84740
Added a check for 'Function' storage class in `spv.globalVariable`
verifier since it only can be used with `spv.Variable`.
Reviewed By: antiagainst
Differential Revision: https://reviews.llvm.org/D84731
This patch adds support of Volatile and Nontemporal
memory accesses to `spv.Load` and `spv.Store`. These attributes are
modelled with a `volatile` and `nontemporal` flags.
Reviewed By: antiagainst
Differential Revision: https://reviews.llvm.org/D84739
Function void run() on line 286 overrides a virtual function on line 92 of
clang-tools-extra/clangd/index/dex/dexp/Dexp.cpp. Not marking it override will
cause a build failure when we use -Werror (every warning is treated as an error).
Reviewed By: kbobyrev (Kirill Bobyrev)
Differential Revision: https://reviews.llvm.org/D84794
The test output files whose atime is altered in the test were getting
accessed by Spotlight indexing on macOS, causing them to get an updated
atime and leading to the test not behaving as expected.
Reviewed By: jhenderson, steven_wu
Differential Revision: https://reviews.llvm.org/D84700
We can implement find_first_unset_in() in the same function
if every BitWord we use is first flipped.
Differential Revision: https://reviews.llvm.org/D84717
This introduces the same bug llvm.amdgcn.s.setreg has where if the
user specified an immediate outside of the valid 16-bit range, it will
select into a verifier error.
- Add getArgumentTypes() to Region (missed from before)
- Adopt Region argument API in `hasMultiplyAddBody`
- Fix 2 typos in comments
Differential Revision: https://reviews.llvm.org/D84807
Instead, pattern match extends of extract_subvectors to generate
widening operations. Since extract_subvector is not a legal node, this
is implemented via a custom combine that recognizes extract_subvector
nodes before they are legalized. The combine produces custom ISD nodes
that are later pattern matched directly, just like the intrinsic was.
Also removes the clang builtins for these operations since the
instructions can now be generated from portable code sequences.
Differential Revision: https://reviews.llvm.org/D84556
We already had CMPXCH8B feature on this CPU for the frontend so
this doesn't have much effect.
The FeatureSlowUAMem16 only matters if someone compiles with
-march=lakemont -msse which doesn't make sense, but is consistent
with all our pre-sse4.2 CPUs. Maybe the feature flag should be
FeatureFastUAMem16 and set on the newer CPUs instead.
Currently GlobalISel doesn't force all VGPR phi operands to VGPRs, so
this hit a case where it was queried with a VGPR and SGPR. This could
arguably be a verifier error, but it's currently not.
Add wrapper classes to to access record's fields. This makes it easier to
pass record information to the diverse functions for code generation.
Reviewed By: jdenny
Differential Revision: https://reviews.llvm.org/D84612
Rather than expanding truncating stores so that vectors are stored one
lane at a time, lower them to a sequence of instructions using
narrowing operations instead, when possible. Since the narrowing
operations have saturating semantics, but truncating stores require
truncation, mask the stored value to manually truncate it before
narrowing. Also, since narrowing is a binary operation, pass in the
original vector as the unused second argument.
Differential Revision: https://reviews.llvm.org/D84377
GlobalISel let through a call to null, which would then fold into the
source operand like any other inline immediate. The SelectionDAG
lowering deletes calls to null and undef as a workaround from before
calls were supported. We should probably drop the special handling
case in the DAG lowering now, since the middle end optimizers delete
null calls anyway.