in this call:
Result.IntVal = APInt(80, 2, x);
What is x?
uint16_t x[8];
I deduce that the APInt constructor being used is this one:
APInt(uint32_t numBits, uint64_t val, bool isSigned = false);
rather than this one:
APInt(uint32_t numBits, uint32_t numWords, const uint64_t bigVal[]);
That doesn't seem right! This fix compiles but is otherwise completely
untested.
llvm-svn: 44400
The meaning of getTypeSize was not clear - clarifying it is important
now that we have x86 long double and arbitrary precision integers.
The issue with long double is that it requires 80 bits, and this is
not a multiple of its alignment. This gives a primitive type for
which getTypeSize differed from getABITypeSize. For arbitrary precision
integers it is even worse: there is the minimum number of bits needed to
hold the type (eg: 36 for an i36), the maximum number of bits that will
be overwriten when storing the type (40 bits for i36) and the ABI size
(i.e. the storage size rounded up to a multiple of the alignment; 64 bits
for i36).
This patch removes getTypeSize (not really - it is still there but
deprecated to allow for a gradual transition). Instead there is:
(1) getTypeSizeInBits - a number of bits that suffices to hold all
values of the type. For a primitive type, this is the minimum number
of bits. For an i36 this is 36 bits. For x86 long double it is 80.
This corresponds to gcc's TYPE_PRECISION.
(2) getTypeStoreSizeInBits - the maximum number of bits that is
written when storing the type (or read when reading it). For an
i36 this is 40 bits, for an x86 long double it is 80 bits. This
is the size alias analysis is interested in (getTypeStoreSize
returns the number of bytes). There doesn't seem to be anything
corresponding to this in gcc.
(3) getABITypeSizeInBits - this is getTypeStoreSizeInBits rounded
up to a multiple of the alignment. For an i36 this is 64, for an
x86 long double this is 96 or 128 depending on the OS. This is the
spacing between consecutive elements when you form an array out of
this type (getABITypeSize returns the number of bytes). This is
TYPE_SIZE in gcc.
Since successive elements in a SequentialType (arrays, pointers
and vectors) need to be aligned, the spacing between them will be
given by getABITypeSize. This means that the size of an array
is the length times the getABITypeSize. It also means that GEP
computations need to use getABITypeSize when computing offsets.
Furthermore, if an alloca allocates several elements at once then
these too need to be aligned, so the size of the alloca has to be
the number of elements multiplied by getABITypeSize. Logically
speaking this doesn't have to be the case when allocating just
one element, but it is simpler to also use getABITypeSize in this
case. So alloca's and mallocs should use getABITypeSize. Finally,
since gcc's only notion of size is that given by getABITypeSize, if
you want to output assembler etc the same as gcc then getABITypeSize
is the size you want.
Since a store will overwrite no more than getTypeStoreSize bytes,
and a read will read no more than that many bytes, this is the
notion of size appropriate for alias analysis calculations.
In this patch I have corrected all type size uses except some of
those in ScalarReplAggregates, lib/Codegen, lib/Target (the hard
cases). I will get around to auditing these too at some point,
but I could do with some help.
Finally, I made one change which I think wise but others might
consider pointless and suboptimal: in an unpacked struct the
amount of space allocated for a field is now given by the ABI
size rather than getTypeStoreSize. I did this because every
other place that reserves memory for a type (eg: alloca) now
uses getABITypeSize, and I didn't want to make an exception
for unpacked structs, i.e. I did it to make things more uniform.
This only effects structs containing long doubles and arbitrary
precision integers. If someone wants to pack these types more
tightly they can always use a packed struct.
llvm-svn: 43620
input. APInt unfortunately zero-extends signed integers, so Dale
modified the function to expect zero-extended input. Make this
assumption explicit in the function name.
llvm-svn: 42732
bit width instead of number of words allocated, which
makes it actually work for int->APF conversions.
Adjust callers. Add const to one of the APInt constructors
to prevent surprising match when called with const
argument.
llvm-svn: 42210
Use APFloat in UpgradeParser and AsmParser.
Change all references to ConstantFP to use the
APFloat interface rather than double. Remove
the ConstantFP double interfaces.
Use APFloat functions for constant folding arithmetic
and comparisons.
(There are still way too many places APFloat is
just a wrapper around host float/double, but we're
getting there.)
llvm-svn: 41747
JITer (short path is added for darwin). This is needed to properly JIT llvm-gcc-4.2-built
binaries, since cxa_atexit is enabled by default on much more targets.
llvm-svn: 40600
This commit fixes two things. One is a pair of VStudio compiler errors stemming from variables
which defined within the for loop statement and also within the body of the for loop. I fixed these
by renaming one of the two variables. Additionally, I've made the Function*->ExFunc map in
ExternalFunctions.cpp a ManagedStatic object, so that cleanup will be done on llvm_shutdown. In repeated
uses of the interpreter, where the same Function* address may get used for completely differnet functions,
this was causing a crash.
llvm-svn: 40558
turn "putchar" calls into _IO_putc calls which is a lower-level interface.
This patch allows these calls to be executed by lli in interpreter mode.
llvm-svn: 37254
incorrect results (canonicalization was dropped several commits ago).
2. Add support for fscanf.
3. Suppress a warning about cast to pointer from non-pointer-sized integer.
llvm-svn: 36482
* Rename the FunctionType* parameter from M to FT on all the functions.
* Implement a fix for PR1293 by just asserting that library functions that
must return pointers should have pointer typed results. This just makes
sure that we don't attempt to use an uninitialized integer or something
later on.
llvm-svn: 35508
handling for integer of various sizes. GenericValue now has just a single
integer field of type APInt. We use its facilities directly in the
execution of all instructions.
llvm-svn: 34951
Target DataLayout incorrectly. For now, we'll trust that the module has
got the correct DataLayout. In the future, this needs to be changed to
tell the TargetData to be "current host".
llvm-svn: 34947
field, of type APInt, instead of multiple integer fields. Also, get rid of
the special endianness code in StoreValueToMemory and LoadValueToMemory.
ExecutionEngine is always used to execute on the host platform so this is
now unnecessary.
llvm-svn: 34946
While preparing http://llvm.org/PR1198 I noticed several asserts
protecting unprepared code from i128 types that weren't actually failing
when they should because they were written as assert("foo") instead of
something like assert(0 && "foo"). This patch fixes all the cases that a
quick grep found.
llvm-svn: 34267
This feature is needed in order to support shifts of more than 255 bits
on large integer types. This changes the syntax for llvm assembly to
make shl, ashr and lshr instructions look like a binary operator:
shl i32 %X, 1
instead of
shl i32 %X, i8 1
Additionally, this should help a few passes perform additional optimizations.
llvm-svn: 33776
The Module::setEndianness and Module::setPointerSize methods have been
removed. Instead you can get/set the DataLayout. Adjust thise accordingly.
llvm-svn: 33530
a small inline function to sign extend a uint64_t value based on its
type's bitwidth. This function is then used in both executeSExtInst and
the various executeICMP_S** functions.
llvm-svn: 33403
This is the final patch for this PR. It implements some minor cleanup
in the use of IntegerType, to wit:
1. Type::getIntegerTypeMask -> IntegerType::getBitMask
2. Type::Int*Ty changed to IntegerType* from Type*
3. ConstantInt::getType() returns IntegerType* now, not Type*
This also fixes PR1120.
Patch by Sheng Zhou.
llvm-svn: 33370
not to overflow 64-bits and end up with a 0 mask. This caused i64 values to
always be stored as 0 with lots of consequential damage to nightly test.
llvm-svn: 33335
1. Fix logic for executeGEP. Only 32-bit and 64-bit integer types are
acceptable as indices.
2. Ensure that all integer cast operations truncate their result to the
integer size of the operand.
llvm-svn: 33318
rename Type::getIntegralTypeMask to Type::getIntegerTypeMask.
This makes naming much more consistent. For example, there are now no longer any
instances of IntegerType that are not considered isInteger! :)
llvm-svn: 33225
Implement the arbitrary bit-width integer feature. The feature allows
integers of any bitwidth (up to 64) to be defined instead of just 1, 8,
16, 32, and 64 bit integers.
This change does several things:
1. Introduces a new Derived Type, IntegerType, to represent the number of
bits in an integer. The Type classes SubclassData field is used to
store the number of bits. This allows 2^23 bits in an integer type.
2. Removes the five integer Type::TypeID values for the 1, 8, 16, 32 and
64-bit integers. These are replaced with just IntegerType which is not
a primitive any more.
3. Adjust the rest of LLVM to account for this change.
Note that while this incremental change lays the foundation for arbitrary
bit-width integers, LLVM has not yet been converted to actually deal with
them in any significant way. Most optimization passes, for example, will
still only deal with the byte-width integer types. Future increments
will rectify this situation.
llvm-svn: 33113
recommended that getBoolValue be replaced with getZExtValue and that
get(bool) be replaced by get(const Type*, uint64_t). This implements
those changes.
llvm-svn: 33110
This patch removes the SetCC instructions and replaces them with the ICmp
and FCmp instructions. The SetCondInst instruction has been removed and
been replaced with ICmpInst and FCmpInst.
llvm-svn: 32751
The long awaited CAST patch. This introduces 12 new instructions into LLVM
to replace the cast instruction. Corresponding changes throughout LLVM are
provided. This passes llvm-test, llvm/test, and SPEC CPUINT2000 with the
exception of 175.vpr which fails only on a slight floating point output
difference.
llvm-svn: 31931
This patch converts the old SHR instruction into two instructions,
AShr (Arithmetic) and LShr (Logical). The Shr instructions now are not
dependent on the sign of their operands.
llvm-svn: 31542
Turn on -Wunused and -Wno-unused-parameter. Clean up most of the resulting
fall out by removing unused variables. Remaining warnings have to do with
unused functions (I didn't want to delete code without review) and unused
variables in generated code. Maintainers should clean up the remaining
issues when they see them. All changes pass DejaGnu tests and Olden.
llvm-svn: 31380
Make necessary changes to support DIV -> [SUF]Div. This changes llvm to
have three division instructions: signed, unsigned, floating point. The
bytecode and assembler are bacwards compatible, however.
llvm-svn: 31195
This patch implements the first increment for the Signless Types feature.
All changes pertain to removing the ConstantSInt and ConstantUInt classes
in favor of just using ConstantInt.
llvm-svn: 31063
DLL* linkages got full (I hope) codegeneration support in C & both x86
assembler backends.
External weak linkage added for future use, we don't provide any
codegeneration, etc. support for it.
llvm-svn: 30374
This pass:
1. Splits TargetMachine into TargetMachine (generic targets, can be implemented
any way, like the CBE) and LLVMTargetMachine (subclass of TM that is used by
things using libcodegen and other support).
2. Instead of having each target fully populate the passmgr for file or JIT
output, move all this to common code, and give targets hooks they can
implement.
3. Commonalize the target population stuff between file emission and JIT
emission.
4. All (native code) codegen stuff now happens in a FunctionPassManager, which
paves the way for "fast -O0" stuff in the CFE later, and now LLC could
lazily stream .bc files from disk to use less memory.
5. There are now many fewer #includes and the targets don't depend on the
scalar xforms or libanalysis anymore (but codegen does).
6. Changing common code generator pass ordering stuff no longer requires
touching all targets.
7. The JIT now has the option of "-fast" codegen or normal optimized codegen,
which is now orthogonal to the fact that JIT'ing is being done.
llvm-svn: 30081
I've been told apple gcc version number is not guaranteed to increase
monotonically. Change the preprocess condition to make it less risky.
The configuration change is done during the middle 10.4 life cycle so we have
to check __APPLE_CC. For future OS X release, we should be able to assume
-fenable-cxa-atexit is the default.
llvm-svn: 30024
method.
- Added synchronizeICache() to TargetJITInfo. It is called after each block
of code is emitted to flush the icache. This ensures correct execution
on targets that have separate dcache and icache.
- Added PPC / Mac OS X specific code to do icache flushing.
llvm-svn: 29276
Minor tweaks in public headers and a few .cpp files so that LLVM can build
successfully with -pedantic and projects using LLVM with -pedantic don't
get warnings from LLVM. There's still more -pedantic warnings to fix.
llvm-svn: 28453
1. Change several methods in the MachineCodeEmitter class to be pure virtual.
2. Suck emitConstantPool/initJumpTableInfo into startFunction, removing them
from the MachineCodeEmitter interface, and reducing the amount of target-
specific code.
3. Change the JITEmitter so that it allocates constantpools and jump tables
*right* next to the functions that they belong to, instead of in a separate
pool of memory. This makes all memory for a function be contiguous, and
means the JITEmitter only tracks one block of memory now.
llvm-svn: 28065
code emission location into the base class, instead of being in the derived classes.
This change means that low-level methods like emitByte/emitWord now are no longer
virtual (yaay for speed), and we now have a framework to support growable code
segments. This implements feature request #1 of PR469.
llvm-svn: 28059
x86 and ppc for 100% dense switch statements when relocations are non-PIC.
This support will be extended and enhanced in the coming days to support
PIC, and less dense forms of jump tables.
llvm-svn: 27947
therefore the function being called must be a main() returning an int. The
consequences when these assumptions are false are not good, so don't assume
them.
llvm-svn: 26031
interpretation has begun. The JIT already handles this situation correctly, and
the interpreter can already handle new functions being added.
llvm-svn: 26030
near the GOT, which new doesn't do. So break out the allocate into a new function.
Also move GOT index handling into JITResolver. This lets it update the mapping when a Lazy
function is JITed. It doesn't managed the table, just the mapping. Note that this is
still non-ideal, as any function that takes a function address should also take a GOT
index, but that is a lot of changes. The relocation resolve process updates any GOT entry
it sees is out of date.
llvm-svn: 22537
This patch completes the changes for making lli thread-safe. Here's the list
of changes:
* The Support/ThreadSupport* files were removed and replaced with the
MutexGuard.h file since all ThreadSupport* declared was a Mutex Guard.
The implementation of MutexGuard.h is now based on sys::Mutex which hides
its implementation and makes it unnecessary to have the -NoSupport.h and
-PThreads.h versions of ThreadSupport.
* All places in ExecutionEngine that previously referred to "Mutex" now
refer to sys::Mutex
* All places in ExecutionEngine that previously referred to "MutexLocker"
now refer to MutexGuard (this is frivolous but I believe the technically
correct name for such a class is "Guard" not a "Locker").
These changes passed all of llvm-test. All we need now are some test cases
that actually use multiple threads.
llvm-svn: 22404
since we are dirty, special case __main. This should fix the infinite loop
horrible stuff that happens on linux-alpha when configuring llvm-gcc. It
might also help cygwin, who knows??
llvm-svn: 19729