Split TailDuplicatePass into EarlyTailDuplicate and TailDuplicate. This
avoids playing games with fake pass IDs and using MRI::isSSA() to
determine pre-/post-RA state.
llvm-svn: 322926
Re-commit of r322200: The testcase shouldn't hit machineverifiers
anymore with r322917 in place.
Large callframes (calls with several hundreds or thousands or
parameters) could lead to situations in which the emergency spillslot is
out of range to be addressed relative to the stack pointer.
This commit forces the use of a frame pointer in the presence of large
callframes.
This commit does several things:
- Compute max callframe size at the end of instruction selection.
- Add mirFileLoaded target callback. Use it to compute the max callframe size
after loading a .mir file when the size wasn't specified in the file.
- Let TargetFrameLowering::hasFP() return true if there exists a
callframe > 255 bytes.
- Always place the emergency spillslot close to FP if we have a frame
pointer.
- Note that `useFPForScavengingIndex()` would previously return false
when a base pointer was available leading to the emergency spillslot
getting allocated late (that's the whole effect of this callback).
Which made no sense to me so I took this case out: Even though the
emergency spillslot is technically not referenced by FP in this case
we still want it allocated early.
Differential Revision: https://reviews.llvm.org/D40876
llvm-svn: 322919
Do not create CALLSEQ_START/CALLSEQ_END when there is no callframe to
setup and the callframe size is 0.
- Fixes an invalid callframe nesting for byval arguments, which would
look like this before this patch (as in `big-byval.ll`):
...
ADJCALLSTACKDOWN 32768, 0, ... # Setup for extfunc
...
ADJCALLSTACKDOWN 0, 0, ... # setup for memcpy
...
BL &memcpy ...
ADJCALLSTACKUP 0, 0, ... # destroy for memcpy
...
BL &extfunc
ADJCALLSTACKUP 32768, 0, ... # destroy for extfunc
- Saves us two instructions in the common case of zero-sized stackframes.
- Remove an unnecessary scheduling barrier (hence the small unittest
changes).
Differential Revision: https://reviews.llvm.org/D42006
llvm-svn: 322917
This adds a new instrinsic to support the rdpid instruction. The implementation is a bit weird because the intrinsic is defined as always returning 32-bits, but the assembler support thinks the instruction produces a 64-bit register in 64-bit mode. But really it zeros the upper 32 bits. So I had to add separate patterns where 64-bit mode uses an extract_subreg.
Differential Revision: https://reviews.llvm.org/D42205
llvm-svn: 322910
Summary:
This patch implements d16 support for image load, image store and image sample intrinsics.
Reviewers:
Matt, Brian.
Differential Revision:
https://reviews.llvm.org/D3991
llvm-svn: 322903
Previously, these parts weren't ever checked. The label patterns
need to be extended to match successfully on macho.
Differential Revision: https://reviews.llvm.org/D42126
llvm-svn: 322900
r322086 removed the trailing information describing reg classes for each
register.
This patch adds printing reg classes next to every register when
individual operands/instructions/basic blocks are printed. In the case
of dumping MIR or printing a full function, by default don't print it.
Differential Revision: https://reviews.llvm.org/D42239
llvm-svn: 322867
For example, a build_vector of i64 bitcasted from v2i32 can be turned into a concat_vectors of the v2i32 vectors with a bitcast to a vXi64 type
Differential Revision: https://reviews.llvm.org/D42090
llvm-svn: 322811
Right now, it is not possible to run MachineCSE in the middle of the
GlobalISel pipeline. Being able to run generic optimizations between the
core passes of GlobalISel was one of the goals of the new ISel framework.
This is the first attempt to do it.
The problem is that MachineCSE pass assumes all register operands have a
register class, which, in GlobalISel context, won't be true until after the
InstructionSelect pass. The reason for this behaviour is that before
replacing one virtual register with another, MachineCSE pass (and most of
the other optimization machine passes) must check if the virtual registers'
constraints have a (sufficiently large) intersection, and constrain the
resulting register appropriately if such intersection exists.
GlobalISel extends the representation of such constraints from just a
register class to a triple (low-level type, register bank, register
class).
This commit adds MachineRegisterInfo::constrainRegAttrs method that extends
MachineRegisterInfo::constrainRegClass to such a triple.
The idea is that going forward we should use:
- RegisterBankInfo::constrainGenericRegister within GlobalISel's
InstructionSelect pass
- MachineRegisterInfo::constrainRegClass within SelectionDAG ISel
- MachineRegisterInfo::constrainRegAttrs everywhere else regardless
the target and instruction selector it uses.
Patch by Roman Tereshin. Thanks!
llvm-svn: 322805
Before, it wasn't possible to get backtraces inside outlined functions. This
commit adds DISubprograms to the IR functions created by the outliner which
makes this possible. Also attached a test that ensures that the produced
debug information is correct. This is useful to users that want to debug
outlined code.
llvm-svn: 322789
Every known PE COFF target emits /EXPORT: linker flags into a .drective
section. The AsmPrinter should handle this.
While we're at it, use global_values() and emit each export flag with
its own .ascii directive. This should make the .s file output more
readable.
llvm-svn: 322788
The code wasn't zero-extending correctly, so the comparison could
spuriously fail.
Adds some AArch64 tests to cover this case.
Inspired by D41791.
Differential Revision: https://reviews.llvm.org/D41798
llvm-svn: 322767
It appears that we haven't been prioritizing rules that contain nested
instructions properly. InstructionOperandMatcher didn't override
isHigherPriorityThan so it never compared the instructions/operands/predicates
inside nested instructions.
Fixes PR35926. Thanks to Diana Picus for the bug report.
llvm-svn: 322754
Trying to link
__attribute__((weak, visibility("hidden"))) extern int foo;
int *main(void) {
return &foo;
}
on OS X fails with
ld: 32-bit RIP relative reference out of range (-4294971318 max is +/-2GB): from _main (0x100000FAB) to _foo@0x00001000 (0x00000000) in '_main' from test.o for architecture x86_64
The problem being that 0 cannot be computed as a fixed difference from
%rip. Exactly the same issue exists on ELF and we can use the same
solution.
llvm-svn: 322739
This extends my previous patches to also optimize overflow-checked multiplies during SelectionDAG.
Differential revision: https://reviews.llvm.org/D40922
llvm-svn: 322738
The ARM backend contains code that tries to optimize compares by replacing them with an existing instruction that sets the flags the same way. This allows it to replace a "cmp" with a "adds", generalizing the code that replaces "cmp" with "sub". It also heuristically disables sinking of instructions that could potentially be used to replace compares (currently only if they're next to each other).
Differential revision: https://reviews.llvm.org/D38378
llvm-svn: 322737
If we are splatting pairs of 32-bit elements, we can use a 64-bit broadcast to get the job done.
We could probably could probably do this with other sizes too, for example four 16-bit elements. Or we could broadcast pairs of 16-bit elements using a 32-bit element broadcast. But I've left that as a future improvement.
I've also restricted this to AVX2 only because we can only broadcast loads under AVX.
Differential Revision: https://reviews.llvm.org/D42086
llvm-svn: 322730
We legalize selects of masks with scalar conditions using a bitcast to an integer type. But if we are in 32-bit mode we can't convert v64i1 to i64. So instead split the v64i1 to v32i1 and concat it back together. Each half will then be legalized by bitcasting to i32 which is fine.
The test case is a little indirect. If we have the v64i1 select in IR it will get legalized by legalize vector ops which has a run of type legalization after it. That type legalization run is able to fix this i64 bitcast. So in order to avoid that we need a build_vector of a splat which legalize vector ops will ignore. Legalize DAG will then turn that into a select via LowerBUILD_VECTORvXi1. And the select will get legalized. In this case there is no type legalizer run to cleanup the bitcast.
This fixes pr35972.
llvm-svn: 322724
candidates with coldcc attribute.
This patch adds support for the coldcc calling convention for Power.
This changes the set of non-volatile registers. It includes a pass to stress
test the implementation by marking all static directly called functions with
the coldcc attribute through the option -enable-coldcc-stress-test. It also
includes an option, -ppc-enable-coldcc, to add the coldcc attribute to
functions which are cold at all call sites based on BlockFrequencyInfo when
the containing function does not call any non cold functions.
Differential Revision: https://reviews.llvm.org/D38413
llvm-svn: 322721
BRCTH is capable of a long branch which needs to be recognized during branch
relaxation. This is done by checking for ExtraRelaxSize == 0.
Review: Ulrich Weigand
llvm-svn: 322688
Summary:
Loading a vector of 4 half-precision FP sometimes results in an LD1
of 2 single-precision FP + a reversal. This results in an incorrect
byte swap due to the conversion from little endian to big endian.
In order to generate the correct byte swap, it is easier to
generate the correct LD1 of 4 half-precision FP, thus avoiding the
subsequent reversal.
Reviewers: craig.topper, jmolloy, olista01
Reviewed By: olista01
Subscribers: efriedma, samparker, SjoerdMeijer, rogfer01, aemerson, rengolin, javed.absar, kristof.beyls, llvm-commits
Differential Revision: https://reviews.llvm.org/D41863
llvm-svn: 322663
Mark G_FPEXT and G_FPTRUNC as legal or libcall, depending on hardware
support, but only for conversions between float and double.
Also add the necessary boilerplate so that the LegalizerHelper can
introduce the required libcalls. This also works only for float and
double, but isn't too difficult to extend when the need arises.
llvm-svn: 322651
The match* functions have the annoying behavior of modifying its inputs.
Save and restore the inputs, just in case the early out for AVX512 is
hit. This is still not great and its only a matter of time this kind of
bug happens again, but I couldn't come up with a better pattern without
rewriting significant chunks of this code. Fixes PR35977.
llvm-svn: 322644