zext.h uses the same encoding as pack rd, rs, x0 in rv32 and
packw rd, rs, x0 in rv64. Encodings without x0 as the second source
are not valid in Zbb.
I've added two new instructions with these specific encodings with
predicates that enable them when either Zbb or Zbp is enabled.
The pack spelling will only be accepted with Zbp. The disassembler
will use the zext.h instruction when either feature is enabled.
Using the pack spelling will print as pack when llvm-mc is
emitting text. We could fix this with some custom code in
processInstruction if this is important, but I'm not sure it is.
Reviewed By: asb, frasercrmck
Differential Revision: https://reviews.llvm.org/D94818
This didn't make it into the published 0.93 spec, but it was the
intention.
But it is in the tex source as of this commit
d172f029c0
This means zext.w now requires Zba. Not sure if we should still use
pack if Zbp is enabled and Zba isn't. I'll leave that for the future
when pack is closer to being final.
Reviewed By: asb, frasercrmck
Differential Revision: https://reviews.llvm.org/D94736
NotHasStdExtZbb doesn't have an AssemblerPredicate associated with it
so it didn't do anything. We don't need it either because the sorting
rules in tablegen prioritize by number of predicates. So the
dedicated instructions in the B extension that have predicates
will be prioritized automatically.
If users want to use vector floating point instructions, they need to
specify 'F' extension additionally.
Differential Revision: https://reviews.llvm.org/D93282
There is an in-progress proposal for the following pseudo-instructions
in the assembler, to complement the existing `sext.w` rv64i instruction:
- sext.b
- sext.h
- zext.b
- zext.h
- zext.w
The `.b` and `.h` variants are available with rv32i and rv64i, and `zext.w` is
only available with `rv64i`.
These are implemented primarily as pseudo-instructions, as these instructions
expand to multiple real instructions. In the case of `zext.b`, this expands to a
single rv32/64i instruction, so it is implemented with an InstAlias (like
`sext.w` is on rv64i).
The proposal is available here: https://github.com/riscv/riscv-asm-manual/pull/61
Reviewed By: asb
Differential Revision: https://reviews.llvm.org/D92793
Prior to this the DefaultMode was never selected, but RISCVGenDAGISel.inc, RISCVGenRegisterInfo.inc, RISCVGenGlobalISel.inc all ended up with extra table entries for that mode.
This patch removes the RV32 and uses DefaultMode for RV32. This impressively reduces the size of my release+asserts llc binary by about 270K. About 15K from RISCVGenDAGISel.inc, 1-2K from RISCVGenRegisterInfo.inc, but the vast majority from RISCVGenGlobalISel.inc.
Differential Revision: https://reviews.llvm.org/D90973
Implements the assemble and disassemble support of RISCV Vector
extension zvamo instructions, base on the 0.9 spec version.
Reviewed by HsiangKai
Differential Revision: https://reviews.llvm.org/D85069
This implements the assemble and disassemble support of RISCV Vector
extension Zvlsseg instructions, base on the 0.9 spec version.
Reviewed by HsiangKai
Differential Revision: https://reviews.llvm.org/D84416
Summary:
1. gcc uses `-march` and `-mtune` flag to chose arch and
pipeline model, but clang does not have `-mtune` flag,
we uses `-mcpu` to chose both infos.
2. Add SiFive e31 and u54 cpu which have default march
and pipeline model.
3. Specific `-mcpu` with rocket-rv[32|64] would select
pipeline model only, and use the driver's arch choosing
logic to get default arch.
Reviewers: lenary, asb, evandro, HsiangKai
Reviewed By: lenary, asb, evandro
Tags: #llvm, #clang
Differential Revision: https://reviews.llvm.org/D71124
Assemble/disassemble RISC-V V extension instructions according to
latest version spec in https://github.com/riscv/riscv-v-spec/.
I have tested this patch using GNU toolchain. The encoding is aligned
to GNU assembler output. In this patch, there is a test case for each
instruction at least.
The V register definition is just for assemble/disassemble. Its type
is not important in this stage. I think it will be reviewed and modified
as we want to do codegen for scalable vector types.
This patch does not include Zvamo, Zvlsseg, and Zvediv.
Differential revision: https://reviews.llvm.org/D69987
This adds the instruction encoding and mnenomics for the proposed
RISC-V Bit Manipulation extension (version 0.92). It is implemented with
each category of instruction as its own target feature, with the 'b'
extension feature enabling all options. Since this extension is not yet
ratified, all target features are prefixed with 'experimental-' to note
their status.
Differential Revision: https://reviews.llvm.org/D65649
For context, the proposed RISC-V bit manipulation extension has a subset
of instructions which require one of two SubtargetFeatures to be
enabled, 'zbb' or 'zbp', and there is no defined feature which both of
these can imply to use as a constraint either (see comments in D65649).
AssemblerPredicates allow multiple SubtargetFeatures to be declared in
the "AssemblerCondString" field, separated by commas, and this means
that the two features must both be enabled. There is no equivalent to
say that _either_ feature X or feature Y must be enabled, short of
creating a dummy SubtargetFeature for this purpose and having features X
and Y imply the new feature.
To solve the case where X or Y is needed without adding a new feature,
and to better match a typical TableGen style, this replaces the existing
"AssemblerCondString" with a dag "AssemblerCondDag" which represents the
same information. Two operators are defined for use with
AssemblerCondDag, "all_of", which matches the current behaviour, and
"any_of", which adds the new proposed ORing features functionality.
This was originally proposed in the RFC at
http://lists.llvm.org/pipermail/llvm-dev/2020-February/139138.html
Changes to all current backends are mechanical to support the replaced
functionality, and are NFCI.
At this stage, it is illegal to combine features with ands and ors in a
single AssemblerCondDag. I suspect this case is sufficiently rare that
adding more complex changes to support it are unnecessary.
Differential Revision: https://reviews.llvm.org/D74338
This patch adds the support required for using the __riscv_save and
__riscv_restore libcalls to implement a size-optimization for prologue
and epilogue code, whereby the spill and restore code of callee-saved
registers is implemented by common functions to reduce code duplication.
Logic is also included to ensure that if both this optimization and
shrink wrapping are enabled then the prologue and epilogue code can be
safely inserted into the basic blocks chosen by shrink wrapping.
Differential Revision: https://reviews.llvm.org/D62686
Pipeline scheduler model for the RISC-V Rocket micro-architecture using the
MIScheduler interface. Support for both 32 and 64-bit Rocket cores is
implemented.
Differential revision: https://reviews.llvm.org/D68685
This adds support for printing improved missing feature error messages
from the assembler, which now indicates which feature caused the parse
to fail.
Differential Revision: https://reviews.llvm.org/D69899
This adds support for reserving GPRs such that the compiler will not
choose a register for register allocation. The implementation follows
the same design as for AArch64; each reserved register becomes a target
feature and used for getting the reserved registers for a given
MachineFunction. The backend checks that it does not need to write to
any reserved register; if it does a relevant error is generated.
Differential Revision: https://reviews.llvm.org/D67185
The hint instructions are enabled by default (if the standard C extension is
enabled). To disable them pass -mattr=-rvc-hints.
Differential Revision: https://reviews.llvm.org/D62592
llvm-svn: 369528
The RISC-V ISA defines RV32E as an alternative "base" instruction set
encoding, that differs from RV32I by having only 16 rather than 32 registers.
This patch adds basic definitions for RV32E as well as MC layer support
(assembling, disassembling) and tests. The only supported ABI on RV32E is
ILP32E.
Add a new RISCVFeatures::validate() helper to RISCVUtils which can be called
from codegen or MC layer libraries to validate the combination of TargetTriple
and FeatureBitSet. Other targets have similar checks (e.g. erroring if SPE is
enabled on PPC64 or oddspreg + o32 ABI on Mips), but they either duplicate the
checks (Mips), or fail to check for both codegen and MC codepaths (PPC).
Codegen for the ILP32E ABI support and RV32E codegen are left for a future
patch/patches.
Differential Revision: https://reviews.llvm.org/D59470
llvm-svn: 356744
to reflect the new license.
We understand that people may be surprised that we're moving the header
entirely to discuss the new license. We checked this carefully with the
Foundation's lawyer and we believe this is the correct approach.
Essentially, all code in the project is now made available by the LLVM
project under our new license, so you will see that the license headers
include that license only. Some of our contributors have contributed
code under our old license, and accordingly, we have retained a copy of
our old license notice in the top-level files in each project and
repository.
llvm-svn: 351636
1. Deine FeatureRelax to enable/disable linker relaxation.
2. Define shouldForceRelocation to preserve relocation types even if the fixup
can be resolved when linker relaxation enabled. This is necessary for
correctness as offsets may change during relaxation.
Differential Revision: https://reviews.llvm.org/D46674
llvm-svn: 332318
Summary:
Add a target option AllowRegisterRenaming that is used to opt in to
post-register-allocation renaming of registers. This is set to 0 by
default, which causes the hasExtraSrcRegAllocReq/hasExtraDstRegAllocReq
fields of all opcodes to be set to 1, causing
MachineOperand::isRenamable to always return false.
Set the AllowRegisterRenaming flag to 1 for all in-tree targets that
have lit tests that were effected by enabling COPY forwarding in
MachineCopyPropagation (AArch64, AMDGPU, ARM, Hexagon, Mips, PowerPC,
RISCV, Sparc, SystemZ and X86).
Add some more comments describing the semantics of the
MachineOperand::isRenamable function and how it is set and maintained.
Change isRenamable to check the operand's opcode
hasExtraSrcRegAllocReq/hasExtraDstRegAllocReq bit directly instead of
relying on it being consistently reflected in the IsRenamable bit
setting.
Clear the IsRenamable bit when changing an operand's register value.
Remove target code that was clearing the IsRenamable bit when changing
registers/opcodes now that this is done conservatively by default.
Change setting of hasExtraSrcRegAllocReq in AMDGPU target to be done in
one place covering all opcodes that have constant pipe read limit
restrictions.
Reviewers: qcolombet, MatzeB
Subscribers: aemerson, arsenm, jyknight, mcrosier, sdardis, nhaehnle, javed.absar, tpr, arichardson, kristof.beyls, kbarton, fedor.sergeev, asb, rbar, johnrusso, simoncook, jordy.potman.lists, apazos, sabuasal, niosHD, escha, nemanjai, llvm-commits
Differential Revision: https://reviews.llvm.org/D43042
llvm-svn: 325931
Adds the assembler pseudo instructions of RV32I and RV64I which can
be mapped to a single canonical instruction. The missing pseudo
instructions (e.g., call, tail, ...) are marked as TODO. Other
things, like for example PCREL_LO, have to be implemented first.
Currently, alias emission is disabled by default to keep the patch
minimal. Alias emission by default will be enabled in a subsequent
patch which also updates all affected tests. Note that this patch
should actually break the floating point MC tests. However, the
used FileCheck configuration is not tight enought to detect the
breakage.
Differential Revision: https://reviews.llvm.org/D40902
Patch by Mario Werner.
llvm-svn: 320487
As the FPR32 and FPR64 registers have the same names, use
validateTargetOperandClass in RISCVAsmParser to coerce a parsed FPR32 to an
FPR64 when necessary. The rest of this patch is very similar to the RV32F
patch.
Differential Revision: https://reviews.llvm.org/D39895
llvm-svn: 320023
The most interesting part of this patch is probably the handling of
rounding mode arguments. Sadly, the RISC-V assembler handles floating point
rounding modes as a special "argument" when it would be more consistent to
handle them like the atomics, opcode suffixes. This patch supports parsing
this optional parameter, using InstAlias to allow parsing these floating point
instructions when no rounding mode is specified.
Differential Revision: https://reviews.llvm.org/D39893
llvm-svn: 320020
rL162640 introduced CodeGenTarget::guessInstructionProperties. If a target
sets guessInstructionProperties=0 in its FooInstrInfo, tablegen will error if
it has to guess properties from patterns. Unfortunately,
guessInstructionProperties=0 can't be used with current upstream LLVM as
instructions in the TargetOpcode namespace are always included and sometimes
have inferred properties for mayLoad, mayStore, and hasSideEffects. This patch
provides the simplest possible fix to this problem, setting default values for
these fields in the TargetOpcode scope. There is no intended functional
change, as the explicitly set properties should match what was previously
inferred. A number of the instructions had hasSideEffects=1 inferred
unintentionally. This patch makes it explicit, while future patches (such as
D37097) correct the property.
Differential Revision: https://reviews.llvm.org/D37065
llvm-svn: 317674
This adds the minimum necessary to support codegen for simple ALU operations
on RV32. Prolog and epilog insertion, support for memory operations etc etc
follow in future patches.
Leave guessInstructionProperties=1 until https://reviews.llvm.org/D37065 is
reviewed and lands.
Differential Revision: https://reviews.llvm.org/D29933
llvm-svn: 316188
While parameterising by XLen, also take the opportunity to clean up the
formatting of the RISCV .td files.
This commit unifies the in-tree code with my patchset at
<https://github.com/lowrisc/riscv-llvm>.
llvm-svn: 316159
This doesn't yet support parsing things like %pcrel_hi(foo), but will handle
basic instructions with register or immediate operands.
Differential Revision: https://reviews.llvm.org/D23563
llvm-svn: 310361