Summary:
For builds with LLVM_BUILD_LLVM_DYLIB=ON and BUILD_SHARED_LIBS=OFF
this change makes all symbols in the target specific libraries hidden
by default.
A new macro called LLVM_EXTERNAL_VISIBILITY has been added to mark symbols in these
libraries public, which is mainly needed for the definitions of the
LLVMInitialize* functions.
This patch reduces the number of public symbols in libLLVM.so by about
25%. This should improve load times for the dynamic library and also
make abi checker tools, like abidiff require less memory when analyzing
libLLVM.so
One side-effect of this change is that for builds with
LLVM_BUILD_LLVM_DYLIB=ON and LLVM_LINK_LLVM_DYLIB=ON some unittests that
access symbols that are no longer public will need to be statically linked.
Before and after public symbol counts (using gcc 8.2.1, ld.bfd 2.31.1):
nm before/libLLVM-9svn.so | grep ' [A-Zuvw] ' | wc -l
36221
nm after/libLLVM-9svn.so | grep ' [A-Zuvw] ' | wc -l
26278
Reviewers: chandlerc, beanz, mgorny, rnk, hans
Reviewed By: rnk, hans
Subscribers: Jim, hiraditya, michaelplatings, chapuni, jholewinski, arsenm, dschuff, jyknight, dylanmckay, sdardis, nemanjai, jvesely, nhaehnle, javed.absar, sbc100, jgravelle-google, aheejin, kbarton, fedor.sergeev, asb, rbar, johnrusso, simoncook, apazos, sabuasal, niosHD, jrtc27, zzheng, edward-jones, mgrang, atanasyan, rogfer01, MartinMosbeck, brucehoult, the_o, PkmX, jocewei, kristina, jsji, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D54439
llvm-svn: 362990
BPFMCTargetDesc.cpp was not using any APIs from BPF.h. Doing so is
problematic from include-what-you-use perspective, but it is also a
layering issue (it creates a dependency cycle between the primary
BPF target library and the MCTargetDesc library).
llvm-svn: 362368
The variables in BTF DataSec type encode in-section offset.
R_BPF_NONE should be generated instead of R_BPF_64_32.
Signed-off-by: Yonghong Song <yhs@fb.com>
Differential Revision: https://reviews.llvm.org/D62460
llvm-svn: 361742
Move the declarations of getThe<Name>Target() functions into a new header in
TargetInfo and make users of these functions include this new header.
This fixes a layering problem.
llvm-svn: 360722
Currently, without -g, BTF sections may still be emitted with
data sections, e.g., for linux kernel bpf selftest
test_tcp_check_syncookie_kern.c issue discovered by Martin
as shown below.
-bash-4.4$ bpftool btf dump file test_tcp_check_syncookie_kern.o
[1] VAR 'results' type_id=0, linkage=global-alloc
[2] VAR '_license' type_id=0, linkage=global-alloc
[3] DATASEC 'license' size=0 vlen=1
type_id=2 offset=0 size=4
[4] DATASEC 'maps' size=0 vlen=1
type_id=1 offset=0 size=28
Let disable BTF generation if no debuginfo, which is
the original design.
Signed-off-by: Yonghong Song <yhs@fb.com>
Differential Revision: https://reviews.llvm.org/D61826
llvm-svn: 360556
For some targets, there is a circular dependency between InstPrinter and
MCTargetDesc. Merging them together will fix this. For the other targets,
the merging is to maintain consistency so all targets will have the same
structure.
llvm-svn: 360494
TypedDINodeRef<T> is a redundant wrapper of Metadata * that is actually a T *.
Accordingly, change DI{Node,Scope,Type}Ref uses to DI{Node,Scope,Type} * or their const variants.
This allows us to delete many resolve() calls that clutter the code.
Reviewed By: rnk
Differential Revision: https://reviews.llvm.org/D61369
llvm-svn: 360108
The MachineFunction wasn't used in getOptimalMemOpType, but more importantly,
this allows reuse of findOptimalMemOpLowering that is calling getOptimalMemOpType.
This is the groundwork for the changes in D59766 and D59787, that allows
implementation of TTI::getMemcpyCost.
Differential Revision: https://reviews.llvm.org/D59785
llvm-svn: 359537
Summary:
Targets like ARM, MSP430, PPC, and SystemZ have complex behavior when
printing the address of a MachineOperand::MO_GlobalAddress. Move that
handling into a new overriden method in each base class. A virtual
method was added to the base class for handling the generic case.
Refactors a few subclasses to support the target independent %a, %c, and
%n.
The patch also contains small cleanups for AVRAsmPrinter and
SystemZAsmPrinter.
It seems that NVPTXTargetLowering is possibly missing some logic to
transform GlobalAddressSDNodes for
TargetLowering::LowerAsmOperandForConstraint to handle with "i" extended
inline assembly asm constraints.
Fixes:
- https://bugs.llvm.org/show_bug.cgi?id=41402
- https://github.com/ClangBuiltLinux/linux/issues/449
Reviewers: echristo, void
Reviewed By: void
Subscribers: void, craig.topper, jholewinski, dschuff, jyknight, dylanmckay, sdardis, nemanjai, javed.absar, sbc100, jgravelle-google, eraman, kristof.beyls, hiraditya, aheejin, kbarton, fedor.sergeev, jrtc27, atanasyan, jsji, llvm-commits, kees, tpimh, nathanchance, peter.smith, srhines
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D60887
llvm-svn: 359337
Summary:
The InlineAsm::AsmDialect is only required for X86; no architecture
makes use of it and as such it gets passed around between arch-specific
and general code while being unused for all architectures but X86.
Since the AsmDialect is queried from a MachineInstr, which we also pass
around, remove the additional AsmDialect parameter and query for it deep
in the X86AsmPrinter only when needed/as late as possible.
This refactor should help later planned refactors to AsmPrinter, as this
difference in the X86AsmPrinter makes it harder to make AsmPrinter more
generic.
Reviewers: craig.topper
Subscribers: jholewinski, arsenm, dschuff, jyknight, dylanmckay, sdardis, nemanjai, jvesely, nhaehnle, javed.absar, sbc100, jgravelle-google, eraman, hiraditya, aheejin, kbarton, fedor.sergeev, asb, rbar, johnrusso, simoncook, apazos, sabuasal, niosHD, jrtc27, zzheng, edward-jones, atanasyan, rogfer01, MartinMosbeck, brucehoult, the_o, PkmX, jocewei, jsji, llvm-commits, peter.smith, srhines
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D60488
llvm-svn: 358101
For multi-dimensional array like below
int a[2][3];
the previous implementation generates BTF_KIND_ARRAY type
like below:
. element_type: int
. index_type: unsigned int
. number of elements: 6
This is not the best way to represent arrays, esp.,
when converting BTF back to headers and users will see
int a[6];
instead.
This patch generates proper support for multi-dimensional arrays.
For "int a[2][3]", the two BTF_KIND_ARRAY types will be
generated:
Type #n:
. element_type: int
. index_type: unsigned int
. number of elements: 3
Type #(n+1):
. element_type: #n
. index_type: unsigned int
. number of elements: 2
The linux kernel already supports such a multi-dimensional
array representation properly.
Signed-off-by: Yonghong Song <yhs@fb.com>
Differential Revision: https://reviews.llvm.org/D59943
llvm-svn: 357215
The .BTF.ext FuncInfoTable and LineInfoTable contain
information organized per ELF section. Current definition
of FuncInfoTable/LineInfoTable is:
std::unordered_map<uint32_t, std::vector<BTFFuncInfo>> FuncInfoTable
std::unordered_map<uint32_t, std::vector<BTFLineInfo>> LineInfoTable
where the key is the section name off in the string table.
The unordered_map may cause the order of section output
different for different platforms.
The same for unordered map definition of
std::unordered_map<std::string, std::unique_ptr<BTFKindDataSec>>
DataSecEntries
where BTF_KIND_DATASEC entries may have different ordering
for different platforms.
This patch fixed the issue by using std::map.
Test static-var-derived-type.ll is modified to generate two
DataSec's which will ensure the ordering is the same for all
supported platforms.
Signed-off-by: Yonghong Song <yhs@fb.com>
llvm-svn: 357077
Currently, the type id for a derived type is computed incorrectly.
For example,
type #1: int
type #2: ptr to #1
For a global variable "int *a", type #1 will be attributed to variable "a".
This is due to a bug which assigns the type id of the basetype of
that derived type as the derived type's type id. This happens
to "const", "volatile", "restrict", "typedef" and "pointer" types.
This patch fixed this bug, fixed existing test cases and added
a new one focusing on pointers plus other derived types.
Signed-off-by: Yonghong Song <yhs@fb.com>
llvm-svn: 356727
Two new kinds, BTF_KIND_VAR and BTF_KIND_DATASEC, are added.
BTF_KIND_VAR has the following specification:
btf_type.name: var name
btf_type.info: type kind
btf_type.type: var type
// btf_type is followed by one u32
u32: varinfo (currently, only 0 - static, 1 - global allocated in elf sections)
Not all globals are supported in this patch. The following globals are supported:
. static variables with or without section attributes
. global variables with section attributes
The inclusion of globals with section attributes
is for future potential extraction of key/value
type id's from map definition.
BTF_KIND_DATASEC has the following specification:
btf_type.name: section name associated with variable or
one of .data/.bss/.readonly
btf_type.info: type kind and vlen for # of variables
btf_type.size: 0
#vlen number of the following:
u32: id of corresponding BTF_KIND_VAR
u32: in-session offset of the var
u32: the size of memory var occupied
At the time of debug info emission, the data section
size is unknown, so the btf_type.size = 0 for
BTF_KIND_DATASEC. The loader can patch it during
loading time.
The in-session offseet of the var is only available
for static variables. For global variables, the
loader neeeds to assign the global variable symbol value in
symbol table to in-section offset.
The size of memory is used to specify the amount of the
memory a variable occupies. Typically, it equals to
the type size, but for certain structures, e.g.,
struct tt {
int a;
int b;
char c[];
};
static volatile struct tt s2 = {3, 4, "abcdefghi"};
The static variable s2 has size of 20.
Note that for BTF_KIND_DATASEC name, the section name
does not contain object name. The compiler does have
input module name. For example, two cases below:
. clang -target bpf -O2 -g -c test.c
The compiler knows the input file (module) is test.c
and can generate sec name like test.data/test.bss etc.
. clang -target bpf -O2 -g -emit-llvm -c test.c -o - |
llc -march=bpf -filetype=obj -o test.o
The llc compiler has the input file as stdin, and
would generate something like stdin.data/stdin.bss etc.
which does not really make sense.
For any user specificed section name, e.g.,
static volatile int a __attribute__((section("id1")));
static volatile const int b __attribute__((section("id2")));
The DataSec with name "id1" and "id2" does not contain
information whether the section is readonly or not.
The loader needs to check the corresponding elf section
flags for such information.
A simple example:
-bash-4.4$ cat t.c
int g1;
int g2 = 3;
const int g3 = 4;
static volatile int s1;
struct tt {
int a;
int b;
char c[];
};
static volatile struct tt s2 = {3, 4, "abcdefghi"};
static volatile const int s3 = 4;
int m __attribute__((section("maps"), used)) = 4;
int test() { return g1 + g2 + g3 + s1 + s2.a + s3 + m; }
-bash-4.4$ clang -target bpf -O2 -g -S t.c
Checking t.s, 4 BTF_KIND_VAR's are generated (s1, s2, s3 and m).
4 BTF_KIND_DATASEC's are generated with names
".data", ".bss", ".rodata" and "maps".
Signed-off-by: Yonghong Song <yhs@fb.com>
Differential Revision: https://reviews.llvm.org/D59441
llvm-svn: 356326
Previous commit 6bc58e6d3dbd ("[BPF] do not generate unused local/global types")
tried to exclude global variable from type generation. The condition is:
if (Global.hasExternalLinkage())
continue;
This is not right. It also excluded initialized globals.
The correct condition (from AssemblyWriter::printGlobal()) is:
if (!GV->hasInitializer() && GV->hasExternalLinkage())
Out << "external ";
Let us do the same in BTF type generation. Also added a test for it.
Signed-off-by: Yonghong Song <yhs@fb.com>
llvm-svn: 356279
The kernel currently has a limit for # of types to be 64KB and
the size of string subsection to be 64KB. A simple bcc tool
runqlat.py generates:
. the size of ~33KB type section, roughly ~10K types
. the size of ~17KB string section
The majority type is from the types referenced by local
variables in the bpf program. For example, the kernel "task_struct"
itself recursively brings in ~900 other types.
This patch did the following optimization to avoid generating
unused types:
. do not generate types for local variables unless they are
function arguments.
. do not generate types for external globals.
If an external global is not used in the program, llvm
already removes it from IR, so global variable saving is
typical small. For runqlat.py, only one variable "llvm.used"
is the external global.
The types for locals and external globals can be added back
once there is a usage for them.
After the above optimization, the runqlat.py generates:
. the size of ~1.5KB type section, roughtly 500 types
. the size of ~0.7KB string section
UPDATE:
resubmitted the patch after previous revert with
the following fix:
use Global.hasExternalLinkage() to test "external"
linkage instead of using Global.getInitializer(),
which will assert on external variables.
Signed-off-by: Yonghong Song <yhs@fb.com>
llvm-svn: 356234
The kernel currently has a limit for # of types to be 64KB and
the size of string subsection to be 64KB. A simple bcc tool
runqlat.py generates:
. the size of ~33KB type section, roughly ~10K types
. the size of ~17KB string section
The majority type is from the types referenced by local
variables in the bpf program. For example, the kernel "task_struct"
itself recursively brings in ~900 other types.
This patch did the following optimization to avoid generating
unused types:
. do not generate types for local variables unless they are
function arguments.
. do not generate types for external globals.
If an external global is not used in the program, llvm
already removes it from IR, so global variable saving is
typical small. For runqlat.py, only one variable "llvm.used"
is the external global.
The types for locals and external globals can be added back
once there is a usage for them.
After the above optimization, the runqlat.py generates:
. the size of ~1.5KB type section, roughtly 500 types
. the size of ~0.7KB string section
Signed-off-by: Yonghong Song <yhs@fb.com>
llvm-svn: 356232
AMDGPU target run out of Subtarget feature flags hitting the limit of 64.
AssemblerPredicates uses at most uint64_t for their representation.
At the same time CodeGen has exhausted this a long time ago and switched
to a FeatureBitset with the current limit of 192 bits.
This patch completes transition to the bitset for feature bits extending
it to asm matcher and MC code emitter.
Differential Revision: https://reviews.llvm.org/D59002
llvm-svn: 355839
If There is no types/non-empty strings, do not generate
.BTF section. If there is no func_info/line_info, do
not generate .BTF.ext section.
Signed-off-by: Yonghong Song <yhs@fb.com>
Differential Revision: https://reviews.llvm.org/D58936
llvm-svn: 355360
Like the other load/store instructions, "w" register is preferred when
disassembling BPF_STX | BPF_W | BPF_XADD.
v1 -> v2:
- Updated testcase insn-unit.s (Yonghong)
Acked-by: Yonghong Song <yhs@fb.com>
Signed-off-by: Jiong Wang <jiong.wang@netronome.com>
llvm-svn: 355127
Support sub-register code-gen for XADD is like supporting any other Load
and Store patterns.
No new instruction is introduced.
lock *(u32 *)(r1 + 0) += w2
has exactly the same underlying insn as:
lock *(u32 *)(r1 + 0) += r2
BPF_W width modifier has guaranteed they behave the same at runtime. This
patch merely teaches BPF back-end that BPF_W width modifier could work
GPR32 register class and that's all needed for sub-register code-gen
support for XADD.
test/CodeGen/BPF/xadd.ll updated to include sub-register code-gen tests.
A new testcase test/CodeGen/BPF/xadd_legal.ll is added to make sure the
legal case could pass on all code-gen modes. It could also test dead Def
check on GPR32. If there is no proper handling like what has been done
inside BPFMIChecking.cpp:hasLivingDefs, then this testcase will fail.
Acked-by: Yonghong Song <yhs@fb.com>
Signed-off-by: Jiong Wang <jiong.wang@netronome.com>
llvm-svn: 355126
BPF XADD semantics require all Defs of XADD are dead, meaning any result of
XADD insn is not used.
However, BPF backend hasn't enabled sub-register liveness track, so when
the source and destination operands of XADD are GPR32, there is no
sub-register dead info. If we rely on the generic
MachineInstr::allDefsAreDead, then we will raise false alarm on GPR32 Def.
This was fine as there was no sub-register code-gen support for XADD which
will be added by the next patch.
To support GPR32 Def, ideally we could just enable sub-registr liveness
track on BPF backend, then allDefsAreDead could work on GPR32 Def. This
requires implementing TargetSubtargetInfo::enableSubRegLiveness on BPF.
However, sub-register liveness tracking module inside LLVM is actually
designed for the situation where one register could be split into more
than one sub-registers for which case each sub-register could have their
own liveness and kill one of them doesn't kill others. So, tracking
liveness for each make sense.
For BPF, each 64-bit register could only have one 32-bit sub-register. This
is exactly the case which LLVM think brings no benefits for doing
sub-register tracking, because the live range of sub-register must always
equal to its parent register, therefore liveness tracking is disabled even
the back-end has implemented enableSubRegLiveness. The detailed information
is at r232695:
Author: Matthias Braun <matze@braunis.de>
Date: Thu Mar 19 00:21:58 2015 +0000
Do not track subregister liveness when it brings no benefits
Hence, for BPF, we enhance MachineInstr::allDefsAreDead. Given the solo
sub-register always has the same liveness as its parent register, LLVM is
already attaching a implicit 64-bit register Def whenever the there is
a sub-register Def. The liveness of the implicit 64-bit Def is available.
For example, for "lock *(u32 *)(r0 + 4) += w9", the MachineOperand info
could be:
$w9 = XADDW32 killed $r0, 4, $w9(tied-def 0),
implicit killed $r9, implicit-def dead $r9
Even though w9 is not marked as Dead, the parent register r9 is marked as
Dead correctly, and it is safe to use such information or our purpose.
v1 -> v2:
- Simplified code logic inside hasLiveDefs. (Yonghong)
Acked-by: Yonghong Song <yhs@fb.com>
Signed-off-by: Jiong Wang <jiong.wang@netronome.com>
llvm-svn: 355124
Currently, the LLVM will print an error like
Unsupported relocation: try to compile with -O2 or above,
or check your static variable usage
if user defines more than one static variables in a single
ELF section (e.g., .bss or .data).
There is ongoing effort to support static and global
variables in libbpf and kernel. This patch removed the
assertion so user programs with static variables won't
fail compilation.
The static variable in-section offset is written to
the "imm" field of the corresponding to-be-relocated
bpf instruction. Below is an example to show how the
application (e.g., libbpf) can relate variable to relocations.
-bash-4.4$ cat g1.c
static volatile long a = 2;
static volatile int b = 3;
int test() { return a + b; }
-bash-4.4$ clang -target bpf -O2 -c g1.c
-bash-4.4$ llvm-readelf -r g1.o
Relocation section '.rel.text' at offset 0x158 contains 2 entries:
Offset Info Type Symbol's Value Symbol's Name
0000000000000000 0000000400000001 R_BPF_64_64 0000000000000000 .data
0000000000000018 0000000400000001 R_BPF_64_64 0000000000000000 .data
-bash-4.4$ llvm-readelf -s g1.o
Symbol table '.symtab' contains 6 entries:
Num: Value Size Type Bind Vis Ndx Name
0: 0000000000000000 0 NOTYPE LOCAL DEFAULT UND
1: 0000000000000000 0 FILE LOCAL DEFAULT ABS g1.c
2: 0000000000000000 8 OBJECT LOCAL DEFAULT 4 a
3: 0000000000000008 4 OBJECT LOCAL DEFAULT 4 b
4: 0000000000000000 0 SECTION LOCAL DEFAULT 4
5: 0000000000000000 64 FUNC GLOBAL DEFAULT 2 test
-bash-4.4$ llvm-objdump -d g1.o
g1.o: file format ELF64-BPF
Disassembly of section .text:
0000000000000000 test:
0: 18 01 00 00 00 00 00 00 00 00 00 00 00 00 00 00 r1 = 0 ll
2: 79 11 00 00 00 00 00 00 r1 = *(u64 *)(r1 + 0)
3: 18 02 00 00 08 00 00 00 00 00 00 00 00 00 00 00 r2 = 8 ll
5: 61 20 00 00 00 00 00 00 r0 = *(u32 *)(r2 + 0)
6: 0f 10 00 00 00 00 00 00 r0 += r1
7: 95 00 00 00 00 00 00 00 exit
-bash-4.4$
. from symbol table, static variable "a" is in section #4, offset 0.
. from symbol table, static variable "b" is in section #4, offset 8.
. the first relocation is against symbol #4:
4: 0000000000000000 0 SECTION LOCAL DEFAULT 4
and in-section offset 0 (see llvm-objdump result)
. the second relocation is against symbol #4:
4: 0000000000000000 0 SECTION LOCAL DEFAULT 4
and in-section offset 8 (see llvm-objdump result)
. therefore, the first relocation is for variable "a", and
the second relocation is for variable "b".
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Yonghong Song <yhs@fb.com>
llvm-svn: 354954
JMP32 instructions has been added to eBPF ISA. They are 32-bit variants of
existing BPF conditional jump instructions, but the comparison happens on
low 32-bit sub-register only, therefore some unnecessary extensions could
be saved.
JMP32 instructions will only be available for -mcpu=v3. Host probe hook has
been updated accordingly.
JMP32 instructions will only be enabled in code-gen when -mattr=+alu32
enabled, meaning compiling the program using sub-register mode.
For JMP32 encoding, it is a new instruction class, and is using the
reserved eBPF class number 0x6.
This patch has been tested by compiling and running kernel bpf selftests
with JMP32 enabled.
Acked-by: Yonghong Song <yhs@fb.com>
Signed-off-by: Jiong Wang <jiong.wang@netronome.com>
llvm-svn: 353384
In IR, sometimes the following attributes for DIFile may be
generated:
filename: /home/yhs/test.c
directory: /tmp
The /tmp may represent the working directory of the compilation
process.
In such cases, since filename is with absolute path,
the directory should be ignored by BTF. The filename alone is
enough to get the source.
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Yonghong Song <yhs@fb.com>
llvm-svn: 352952
In IR, sometimes the following attributes for DIFile may be
generated:
filename: /home/yhs/test.c
directory: /tmp
The /tmp may represent the working directory of the compilation
process.
In such cases, since filename is with absolute path,
the directory should be ignored by BTF. The filename alone is
enough to get the source.
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Yonghong Song <yhs@fb.com>
llvm-svn: 352939
to reflect the new license.
We understand that people may be surprised that we're moving the header
entirely to discuss the new license. We checked this carefully with the
Foundation's lawyer and we believe this is the correct approach.
Essentially, all code in the project is now made available by the LLVM
project under our new license, so you will see that the license headers
include that license only. Some of our contributors have contributed
code under our old license, and accordingly, we have retained a copy of
our old license notice in the top-level files in each project and
repository.
llvm-svn: 351636
Commit f1db33c5c1a9 ("[BPF] Disable relocation for .BTF.ext section")
assigned relocation type R_BPF_NONE if the fixup type
is FK_Data_4 and the symbol is temporary.
The reason is we use FK_Data_4 as a fixup type
for insn offsets in .BTF.ext section.
Just checking whether the symbol is temporary is not enough.
For example, .debug_info may reference some strings whose
fixup is FK_Data_4 with a temporary symbol as well.
To truely reflect the case for .BTF.ext section,
this patch further checks that the section associateed with the symbol
must be SHF_ALLOC and SHF_EXECINSTR, i.e., in the text section.
This fixed the above-mentioned problem.
Signed-off-by: Yonghong Song <yhs@fb.com>
llvm-svn: 350637
Build llvm with assertion on, and then build bcc against this llvm.
Run any bcc tool with debug=8 (turning on -g for clang compilation),
you will get the following assertion errors,
/home/yhs/work/llvm/lib/ExecutionEngine/RuntimeDyld/RuntimeDyldELF.cpp:888:
void llvm::RuntimeDyldELF::resolveBPFRelocation(const llvm::SectionEntry&, uint64_t,
uint64_t, uint32_t, int64_t): Assertion `Value <= (4294967295U)' failed.
The .BTF.ext ELF section uses Fixup's to get the instruction
offsets. The data width of the Fixup is 4 bytes since we only need
the insn offset within the section.
This caused the above error though since R_BPF_64_32 expects
4-byte value and the Runtime Dyld tried to resolve the actual
insn address which is 8 bytes.
Actually the offset within the section is all what we need.
Therefore, there is no need to perform any kind of relocation
for .BTF.ext section and such relocation will actually cause
incorrect result.
This patch changed BPFELFObjectWriter::getRelocType() such that
for Fixup Kind FK_Data_4, if the relocation Target is a temporary
symbol, let us skip the relocation (ELF::R_BPF_NONE).
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Yonghong Song <yhs@fb.com>
llvm-svn: 349778
Adds fatal errors for any target that does not support the Tiny or Kernel
codemodels by rejigging the getEffectiveCodeModel calls.
Differential Revision: https://reviews.llvm.org/D50141
llvm-svn: 348585
This patch should not introduce any behavior changes. It consists of
mostly one of two changes:
1. Replacing fall through comments with the LLVM_FALLTHROUGH macro
2. Inserting 'break' before falling through into a case block consisting
of only 'break'.
We were already using this warning with GCC, but its warning behaves
slightly differently. In this patch, the following differences are
relevant:
1. GCC recognizes comments that say "fall through" as annotations, clang
doesn't
2. GCC doesn't warn on "case N: foo(); default: break;", clang does
3. GCC doesn't warn when the case contains a switch, but falls through
the outer case.
I will enable the warning separately in a follow-up patch so that it can
be cleanly reverted if necessary.
Reviewers: alexfh, rsmith, lattner, rtrieu, EricWF, bollu
Differential Revision: https://reviews.llvm.org/D53950
llvm-svn: 345882
Finally all targets are enabling multiple regalloc hints, so the hook to
disable this can now be removed.
NFC.
Review: Simon Pilgrim
https://reviews.llvm.org/D52316
llvm-svn: 343851
Currently, BPF has XADD (locked add) insn support and the
asm looks like:
lock *(u32 *)(r1 + 0) += r2
lock *(u64 *)(r1 + 0) += r2
The instruction itself does not have a return value.
At the source code level, users often use
__sync_fetch_and_add()
which eventually translates to XADD. The return value of
__sync_fetch_and_add() is supposed to be the old value
in the xadd memory location. Since BPF::XADD insn does not
support such a return value, this patch added a PreEmit
phase to check such a usage. If such an illegal usage
pattern is detected, a fatal error will be reported like
line 4: Invalid usage of the XADD return value
if compiled with -g, or
Invalid usage of the XADD return value
if compiled without -g.
Signed-off-by: Yonghong Song <yhs@fb.com>
Acked-by: Alexei Starovoitov <ast@kernel.org>
llvm-svn: 342692
Clang-compiled object files currently don't include the symbol sizes and
types. Some tools however need that information. For example, ctfconvert
uses that information to generate FreeBSD's CTF representation from ELF
files.
With this patch, symbol sizes and types are included in object files.
Signed-off-by: Paul Chaignon <paul.chaignon@orange.com>
Reported-by: Yutaro Hayakawa <yhayakawa3720@gmail.com>
llvm-svn: 342556
Disassemblers cannot depend on main target headers. The same is true for
MCTargetDesc, but there's a lot more cleanup needed for that.
llvm-svn: 341822
Fix bug https://bugs.llvm.org/show_bug.cgi?id=38643
In BPFAsmBackend applyFixup(), there is an assertion for FixedValue to be 0.
This may not be true, esp. for optimiation level 0.
For example, in the above bug, for the following two
static variables:
@bpf_map_lookup_elem = internal global i8* (i8*, i8*)*
inttoptr (i64 1 to i8* (i8*, i8*)*), align 8
@bpf_map_update_elem = internal global i32 (i8*, i8*, i8*, i64)*
inttoptr (i64 2 to i32 (i8*, i8*, i8*, i64)*), align 8
The static variable @bpf_map_update_elem will have a symbol
offset of 8 and a FK_SecRel_8 with FixupValue 8 will cause
the assertion if llvm is built with -DLLVM_ENABLE_ASSERTIONS=ON.
The above relocations will not exist if the program is compiled
with optimization level -O1 and above as the compiler optimizes
those static variables away. In the below error message, -O2
is suggested as this is the common practice.
Note that FixedValue = 0 in applyFixup() does exist and is valid,
e.g., for the global variable my_map in the above bug. The bpf
loader will process them properly for map_id's before loading
the program into the kernel.
The static variables, which are not optimized away by compiler,
may have FK_SecRel_8 relocation with non-zero FixedValue.
The patch removed the offending assertion and will issue
a hard error as below if the FixedValue in applyFixup()
is not 0.
$ llc -march=bpf -filetype=obj fixup.ll
LLVM ERROR: Unsupported relocation: try to compile with -O2 or above,
or check your static variable usage
Signed-off-by: Yonghong Song <yhs@fb.com>
llvm-svn: 340455
Errors like the following are reported by:
https://urldefense.proofpoint.com/v2/url?u=http-3A__lab.llvm.org-3A8011_builders_llvm-2Dclang-2Dx86-5F64-2Dexpensive-2Dchecks-2Dwin_builds_11261&d=DwIBAg&c=5VD0RTtNlTh3ycd41b3MUw&r=DA8e1B5r073vIqRrFz7MRA&m=929oWPCf7Bf2qQnir4GBtowB8ZAlIRWsAdTfRkDaK-g&s=9k-wbEUVpUm474hhzsmAO29VXVvbxJPWD9RTgCD71fQ&e=
*** Bad machine code: Explicit definition marked as use ***
- function: cal_align1
- basic block: %bb.0 entry (0x47edd98)
- instruction: LDB $r3, $r2, 0
- operand 0: $r3
This is because RegState info was missing for ScratchReg inside
expandMEMCPY. This caused incomplete register usage information to
MachineInstr verifier which then would complain as there could be potential
code-gen issue if the complained MachineInstr is used in place where
register usage information matters even though the memcpy expanding is not
in such case as it happens at the last stage of IR optimization pipeline.
We should always specify those register usage information which compiler
couldn't deduct automatically whenever we add a hardware register manually.
Reported-by: Builder llvm-clang-x86_64-expensive-checks-win Build #11261
Signed-off-by: Jiong Wang <jiong.wang@netronome.com>
Reviewed-by: Yonghong Song <yhs@fb.com>
llvm-svn: 338134
Some BPF JIT backends would want to optimize memcpy in their own
architecture specific way.
However, at the moment, there is no way for JIT backends to see memcpy
semantics in a reliable way. This is due to LLVM BPF backend is expanding
memcpy into load/store sequences and could possibly schedule them apart from
each other further. So, BPF JIT backends inside kernel can't reliably
recognize memcpy semantics by peephole BPF sequence.
This patch introduce new intrinsic expand infrastructure to memcpy.
To get stable in-order load/store sequence from memcpy, we first lower
memcpy into BPF::MEMCPY node which then expanded into in-order load/store
sequences in expandPostRAPseudo pass which will happen after instruction
scheduling. By this way, kernel JIT backends could reliably recognize
memcpy through scanning BPF sequence.
This new memcpy expand infrastructure is gated by a new option:
-bpf-expand-memcpy-in-order
Acked-by: Jakub Kicinski <jakub.kicinski@netronome.com>
Signed-off-by: Jiong Wang <jiong.wang@netronome.com>
Signed-off-by: Yonghong Song <yhs@fb.com>
llvm-svn: 337977
On targets like Arm some relaxations may only be performed when certain
architectural features are available. As functions can be compiled with
differing levels of architectural support we must make a judgement on
whether we can relax based on the MCSubtargetInfo for the function. This
change passes through the MCSubtargetInfo for the function to
fixupNeedsRelaxation so that the decision on whether to relax can be made
per function. In this patch, only the ARM backend makes use of this
information. We must also pass the MCSubtargetInfo to applyFixup because
some fixups skip error checking on the assumption that relaxation has
occurred, to prevent code-generation errors applyFixup must see the same
MCSubtargetInfo as fixupNeedsRelaxation.
Differential Revision: https://reviews.llvm.org/D44928
llvm-svn: 334078
Summary:
They've been deprecated in favor of UADDO/ADDCARRY or USUBO/SUBCARRY for a while.
Target that uses these opcodes are changed in order to ensure their behavior doesn't change.
Reviewers: efriedma, craig.topper, dblaikie, bkramer
Subscribers: jholewinski, arsenm, jyknight, sdardis, nemanjai, nhaehnle, kbarton, fedor.sergeev, asb, rbar, johnrusso, simoncook, jordy.potman.lists, apazos, sabuasal, niosHD, jrtc27, zzheng, edward-jones, mgrang, atanasyan, llvm-commits
Differential Revision: https://reviews.llvm.org/D47422
llvm-svn: 333748
With this we gain a little flexibility in how the generic object
writer is created.
Part of PR37466.
Differential Revision: https://reviews.llvm.org/D47045
llvm-svn: 332868
To make this work I needed to add an endianness field to MCAsmBackend
so that writeNopData() implementations know which endianness to use.
Part of PR37466.
Differential Revision: https://reviews.llvm.org/D47035
llvm-svn: 332857
Provide some free functions to reduce verbosity of endian-writing
a single value, and replace the endianness template parameter with
a field.
Part of PR37466.
Differential Revision: https://reviews.llvm.org/D47032
llvm-svn: 332757
The idea is that a client that wants split dwarf would create a
specific kind of object writer that creates two files, and use it to
create the streamer.
Part of PR37466.
Differential Revision: https://reviews.llvm.org/D47050
llvm-svn: 332749
The DEBUG() macro is very generic so it might clash with other projects.
The renaming was done as follows:
- git grep -l 'DEBUG' | xargs sed -i 's/\bDEBUG\s\?(/LLVM_DEBUG(/g'
- git diff -U0 master | ../clang/tools/clang-format/clang-format-diff.py -i -p1 -style LLVM
- Manual change to APInt
- Manually chage DOCS as regex doesn't match it.
In the transition period the DEBUG() macro is still present and aliased
to the LLVM_DEBUG() one.
Differential Revision: https://reviews.llvm.org/D43624
llvm-svn: 332240
Because we create a new kind of debug instruction, DBG_LABEL, we need to
check all passes which use isDebugValue() to check MachineInstr is debug
instruction or not. When expelling debug instructions, we should expel
both DBG_VALUE and DBG_LABEL. So, I create a new function,
isDebugInstr(), in MachineInstr to check whether the MachineInstr is
debug instruction or not.
This patch has no new test case. I have run regression test and there is
no difference in regression test.
Differential Revision: https://reviews.llvm.org/D45342
Patch by Hsiangkai Wang.
llvm-svn: 331844
Makes it easier to see mistakes such as the one fixed in r329178 and makes
the different target CMakeLists more consistent.
Also remove some stale-looking comments from the Nios2 target cmakefile.
No intended behavior change.
llvm-svn: 329181
Commit 37962a331c77 ("bpf: Improve expanding logic in LowerSELECT_CC")
intended to improve code quality for certain jmp conditions. The
commit, however, has a couple of issues:
(1). In code, just swap is not enough, ConditionalCode CC
should also be swapped, otherwise incorrect code will
be generated.
(2). The ConditionalCode swap should be subject to
getHasJmpExt(). If getHasJmpExt() is False, certain
conditional codes will not be supported and swap
may generate incorrect code.
The original goal for this patch is to optimize jmp operations
which does not have JmpExt turned on. If JmpExt is on,
better code could be generated. For example, the test
select_ri.ll is introduced to demonstrate the optimization.
The same result can be achieved with -mcpu=v2 flag.
Signed-off-by: Yonghong Song <yhs@fb.com>
Acked-by: Alexei Starovoitov <ast@kernel.org>
llvm-svn: 329043
Currently EVT is in the IR layer only because of Function.cpp needing a very small piece of the functionality of EVT::getEVTString(). The rest of EVT is used in codegen making CodeGen a better place for it.
The previous code converted a Type* to EVT and then called getEVTString. This was only expected to handle the primitive types from Type*. Since there only a few primitive types, we can just print them as strings directly.
Differential Revision: https://reviews.llvm.org/D45017
llvm-svn: 328806
Add more debug information for peephole optimization passes.
These would only be enabled for debug version binary and could help
analyzing why some optimization opportunities were missed.
Signed-off-by: Jiong Wang <jiong.wang@netronome.com>
Signed-off-by: Yonghong Song <yhs@fb.com>
llvm-svn: 327371
This new pass eliminate identical move:
MOV rA, rA
This is particularly possible to happen when sub-register support
enabled. The special type cast insn MOV_32_64 involves different
register class on src (i32) and dst (i64), RA could generate useless
instruction due to this.
This pass also could serve as the bast for further post-RA optimization.
Signed-off-by: Jiong Wang <jiong.wang@netronome.com>
Signed-off-by: Yonghong Song <yhs@fb.com>
llvm-svn: 327370
Currently, there is no ALU32 bswap support in eBPF ISA.
BSWAP on i32 was set to EXPAND which would need about eight instructions
for single BSWAP.
It would be more efficient to promote it to i64, then doing BSWAP on i64.
For eBPF programs, most of the promotion are zero extensions which are
likely be elimiated later by peephole optimizations.
Signed-off-by: Jiong Wang <jiong.wang@netronome.com>
Signed-off-by: Yonghong Song <yhs@fb.com>
llvm-svn: 327369
This patch relax the subregister definition check on Phi node.
Previously, we just cancel the optimizatoin when the definition is Phi
node while actually we could further check the definitions of incoming
parameters of PHI node.
This helps catch more elimination opportunities.
Signed-off-by: Jiong Wang <jiong.wang@netronome.com>
Signed-off-by: Yonghong Song <yhs@fb.com>
llvm-svn: 327368
The current zero extension elimination was restricted to operands of
comparison. It actually could be extended to more cases.
For example:
int *inc_p (int *p, unsigned a)
{
return p + a;
}
'a' will be promoted to i64 during addition, and the zero extension could
be eliminated as well.
For the elimination optimization, it should be much better to start
recognizing the candidate sequence from the SRL instruction instead of J*
instructions.
This patch makes it an generic zero extension elimination pass instead of
one restricted with comparison.
Signed-off-by: Jiong Wang <jiong.wang@netronome.com>
Signed-off-by: Yonghong Song <yhs@fb.com>
llvm-svn: 327367
There is a mistake in current code that we "break" out the optimization
when the first operand of J*_RR doesn't qualify the elimination. This
caused some elimination opportunities missed, for example the one in the
testcase.
The code should just fall through to handle the second operand.
Signed-off-by: Jiong Wang <jiong.wang@netronome.com>
Signed-off-by: Yonghong Song <yhs@fb.com>
llvm-svn: 327366
The current subregister definition check stops after the MOV_32_64
instruction.
This means we are thinking all the following instruction sequences
are safe to be eliminated:
MOV_32_64 rB, wA
SLL_ri rB, rB, 32
SRL_ri rB, rB, 32
However, this is *not* true. The source subregister wA of MOV_32_64 could
come from a implicit truncation of 64-bit register in which case the high
bits of the 64-bit register is not zeroed, therefore we can't eliminate
above sequence.
For example, for i32_val, we shouldn't do the elimination:
long long bar ();
int foo (int b, int c)
{
unsigned int i32_val = (unsigned int) bar();
if (i32_val < 10)
return b;
else
return c;
}
Signed-off-by: Jiong Wang <jiong.wang@netronome.com>
Signed-off-by: Yonghong Song <yhs@fb.com>
llvm-svn: 327365
Commit e4507fb8c94b ("bpf: disable DwarfUsesRelocationsAcrossSections")
disables MCAsmInfo DwarfUsesRelocationsAcrossSections unconditionally
so that dwarf will not use cross section (between dwarf and symbol table)
relocations. This new debug format enables pahole to dump structures
correctly as libdwarves.so does not have BPF backend support yet.
This new debug format, however, breaks bcc (https://github.com/iovisor/bcc)
source debug output as llvm in-memory Dwarf support has some issues to
handle it. More specifically, with DwarfUsesRelocationsAcrossSections
disabled, JIT compiler does not generate .debug_abbrev and Dwarf
DIE (debug info entry) processing is not happy about this.
This patch introduces a new flag -mattr=dwarfris
(dwarf relocation in section) to disable DwarfUsesRelocationsAcrossSections.
DwarfUsesRelocationsAcrossSections is true by default.
Signed-off-by: Yonghong Song <yhs@fb.com>
llvm-svn: 326505
This pass performs peephole optimizations to cleanup ugly code sequences at
MachineInstruction layer.
Currently, the only optimization in this pass is to eliminate type
promotion
sequences for zero extending 32-bit subregisters to 64-bit registers.
If the compiler could prove the zero extended source come from 32-bit
subregistere then it is safe to erase those promotion sequece, because the
upper half of the underlying 64-bit registers were zeroed implicitly
already.
Signed-off-by: Jiong Wang <jiong.wang@netronome.com>
Reviewed-by: Yonghong Song <yhs@fb.com>
llvm-svn: 325991
When -mattr=+alu32 passed to the disassembler, use decoder namespace for
32-bit subregister.
This is to disassemble load and store instructions in preferred B format
as described in previous commit:
w = *(u8 *) (r + off) // BPF_LDX | BPF_B
w = *(u16 *)(r + off) // BPF_LDX | BPF_H
w = *(u32 *)(r + off) // BPF_LDX | BPF_W
*(u8 *) (r + off) = w // BPF_STX | BPF_B
*(u16 *)(r + off) = w // BPF_STX | BPF_H
*(u32 *)(r + off) = w // BPF_STX | BPF_W
NOTE: all other instructions should still use the default decoder
namespace.
Signed-off-by: Jiong Wang <jiong.wang@netronome.com>
Reviewed-by: Yonghong Song <yhs@fb.com>
llvm-svn: 325990
After all those preparation patches, now we could enable 32-bit subregister
support once -mattr=+alu32 specified.
Signed-off-by: Jiong Wang <jiong.wang@netronome.com>
Reviewed-by: Yonghong Song <yhs@fb.com>
llvm-svn: 325989
This patch support 32-bit subregister in three InstrInfo hooks, i.e.
copyPhysReg, loadRegFromStackSlot and storeRegToStackSlot,
Signed-off-by: Jiong Wang <jiong.wang@netronome.com>
Reviewed-by: Yonghong Song <yhs@fb.com>
llvm-svn: 325988
The instruction mapping between eBPF/arm64/x86_64 are:
eBPF arm64 x86_64
LD1 BPF_LDX | BPF_B ldrb movzbl
LD2 BPF_LDX | BPF_H ldrh movzwl
LD4 BPF_LDX | BPF_W ldr movl
movzbl/movzwl/movl on x86_64 accept 32-bit sub-register, for example %eax,
the same for ldrb/ldrh on arm64 which accept 32-bit "w" register. And
actually these instructions only accept sub-registers. There is no point
to have LD1/2/4 (unsigned) for 64-bit register, because on these arches,
upper 32-bits are guaranteed to be zeroed by hardware or VM, so load into
the smallest available register class is the best choice for maintaining
type information.
For eBPF we should adopt the same philosophy, to change current
format (A):
r = *(u8 *) (r + off) // BPF_LDX | BPF_B
r = *(u16 *)(r + off) // BPF_LDX | BPF_H
r = *(u32 *)(r + off) // BPF_LDX | BPF_W
*(u8 *) (r + off) = r // BPF_STX | BPF_B
*(u16 *)(r + off) = r // BPF_STX | BPF_H
*(u32 *)(r + off) = r // BPF_STX | BPF_W
into B:
w = *(u8 *) (r + off) // BPF_LDX | BPF_B
w = *(u16 *)(r + off) // BPF_LDX | BPF_H
w = *(u32 *)(r + off) // BPF_LDX | BPF_W
*(u8 *) (r + off) = w // BPF_STX | BPF_B
*(u16 *)(r + off) = w // BPF_STX | BPF_H
*(u32 *)(r + off) = w // BPF_STX | BPF_W
There is no change on encoding nor how should they be interpreted,
everything is as it is, load the specified length, write into low bits of
the register then zeroing all remaining high bits.
The only change is their associated register class and how compiler view
them.
Format A still need to be kept, because eBPF LLVM backend doesn't support
sub-registers at default, but once 32-bit subregister is enabled, it should
use format B.
This patch implemented this together with all those necessary extended load
and truncated store patterns.
Signed-off-by: Jiong Wang <jiong.wang@netronome.com>
Reviewed-by: Yonghong Song <yhs@fb.com>
llvm-svn: 325987
getScalarShiftAmount method should be implemented for eBPF backend to make
sure shift amount could still get correct type once 32-bit subregisters
support are enabled.
Signed-off-by: Jiong Wang <jiong.wang@netronome.com>
Reviewed-by: Yonghong Song <yhs@fb.com>
llvm-svn: 325986
We need to support condition comparison on i32. All these comparisons are
supposed to be combined into BPF_J* instructions which only support i64.
For ISD::BR_CC we need to promote it to i64 first, then do custom lowering.
For ISD::SET_CC, just expand to SELECT_CC like what's been done for i64.
For ISD::SELECT_CC, we also want to do custom lower for i32. However, after
32-bit subregister support enabled, it is possible the comparison operands
are i32 while the selected value are i64, or the comparison operands are
i64 while the selected value are i32. We need to define extra instruction
pattern and support them in custom instruction inserter.
Signed-off-by: Jiong Wang <jiong.wang@netronome.com>
Reviewed-by: Yonghong Song <yhs@fb.com>
llvm-svn: 325985
There is no eBPF ISA support for BSWAP, ROTR, ROTL, SREM, SDIVREM, MULHU,
ADDC, ADDE etc on i32.
They could be emulated by other basic BPF_ALU operations, we'd set their
lowering action the same as i64.
Signed-off-by: Jiong Wang <jiong.wang@netronome.com>
Reviewed-by: Yonghong Song <yhs@fb.com>
llvm-svn: 325984
This patch add new calling conventions to allow GPR32RegClass as valid
register class for arguments and return types.
New calling convention will only be choosen when -mattr=+alu32 specified.
Signed-off-by: Jiong Wang <jiong.wang@netronome.com>
Reviewed-by: Yonghong Song <yhs@fb.com>
llvm-svn: 325983
This new attribute aims to control the enablement of 32-bit subregister
support on eBPF backend.
Name the interface as "alu32" is because we in particular want to enable
the generation of BPF_ALU32 instructions by enable subregister support.
This attribute could be used in the following format with llc:
llc -mtriple=bpf -mattr=[+|-]alu32
It is disabled at default.
Signed-off-by: Jiong Wang <jiong.wang@netronome.com>
Reviewed-by: Yonghong Song <yhs@fb.com>
llvm-svn: 325982
For transformations between i32 and i64, if it is explicit signed extension:
- first cast the operand to i64
- then use SLL + SRA to finish the extension.
if it is explicit zero extension:
- first cast the operand to i64
- then use SLL + SRL to finish the extension.
if it is explicit any extension:
- just refer to 64-bit register.
if it is explicit truncation:
- just refer to 32-bit subregister.
NOTE: Some of the zero extension sequences might be unnecessary, they will be
removed by an peephole pass on MachineInstruction layer.
Signed-off-by: Jiong Wang <jiong.wang@netronome.com>
Reviewed-by: Yonghong Song <yhs@fb.com>
llvm-svn: 325981
These 32-bit ALU insn patterns which takes immediate as one operand were
initially added to enable AsmParser support, and the AsmMatcher uses "ins"
and "outs" fields to deduct the operand constraint.
However, the instruction selector doesn't work the same as AsmMatcher. The
selector will use the "pattern" field for which we are not setting the
predication for immediate operands correctly.
Without this patch, i32 would eventually means all i32 operands are valid,
both imm and gpr, while these patterns should allow imm only.
Signed-off-by: Jiong Wang <jiong.wang@netronome.com>
Reviewed-by: Yonghong Song <yhs@fb.com>
llvm-svn: 325980
markSuperRegs is the canonical helper function used to mark reserved
registers. It could mark any overlapping sub-registers automatically.
Reviewed-by: Yonghong Song <yhs@fb.com>
Signed-off-by: Jiong Wang <jiong.wang@netronome.com>
llvm-svn: 325979
The pahole does not work with BPF backend properly:
-bash-4.2$ cat test.c
struct test_t {
int a;
int b;
};
int test(struct test_t *s) {
return s->a;
}
-bash-4.2$ clang -g -O2 -target bpf -c test.c
-bash-4.2$ pahole test.o
struct clang version 7.0.0 (trunk 325446) (llvm/trunk 325464) {
clang version 7.0.0 (trunk 325446) (llvm/trunk 325464) clang version 7.0.0 (trunk 325446) (llvm/trunk 325464); /* 0 4 */
clang version 7.0.0 (trunk 325446) (llvm/trunk 325464) clang version 7.0.0 (trunk 325446) (llvm/trunk 325464); /* 4 4 */
/* size: 8, cachelines: 1, members: 2 */
/* last cacheline: 8 bytes */
};
-bash-4.2$
The reason is that BPF backend is not yet implemented in elfutils backend
https://github.com/threatstack/elfutils/tree/master/backends
and pahole depends on elfutils for dwarf parsing and resolving relocation.
More specifically, the unsupported relocation in .debug_info for type/member name
against symbol table caused the incorrect result above. The following is
the raw .rel.debug_info for the above example,
Hex dump of section '.rel.debug_info':
0x00000000 06000000 00000000 0a000000 0b000000 ................
0x00000010 0c000000 00000000 0a000000 01000000 ................
0x00000020 12000000 00000000 0a000000 02000000 ................
0x00000030 16000000 00000000 0a000000 0e000000 ................
0x00000040 1a000000 00000000 0a000000 03000000 ................
----------------- -------- --------
reloc location type symtab index
Hex dump of section '.debug_info':
0x00000000 7b000000 04000000 00000801 00000000 {...............
0x00000010 0c000000 00000000 00000000 00000000 ................
0x00000020 00000000 00001000 00000200 00000000 ................
Based on "type", the proper value will be extracted from symbol table
and filled in .debug_info so later on .debug_info can be properly
resolved against debug strings.
There are two ways to fix this problem. One is to fix elfutils by adding
BPF support which is desirable. This could take a long time and won't work
with already deployed pahole. For a short term workaround, we can disable
dwarf cross-section relation which specifically avoids debug_info and
symbol table cross relocation. This should help any dwarf-related tool
which has not implement BPF specific relocations yet.
Now .rel.debug_info does not have any relocation for symbol table and
.debug_info itself contains necessary relocation information by itself.
Hex dump of section '.debug_info':
0x00000000 7b000000 04000000 00000801 00000000 {...............
0x00000010 0c003700 00000000 00003e00 00000000 ..7.......>.....
0x00000020 00000000 00001000 00000200 00000000 ................
location 0xc has 0, 0x12 has 0x37, 0x1a has 0x3e in place which
will be used in relocation resolution. Here, the values of 0, 0x37 and 0x3e
are offset in .debug_str section.
Please note the difference between two above .debug_info dumps.
With the fix, pahole works properly with BPF backend:
-bash-4.2$ clang -O2 -g -target bpf -c test.c
-bash-4.2$ pahole test.o
struct test_t {
int a; /* 0 4 */
int b; /* 4 4 */
/* size: 8, cachelines: 1, members: 2 */
/* last cacheline: 8 bytes */
};
Signed-off-by: Yonghong Song <yhs@fb.com>
llvm-svn: 325735
Enable multiple COPY hints to eliminate more COPYs during register allocation.
Note that this is something all targets should do, see
https://reviews.llvm.org/D38128.
Review: Yonghong Song
llvm-svn: 325457
The reference '&' is missing in the function parameter. If there are
back-to-back optimizations in terms of dag node list like below:
t29: i64,ch = load<LD4[bitcast (%struct.test_t* @test.t to i8*)+12](dereferenceable), zext from i32> t3, t43, undef:i64
t34: i64,ch = load<LD4[bitcast (%struct.test_t* @test.t to i8*)](dereferenceable), zext from i32> t3, t41, undef:i64
The bug will trigger a segfault for the added test case remove_truncate_5.ll:
LLVMSymbolizer: error reading file: No such file or directory
#0 0x000000000241c4d9 (llc+0x241c4d9)
#1 0x000000000241c56a (llc+0x241c56a)
#2 0x000000000241aa50 (llc+0x241aa50)
...
#22 0x0000000000fd5edf (llc+0xfd5edf)
#23 0x00007f0fe03bec05 __libc_start_main (/lib64/libc.so.6+0x21c05)
#24 0x0000000000fd3e69 (llc+0xfd3e69)
...
Segmentation fault
Signed-off-by: Yonghong Song <yhs@fb.com>
llvm-svn: 325267
LowerSELECT_CC is not generating optimal Select_Ri pattern at the moment. It
is not guaranteed to place ConstantNode at RHS which would miss matching
Select_Ri.
A new testcase added into the existing select_ri.ll, also there is an
existing case in cmp.ll which would be improved to use Select_Ri after this
patch, it is adjusted accordingly.
Reported-by: Alexei Starovoitov <alexei.starovoitov@gmail.com>
Reviewed-by: Yonghong Song <yhs@fb.com>
Signed-off-by: Jiong Wang <jiong.wang@netronome.com>
llvm-svn: 324560
Previously some targets printed their own message at the start of Select to indicate what they were selecting. For the targets that didn't, it means there was no print of the root node before any custom handling in the target executed. So if the target did something custom and never called SelectNodeCommon, no print would be made. For the targets that did print a message in Select, if they didn't custom handle a node SelectNodeCommon would reprint the root node before walking the isel table.
It seems better to just print the message before the call to Select so all targets behave the same. And then remove the root node printing from SelectNodeCommon and just leave a message that says we're starting the table search.
There were also some oddities in blank line behavior. Usually due to a \n after a call to SelectionDAGNode::dump which already inserted a new line.
llvm-svn: 323551
These pseudos are not supposed to be visible to user.
This patch reduced the auto-generated instruction matcher. For example,
the following words are removed from keyword list of LLVM BPF assembler.
- MCK__35_, // '#'
- MCK__COLON_, // ':'
- MCK__63_, // '?'
- MCK_ADJCALLSTACKDOWN, // 'ADJCALLSTACKDOWN'
- MCK_ADJCALLSTACKUP, // 'ADJCALLSTACKUP'
- MCK_PSEUDO, // 'PSEUDO'
- MCK_Select, // 'Select'
Acked-by: Jakub Kicinski <jakub.kicinski@netronome.com>
Acked-by: Yonghong Song <yhs@fb.com>
Signed-off-by: Jiong Wang <jiong.wang@netronome.com>
llvm-svn: 322535
As commented on the existing code:
// The Reg operand should be a virtual register, which is defined
// outside the current basic block. DAG combiner has done a pretty
// good job in removing truncating inside a single basic block.
However, when the Reg operand comes from bpf_load_[byte | half | word]
intrinsics, the generic optimizer doesn't understand their results are
zero extended, so these single basic block elimination opportunities were
missed.
Acked-by: Jakub Kicinski <jakub.kicinski@netronome.com>
Acked-by: Yonghong Song <yhs@fb.com>
Signed-off-by: Jiong Wang <jiong.wang@netronome.com>
llvm-svn: 322534
Currently it's not possible to access MCSubtargetInfo from a TgtMCAsmBackend.
D20830 threaded an MCSubtargetInfo reference through
MCAsmBackend::relaxInstruction, but this isn't the only function that would
benefit from access. This patch removes the Triple and CPUString arguments
from createMCAsmBackend and replaces them with MCSubtargetInfo.
This patch just changes the interface without making any intentional
functional changes. Once in, several cleanups are possible:
* Get rid of the awkward MCSubtargetInfo handling in ARMAsmBackend
* Support 16-bit instructions when valid in MipsAsmBackend::writeNopData
* Get rid of the CPU string parsing in X86AsmBackend and just use a SubtargetFeature for HasNopl
* Emit 16-bit nops in RISCVAsmBackend::writeNopData if the compressed instruction set extension is enabled (see D41221)
This change initially exposed PR35686, which has since been resolved in r321026.
Differential Revision: https://reviews.llvm.org/D41349
llvm-svn: 321692
Add support for 'objdump -print-imm-hex' for imm64, operand imm
and branch target. If user programs encode immediate values
as hex numbers, such an option will make it easy to correlate
asm insns with source code. This option also makes it easy
to correlate imm values with insn encoding.
There is one changed behavior in this patch. In old way, we
print the 64bit imm as u64:
O << (uint64_t)Op.getImm();
and the new way is:
O << formatImm(Op.getImm());
The formatImm is defined in llvm/MC/MCInstPrinter.h as
format_object<int64_t> formatImm(int64_t Value)
So the new way to print 64bit imm is i64 type.
If a 64bit value has the highest bit set, the old way
will print the value as a positive value and the
new way will print as a negative value. The new way
is consistent with x86_64.
For the code (see the test program):
...
if (a == 0xABCDABCDabcdabcdULL)
...
x86_64 objdump, with and without -print-imm-hex, looks like:
48 b8 cd ab cd ab cd ab cd ab movabsq $-6067004223159161907, %rax
48 b8 cd ab cd ab cd ab cd ab movabsq $-0x5432543254325433, %rax
Signed-off-by: Yonghong Song <yhs@fb.com>
llvm-svn: 321215
As part of the unification of the debug format and the MIR format, print
MBB references as '%bb.5'.
The MIR printer prints the IR name of a MBB only for block definitions.
* find . \( -name "*.mir" -o -name "*.cpp" -o -name "*.h" -o -name "*.ll" \) -type f -print0 | xargs -0 sed -i '' -E 's/BB#" << ([a-zA-Z0-9_]+)->getNumber\(\)/" << printMBBReference(*\1)/g'
* find . \( -name "*.mir" -o -name "*.cpp" -o -name "*.h" -o -name "*.ll" \) -type f -print0 | xargs -0 sed -i '' -E 's/BB#" << ([a-zA-Z0-9_]+)\.getNumber\(\)/" << printMBBReference(\1)/g'
* find . \( -name "*.txt" -o -name "*.s" -o -name "*.mir" -o -name "*.cpp" -o -name "*.h" -o -name "*.ll" \) -type f -print0 | xargs -0 sed -i '' -E 's/BB#([0-9]+)/%bb.\1/g'
* grep -nr 'BB#' and fix
Differential Revision: https://reviews.llvm.org/D40422
llvm-svn: 319665
output
As part of the unification of the debug format and the MIR format,
always use `printReg` to print all kinds of registers.
Updated the tests using '_' instead of '%noreg' until we decide which
one we want to be the default one.
Differential Revision: https://reviews.llvm.org/D40421
llvm-svn: 319445
As part of the unification of the debug format and the MIR format, avoid
printing "vreg" for virtual registers (which is one of the current MIR
possibilities).
Basically:
* find . \( -name "*.mir" -o -name "*.cpp" -o -name "*.h" -o -name "*.ll" \) -type f -print0 | xargs -0 sed -i '' -E "s/%vreg([0-9]+)/%\1/g"
* grep -nr '%vreg' . and fix if needed
* find . \( -name "*.mir" -o -name "*.cpp" -o -name "*.h" -o -name "*.ll" \) -type f -print0 | xargs -0 sed -i '' -E "s/ vreg([0-9]+)/ %\1/g"
* grep -nr 'vreg[0-9]\+' . and fix if needed
Differential Revision: https://reviews.llvm.org/D40420
llvm-svn: 319427
kernel verifier is becoming smarter and soon will support
direct and indirect function calls.
Remove obsolete error from BPF backend.
Make call to use PCRel_4 fixup.
'bpf to bpf' calls are distinguished from 'bpf to kernel' calls
by insn->src_reg == BPF_PSEUDO_CALL == 1 which is used as relocation
indicator similar to ld_imm64->src_reg == BPF_PSEUDO_MAP_FD == 1
The actual 'call' instruction remains the same for both
'bpf to kernel' and 'bpf to bpf' calls.
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
llvm-svn: 318614
All these headers already depend on CodeGen headers so moving them into
CodeGen fixes the layering (since CodeGen depends on Target, not the
other way around).
llvm-svn: 318490
Add hook in BPF backend so that llvm-objdump can print out
the jmp target with label names, e.g.,
...
if r1 != 2 goto 6 <LBB0_2>
...
goto 7 <LBB0_4>
...
LBB0_2:
...
LBB0_4:
...
Signed-off-by: Yonghong Song <yhs@fb.com>
Acked-by: Alexei Starovoitov <ast@kernel.org>
llvm-svn: 318358
Summary:
Make it possible to feed runtime information back to tablegen to enable
profile-guided tablegen-eration, detection of untested tablegen definitions, etc.
Being a cross-compiler by nature, LLVM will potentially collect data for multiple
architectures (e.g. when running 'ninja check'). We therefore need a way for
TableGen to figure out what data applies to the backend it is generating at the
time. This patch achieves that by including the name of the 'def X : Target ...'
for the backend in the TargetRegistry.
Reviewers: qcolombet
Reviewed By: qcolombet
Subscribers: jholewinski, arsenm, jyknight, aditya_nandakumar, sdardis, nemanjai, ab, nhaehnle, t.p.northover, javed.absar, qcolombet, llvm-commits, fedor.sergeev
Differential Revision: https://reviews.llvm.org/D39742
llvm-svn: 318352
This header includes CodeGen headers, and is not, itself, included by
any Target headers, so move it into CodeGen to match the layering of its
implementation.
llvm-svn: 317647
This header already includes a CodeGen header and is implemented in
lib/CodeGen, so move the header there to match.
This fixes a link error with modular codegeneration builds - where a
header and its implementation are circularly dependent and so need to be
in the same library, not split between two like this.
llvm-svn: 317379
In BPF backend, we try to optimize away redundant
trunc operations so that kernel verifier rewrite
remains valid. Previous implementation only works
for a single function.
This patch fixed the issue for multiple functions.
It clears internal map data structure before
performing optimization for each function.
Signed-off-by: Yonghong Song <yhs@fb.com>
Acked-by: Alexei Starovoitov <ast@kernel.org>
llvm-svn: 316469
We came across an llvm bug when compiling some testcases that 64-bit
immediates are silently truncated into 32-bit and then packed into
BPF_JMP | BPF_K encoding. This caused comparison with wrong value.
This bug looks to be introduced by r308080. The Select_Ri pattern is
supposed to be lowered into J*_Ri while the latter only support 32-bit
immediate encoding, therefore Select_Ri should have similar immediate
predicate check as what J*_Ri are doing.
Reported-by: Jakub Kicinski <jakub.kicinski@netronome.com>
Signed-off-by: Jiong Wang <jiong.wang@netronome.com>
Reviewed-by: Yonghong Song <yhs@fb.com>
llvm-svn: 315889
Reverting to investigate layering effects of MCJIT not linking
libCodeGen but using TargetMachine::getNameWithPrefix() breaking the
lldb bots.
This reverts commit r315633.
llvm-svn: 315637
Merge LLVMTargetMachine into TargetMachine.
- There is no in-tree target anymore that just implements TargetMachine
but not LLVMTargetMachine.
- It should still be possible to stub out all the various functions in
case a target does not want to use lib/CodeGen
- This simplifies the code and avoids methods ending up in the wrong
interface.
Differential Revision: https://reviews.llvm.org/D38489
llvm-svn: 315633
MCObjectStreamer owns its MCCodeEmitter -- this fixes the types to reflect that,
and allows us to remove the last instance of MCObjectStreamer's weird "holding
ownership via someone else's reference" trick.
llvm-svn: 315531
This adds debug tracing to the table-generated assembly instruction matcher,
enabled by the -debug-only=asm-matcher option.
The changes in the target AsmParsers are to add an MCInstrInfo reference under
a consistent name, so that we can use it from table-generated code. This was
already being used this way for targets that use deprecation warnings, but 5
targets did not have it, and Hexagon had it under a different name to the other
backends.
llvm-svn: 315445
MCObjectStreamer owns its MCAsmBackend -- this fixes the types to reflect that,
and allows us to remove another instance of MCObjectStreamer's weird "holding
ownership via someone else's reference" trick.
llvm-svn: 315410
functions.
This makes the ownership of the resulting MCObjectWriter clear, and allows us
to remove one instance of MCObjectStreamer's bizarre "holding ownership via
someone else's reference" trick.
llvm-svn: 315327
ELFObjectWriter's constructor.
Fixes the same ownership issue for ELF that r315245 did for MachO:
ELFObjectWriter takes ownership of its MCELFObjectTargetWriter, so we want to
pass this through to the constructor via a unique_ptr, rather than a raw ptr.
llvm-svn: 315254
This patch adds new insn, "reg = be16/be32/be64 reg",
for bswap to little endian for big-endian target (bpfeb).
It also adds new insn for negation "reg = -reg".
Currently, for source code, e.g.,
b = -a
LLVM still prefers to generate:
b = 0 - a
But "reg = -reg" format can be used in assembly code.
Signed-off-by: Yonghong Song <yhs@fb.com>
Acked-by: Alexei Starovoitov <ast@kernel.org>
llvm-svn: 314376
This patch adds instruction patterns for operations in BPF_ALU. After this,
assembler could recognize some 32-bit ALU statement. For example, those listed
int the unit test file.
Separate MOV patterns are unnecessary as MOV is ALU operation that could reuse
ALU encoding infrastructure, this patch removed those redundant patterns.
Acked-by: Jakub Kicinski <jakub.kicinski@netronome.com>
Signed-off-by: Jiong Wang <jiong.wang@netronome.com>
Reviewed-by: Yonghong Song <yhs@fb.com>
llvm-svn: 313961
Acked-by: Jakub Kicinski <jakub.kicinski@netronome.com>
Signed-off-by: Jiong Wang <jiong.wang@netronome.com>
Reviewed-by: Yonghong Song <yhs@fb.com>
llvm-svn: 313960
Arithmetic and jump instructions, load and store instructions are sharing
the same 8-bit code field encoding,
A better instruction pattern implemention could be the following inheritance
relationships, and each layer only encoding those fields which start to
diverse from that layer. This avoids some redundant code.
InstBPF -> TYPE_ALU_JMP -> ALU/JMP
InstBPF -> TYPE_LD_ST -> Load/Store
Acked-by: Jakub Kicinski <jakub.kicinski@netronome.com>
Signed-off-by: Jiong Wang <jiong.wang@netronome.com>
Reviewed-by: Yonghong Song <yhs@fb.com>
llvm-svn: 313959
Currently, eBPF backend is using some constant directly in instruction patterns,
This patch replace them with mnemonics and removed some unnecessary temparary
variables.
Acked-by: Jakub Kicinski <jakub.kicinski@netronome.com>
Signed-off-by: Jiong Wang <jiong.wang@netronome.com>
Reviewed-by: Yonghong Song <yhs@fb.com>
llvm-svn: 313958
This partially revert previous fix in commit f5858045aa0b
("bpf: proper print imm64 expression in inst printer").
In that commit, the original suffix "ll" is removed from
LD_IMM64 asmstring. In the customer print method, the "ll"
suffix is printed if the rhs is an immediate. For example,
"r2 = 5ll" => "r2 = 5ll", and "r3 = varll" => "r3 = var".
This has an issue though for assembler. Since assembler
relies on asmstring to do pattern matching, it will not
be able to distiguish between "mov r2, 5" and
"ld_imm64 r2, 5" since both asmstring is "r2 = 5".
In such cases, the assembler uses 64bit load for all
"r = <val>" asm insts.
This patch adds back " ll" suffix for ld_imm64 with one
additional space for "#reg = #global_var" case.
Signed-off-by: Yonghong Song <yhs@fb.com>
Acked-by: Alexei Starovoitov <ast@kernel.org>
llvm-svn: 312978
Fixed an issue in printImm64Operand where if the value is
an expression, print out the expression properly. Currently,
it will print
r1 = <MCOperand Expr:(tx_port)>ll
With the patch, the printout will be
r1 = tx_port
Suggested-by: Jiong Wang <jiong.wang@netronome.com>
Signed-off-by: Yonghong Song <yhs@fb.com>
Acked-by: Alexei Starovoitov <ast@kernel.org>
llvm-svn: 312833
-mcpu=# will support:
. generic: the default insn set
. v1: insn set version 1, the same as generic
. v2: insn set version 2, version 1 + additional jmp insns
. probe: the compiler will probe the underlying kernel to
decide proper version of insn set.
We did not not use -mcpu=native since llc/llvm will interpret -mcpu=native
as the underlying hardware architecture regardless of -march value.
Currently, only x86_64 supports -mcpu=probe. Other architecture will
silently revert to "generic".
Also added -mcpu=help to print available cpu parameters.
llvm will print out the information only if there are at least one
cpu and at least one feature. Add an unused dummy feature to
enable the printout.
Examples for usage:
$ llc -march=bpf -mcpu=v1 -filetype=asm t.ll
$ llc -march=bpf -mcpu=v2 -filetype=asm t.ll
$ llc -march=bpf -mcpu=generic -filetype=asm t.ll
$ llc -march=bpf -mcpu=probe -filetype=asm t.ll
$ llc -march=bpf -mcpu=v3 -filetype=asm t.ll
'v3' is not a recognized processor for this target (ignoring processor)
...
$ llc -march=bpf -mcpu=help -filetype=asm t.ll
Available CPUs for this target:
generic - Select the generic processor.
probe - Select the probe processor.
v1 - Select the v1 processor.
v2 - Select the v2 processor.
Available features for this target:
dummy - unused feature.
Use +feature to enable a feature, or -feature to disable it.
For example, llc -mcpu=mycpu -mattr=+feature1,-feature2
...
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: Yonghong Song <yhs@fb.com>
Acked-by: Alexei Starovoitov <ast@kernel.org>
llvm-svn: 311522
The calling convention can be specified by the user in IR. Failing to support
a particular calling convention isn't a programming error, and so relying on
llvm_unreachable to catch and report an unsupported calling convention is not
appropriate.
Differential Revision: https://reviews.llvm.org/D36830
llvm-svn: 311435
IMHO it is an antipattern to have a enum value that is Default.
At any given piece of code it is not clear if we have to handle
Default or if has already been mapped to a concrete value. In this
case in particular, only the target can do the mapping and it is nice
to make sure it is always done.
This deletes the two default enum values of CodeModel and uses an
explicit Optional<CodeModel> when it is possible that it is
unspecified.
llvm-svn: 309911
Currently, for code like below,
===
inner_map = bpf_map_lookup_elem(outer_map, &port_key);
if (!inner_map) {
inner_map = &fallback_map;
}
===
the compiler generates (pseudo) code like the below:
===
I1: r1 = bpf_map_lookup_elem(outer_map, &port_key);
I2: r2 = 0
I3: if (r1 == r2)
I4: r6 = &fallback_map
I5: ...
===
During kernel verification process, After I1, r1 holds a state
map_ptr_or_null. If I3 condition is not taken
(path [I1, I2, I3, I5]), supposedly r1 should become map_ptr.
Unfortunately, kernel does not recognize this pattern
and r1 remains map_ptr_or_null at insn I5. This will cause
verificaiton failure later on.
Kernel, however, is able to recognize pattern "if (r1 == 0)"
properly and give a map_ptr state to r1 in the above case.
LLVM here generates suboptimal code which causes kernel verification
failure. This patch fixes the issue by changing BPF insn pattern
matching and lowering to generate proper codes if the righthand
parameter of the above condition is a constant. A test case
is also added.
Signed-off-by: Yonghong Song <yhs@fb.com>
llvm-svn: 308080
The issue is not if the value is pcrel. It is whether we have a
relocation or not.
If we have a relocation, the static linker will select the upper
bits. If we don't have a relocation, we have to do it.
llvm-svn: 307730
For networking-type bpf program, it often needs to access
packet data. A context data structure is provided to the bpf
programs with two fields:
u32 data;
u32 data_end;
User can access these two fields with ctx->data and ctx->data_end.
During program verification process, the kernel verifier modifies
the bpf program with loading of actual pointer value from kernel
data structure.
r = ctx->data ===> r = actual data start ptr
r = ctx->data_end ===> r = actual data end ptr
A typical program accessing ctx->data like
char *data_ptr = (char *)(long)ctx->data
will result in a 32-bit load followed by a zero extension.
Such an operation is combined into a single LDW in DAG combiner
as bpf LDW does zero extension automatically.
In cases like the below (which can be a result of global value numbering
and partial redundancy elimination before insn selection):
B1:
u32 a = load-32-bit &ctx->data
u64 pa = zext a
...
B2:
u32 b = load-32-bit &ctx->data
u64 pb = zext b
...
B3:
u32 m = PHI(a, b)
u64 pm = zext m
In B3, "pm = zext m" cannot be removed, which although is legal
from compiler perspective, will generate incorrect code after
kernel verification.
This patch recognizes this pattern and traces through PHI node
to see whether the operand of "zext m" is defined with LDWs or not.
If it is, the "zext m" itself can be removed.
The patch also recognizes the pattern where the load and use of
the load value not in the same basic block, where truncate operation
may be removed as well.
The patch handles 1-byte, 2-byte and 4-byte truncation.
Two test cases are added to verify the transformation happens properly
for the above code pattern.
Signed-off-by: Yonghong Song <yhs@fb.com>
llvm-svn: 306685
processFixupValue is called on every relaxation iteration. applyFixup
is only called once at the very end. applyFixup is then the correct
place to do last minute changes and value checks.
While here, do proper range checks again for fixup_arm_thumb_bl. We
used to do it, but dropped because of thumb2. We now do it again, but
use the thumb2 range.
llvm-svn: 306177
Davide Italiano reported the following issue if llvm
is compiled with gcc -Wstrict-aliasing -Werror:
.....
lib/Target/BPF/CMakeFiles/LLVMBPFCodeGen.dir/BPFISelDAGToDAG.cpp.o
../lib/Target/BPF/BPFISelDAGToDAG.cpp: In member function ‘virtual
void {anonymous}::BPFDAGToDAGISel::PreprocessISelDAG()’:
../lib/Target/BPF/BPFISelDAGToDAG.cpp:264:26: warning: dereferencing
type-punned pointer will break strict-aliasing rules
[-Wstrict-aliasing]
val = *(uint16_t *)new_val;
.....
The error is caused by my previous commit (revision 305560).
This patch fixed the issue by introducing an union to avoid
type casting.
Signed-off-by: Yonghong Song <yhs@fb.com>
llvm-svn: 305608
If users tried to have a structure decl/init code like below
struct test_t t = { .memeber1 = 45 };
It is very likely that compiler will generate a readonly section
to hold up the init values for variable t. Later load of t members,
e.g., t.member1 will result in a read from readonly section.
BPF program cannot handle relocation. This will force users to
write:
struct test_t t = {};
t.member1 = 45;
This is just inconvenient and unintuitive.
This patch addresses this issue by implementing BPF PreprocessISelDAG.
For any load from a global constant structure or an global array of
constant struct, it attempts to
translate it into a constant directly. The traversal of the
constant struct and other constant data structures are similar
to where the assembler emits read-only sections.
Four different unit test cases are also added to cover
different scenarios.
Signed-off-by: Yonghong Song <yhs@fb.com>
llvm-svn: 305560
o This is discovered during my study of 32-bit subregister
support.
o This is no impact on current functionality since we
only support 64-bit registers.
o Searching the web, looks like the issue has been discovered
before, so fix it now.
Signed-off-by: Yonghong Song <yhs@fb.com>
llvm-svn: 305559
This creates a new library called BinaryFormat that has all of
the headers from llvm/Support containing structure and layout
definitions for various types of binary formats like dwarf, coff,
elf, etc as well as the code for identifying a file from its
magic.
Differential Revision: https://reviews.llvm.org/D33843
llvm-svn: 304864
I did this a long time ago with a janky python script, but now
clang-format has built-in support for this. I fed clang-format every
line with a #include and let it re-sort things according to the precise
LLVM rules for include ordering baked into clang-format these days.
I've reverted a number of files where the results of sorting includes
isn't healthy. Either places where we have legacy code relying on
particular include ordering (where possible, I'll fix these separately)
or where we have particular formatting around #include lines that
I didn't want to disturb in this patch.
This patch is *entirely* mechanical. If you get merge conflicts or
anything, just ignore the changes in this patch and run clang-format
over your #include lines in the files.
Sorry for any noise here, but it is important to keep these things
stable. I was seeing an increasing number of patches with irrelevant
re-ordering of #include lines because clang-format was used. This patch
at least isolates that churn, makes it easy to skip when resolving
conflicts, and gets us to a clean baseline (again).
llvm-svn: 304787
TargetPassConfig is not useful for targets that do not use the CodeGen
library, so we may just as well store a pointer to an
LLVMTargetMachine instead of just to a TargetMachine.
While at it, also change the constructor to take a reference instead of a
pointer as the TM must not be nullptr.
llvm-svn: 304247
Wrong assembly code is generated for a simple program with
clang. If clang only produces IR and llc is used
for IR lowering and optimization, correct assembly
code is generated.
The main reason is that clang feeds default Reloc::Static
to llvm and llc feeds no RelocMode to llvm, where
for llc case, BPF backend picks up Reloc::PIC_ mode.
This leads different IR lowering behavior and clang
permits global_addr+off folding while llc doesn't.
This patch introduces isOffsetFoldingLegal function into
BPF backend and the function always return false.
This will make clang and llc behave the same for
the lowering.
Bug https://bugs.llvm.org//show_bug.cgi?id=33183
has more detailed explanation.
Signed-off-by: Yonghong Song <yhs@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
llvm-svn: 304043
Using arguments with attribute inalloca creates problems for verification
of machine representation. This attribute instructs the backend that the
argument is prepared in stack prior to CALLSEQ_START..CALLSEQ_END
sequence (see http://llvm.org/docs/InAlloca.htm for details). Frame size
stored in CALLSEQ_START in this case does not count the size of this
argument. However CALLSEQ_END still keeps total frame size, as caller can
be responsible for cleanup of entire frame. So CALLSEQ_START and
CALLSEQ_END keep different frame size and the difference is treated by
MachineVerifier as stack error. Currently there is no way to distinguish
this case from actual errors.
This patch adds additional argument to CALLSEQ_START and its
target-specific counterparts to keep size of stack that is set up prior to
the call frame sequence. This argument allows MachineVerifier to calculate
actual frame size associated with frame setup instruction and correctly
process the case of inalloca arguments.
The changes made by the patch are:
- Frame setup instructions get the second mandatory argument. It
affects all targets that use frame pseudo instructions and touched many
files although the changes are uniform.
- Access to frame properties are implemented using special instructions
rather than calls getOperand(N).getImm(). For X86 and ARM such
replacement was made previously.
- Changes that reflect appearance of additional argument of frame setup
instruction. These involve proper instruction initialization and
methods that access instruction arguments.
- MachineVerifier retrieves frame size using method, which reports sum of
frame parts initialized inside frame instruction pair and outside it.
The patch implements approach proposed by Quentin Colombet in
https://bugs.llvm.org/show_bug.cgi?id=27481#c1.
It fixes 9 tests failed with machine verifier enabled and listed
in PR27481.
Differential Revision: https://reviews.llvm.org/D32394
llvm-svn: 302527
o Add bpfeb support in BPF dwarfdump unit test case
Signed-off-by: Yonghong Song <yhs@fb.com>
Signed-off-by: Alexei Starovoitov <ast@fb.com>
llvm-svn: 302265
. swap 4-bit register encoding, 16-bit offset and 32-bit imm to support big endian archs
. add a test
Reported-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
llvm-svn: 301653
If the offset cannot fit into the instruction, an addition to the
pointer is emitted before the actual access. However, BPF offsets are
16-bit but LLVM considers them to be, for the matter of this check,
to be 32-bit long.
This causes the following program:
int bpf_prog1(void *ign)
{
volatile unsigned long t = 0x8983984739ull;
return *(unsigned long *)((0xffffffff8fff0002ull) + t);
}
To generate the following (wrong) code:
0: 18 01 00 00 39 47 98 83 00 00 00 00 89 00 00 00
r1 = 590618314553ll
2: 7b 1a f8 ff 00 00 00 00 *(u64 *)(r10 - 8) = r1
3: 79 a1 f8 ff 00 00 00 00 r1 = *(u64 *)(r10 - 8)
4: 79 10 02 00 00 00 00 00 r0 = *(u64 *)(r1 + 2)
5: 95 00 00 00 00 00 00 00 exit
Fix it by changing the offset check to 16-bit.
Patch by Nadav Amit <nadav.amit@gmail.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Differential Revision: https://reviews.llvm.org/D32055
llvm-svn: 300269
A number of backends (AArch64, MIPS, ARM) have been using
MCContext::reportError to report issues such as out-of-range fixup values in
their TgtAsmBackend. This is great, but because MCContext couldn't easily be
threaded through to the adjustFixupValue helper function from its usual
callsite (applyFixup), these backends ended up adding an MCContext* argument
and adding another call to applyFixup to processFixupValue. Adding an
MCContext parameter to applyFixup makes this unnecessary, and even better -
applyFixup can take a reference to MCContext rather than a potentially null
pointer.
Differential Revision: https://reviews.llvm.org/D30264
llvm-svn: 299529
We had various variants of defining dump() functions in LLVM. Normalize
them (this should just consistently implement the things discussed in
http://lists.llvm.org/pipermail/cfe-dev/2014-January/034323.html
For reference:
- Public headers should just declare the dump() method but not use
LLVM_DUMP_METHOD or #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
- The definition of a dump method should look like this:
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
LLVM_DUMP_METHOD void MyClass::dump() {
// print stuff to dbgs()...
}
#endif
llvm-svn: 293359
Emit error when BPF backend sees a call to a global function or to an external symbol.
The kernel verifier only allows calls to predefined helpers from bpf.h
which are defined in 'enum bpf_func_id'. Such calls in assembler must
look like 'call [1-9]+' where number matches bpf_func_id.
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
llvm-svn: 292204
- teach RelocVisitor to recognize bpf relocations
- fix AsmInfo->PointerSize to make sure dwarf is emitted correctly
- add a test for the above
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
llvm-svn: 287521
add BPF disassembler, so tools like llvm-objdump can be used:
$ llvm-objdump -d -no-show-raw-insn ./sockex1_kern.o
./sockex1_kern.o: file format ELF64-BPF
Disassembly of section socket1:
bpf_prog1:
0: r6 = r1
8: r0 = *(u8 *)skb[23]
10: *(u32 *)(r10 - 4) = r0
18: r1 = *(u32 *)(r6 + 4)
20: if r1 != 4 goto 8
28: r2 = r10
30: r2 += -4
ld_imm64 (the only 16-byte insn) and special ld_abs/ld_ind instructions
had to be treated in a special way. The decoders for the rest of the insns
are automatically generated.
Add tests to cover new functionality.
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
llvm-svn: 287477
Summary:
* ARM is omitted from this patch because this check appears to expose bugs in this target.
* Mips is omitted from this patch because this check either detects bugs or deliberate
emission of instructions that don't satisfy their predicates. One deliberate
use is the SYNC instruction where the version with an operand is correctly
defined as requiring MIPS32 while the version without an operand is defined
as an alias of 'SYNC 0' and requires MIPS2.
* X86 is omitted from this patch because it doesn't use the tablegen-erated
MCCodeEmitter infrastructure.
Patches for ARM and Mips will follow.
Depends on D25617
Reviewers: tstellarAMD, jmolloy
Subscribers: wdng, jmolloy, aemerson, rengolin, arsenm, jyknight, nemanjai, nhaehnle, tstellarAMD, llvm-commits
Differential Revision: https://reviews.llvm.org/D25618
llvm-svn: 287439
since bpf instruction set was introduced people learned to
read and understand kernel verifier output whereas llvm asm
output stayed obscure and unknown. Convert llvm to emit
assembler text similar to kernel to avoid this discrepancy
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
llvm-svn: 287300
Some targets, notably AArch64 for ILP32, have different relocation encodings
based upon the ABI. This is an enabling change, so a future patch can use the
ABIName from MCTargetOptions to chose which relocations to use. Tested using
check-llvm.
The corresponding change to clang is in: http://reviews.llvm.org/D16538
Patch by: Joel Jones
Differential Revision: https://reviews.llvm.org/D16213
llvm-svn: 276654
The same value for EM_BPF is being propagated to glibc,
elfutils, and binutils.
Signed-off-by: Richard Henderson <rth@twiddle.net>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
llvm-svn: 275633
This is a mechanical change to make TargetLowering API take MachineInstr&
(instead of MachineInstr*), since the argument is expected to be a valid
MachineInstr. In one case, changed a parameter from MachineInstr* to
MachineBasicBlock::iterator, since it was used as an insertion point.
As a side effect, this removes a bunch of MachineInstr* to
MachineBasicBlock::iterator implicit conversions, a necessary step
toward fixing PR26753.
llvm-svn: 274287
MCSymbol.h shouldn't pull in MCAssembler.h, just MCFragment.h.
MCLinkerOptimizationHint.h shouldn't need MCMachObjectWriter.h. The
rest is fixing the fallout.
llvm-svn: 273507
This used to be free, copying and moving DebugLocs became expensive
after the metadata rewrite. Passing by reference eliminates a ton of
track/untrack operations. No functionality change intended.
llvm-svn: 272512
The exit-on-error flag is necessary to avoid some assertions/unreachables. We
can get past them by creating a few dummy nodes.
Fixes PR27768, PR27769.
Differential Revision: http://reviews.llvm.org/D20726
llvm-svn: 271200
The exit-on-error flag is needed to avoid an assert where
llvm::SelectionDAGISel::LowerArguments doesn't create enough arguments. Fill up
with zeroes to reach the right number of args.
Fixes PR27767.
Differential Revision: http://reviews.llvm.org/D20571
llvm-svn: 270855
The exit-on-error flag on the many_args1.ll test is needed to avoid an
unreachable in BPFTargetLowering::LowerCall. We can also avoid it by ignoring
any superfluous arguments to the call (i.e. any arguments after the first 5).
Fixes PR27766.
Differential Revision: http://reviews.llvm.org/D20471
v2 of r270419
llvm-svn: 270440
This patch reverts r270419 because it broke a lot of buildbots,
mostly Windows. We'd like help in investigating the issues, but
for now, it should stay out.
llvm-svn: 270433
The exit-on-error flag on the many_args1.ll test is needed to avoid an
unreachable in BPFTargetLowering::LowerCall. We can also avoid it by ignoring
any superfluous arguments to the call (i.e. any arguments after the first 5).
Fixes PR27766
llvm-svn: 270419
Having an enum member named Default is quite confusing: Is it distinct
from the others?
This patch removes that member and instead uses Optional<Reloc> in
places where we have a user input that still hasn't been maped to the
default value, which is now clear has no be one of the remaining 3
options.
llvm-svn: 269988
- Where we were returning a node before, call ReplaceNode instead.
- Where we were calling SelectNodeTo, just return afterwards.
Part of llvm.org/pr26808.
llvm-svn: 269350
Many files include Passes.h but only a fraction needs to know about the
TargetPassConfig class. Move it into an own header. Also rename
Passes.cpp to TargetPassConfig.cpp while we are at it.
llvm-svn: 269011
This is a step towards removing the rampant undefined behaviour in
SelectionDAG, which is a part of llvm.org/PR26808.
We rename SelectionDAGISel::Select to SelectImpl and update targets to
match, and then change Select to return void and consolidate the
sketchy behaviour we're trying to get away from there.
Next, we'll update backends to implement `void Select(...)` instead of
SelectImpl and eventually drop the base Select implementation.
llvm-svn: 268693
Removed some unused headers, replaced some headers with forward class declarations.
Found using simple scripts like this one:
clear && ack --cpp -l '#include "llvm/ADT/IndexedMap.h"' | xargs grep -L 'IndexedMap[<]' | xargs grep -n --color=auto 'IndexedMap'
Patch by Eugene Kosov <claprix@yandex.ru>
Differential Revision: http://reviews.llvm.org/D19219
From: Mehdi Amini <mehdi.amini@apple.com>
llvm-svn: 266595
This required changing several places to print VT enums as strings instead of raw ints since the proper method to use to print became ambiguous. This is probably an improvement anyway.
This also appears to save ~8K from an x86 self host build of llc.
llvm-svn: 266562
This will become necessary in a subsequent change to make this method
merge adjacent stack adjustments, i.e. it might erase the previous
and/or next instruction.
It also greatly simplifies the calls to this function from Prolog-
EpilogInserter. Previously, that had a bunch of logic to resume iteration
after the call; now it just continues with the returned iterator.
Note that this changes the behaviour of PEI a little. Previously,
it attempted to re-visit the new instruction created by
eliminateCallFramePseudoInstr(). That code was added in r36625,
but I can't see any reason for it: the new instructions will obviously
not be pseudo instructions, they will not have FrameIndex operands,
and we have already accounted for the stack adjustment.
Differential Revision: http://reviews.llvm.org/D18627
llvm-svn: 265036
Change TargetInstrInfo API to take `MachineInstr&` instead of
`MachineInstr*` in the functions related to predicated instructions
(I'll try to come back later and get some of the rest). All of these
functions require non-null parameters already, so references are more
clear. As a bonus, this happens to factor away a host of implicit
iterator => pointer conversions.
No functionality change intended.
llvm-svn: 261605
Re-commit of r258951 after fixing layering violation.
The BPF and WebAssembly backends had identical code for emitting errors
for unsupported features, and AMDGPU had very similar code. This merges
them all into one DiagnosticInfo subclass, that can be used by any
backend.
There should be minimal functional changes here, but some AMDGPU tests
have been updated for the new format of errors (it used a slightly
different format to BPF and WebAssembly). The AMDGPU error messages will
now benefit from having precise source locations when debug info is
available.
llvm-svn: 259498
Re-commit of r258951 after fixing layering violation.
The related LLVM patch adds a backend diagnostic type for reporting
unsupported features, this adds a printer for them to clang.
In the case where debug location information is not available, I've
changed the printer to report the location as the first line of the
function, rather than the closing brace, as the latter does not give the
user any information. This also affects optimisation remarks.
Differential Revision: http://reviews.llvm.org/D16590
llvm-svn: 259035
The BPF and WebAssembly backends had identical code for emitting errors
for unsupported features, and AMDGPU had very similar code. This merges
them all into one DiagnosticInfo subclass, that can be used by any
backend.
There should be minimal functional changes here, but some AMDGPU tests
have been updated for the new format of errors (it used a slightly
different format to BPF and WebAssembly). The AMDGPU error messages will
now benefit from having precise source locations when debug info is
available.
The implementation of DiagnosticInfoUnsupported::print must be in
lib/Codegen rather than in the existing file in lib/IR/ to avoid
introducing a dependency from IR to CodeGen.
Differential Revision: http://reviews.llvm.org/D16590
llvm-svn: 258951
Summary:
This patch is provided in preparation for removing autoconf on 1/26. The proposal to remove autoconf on 1/26 was discussed on the llvm-dev thread here: http://lists.llvm.org/pipermail/llvm-dev/2016-January/093875.html
"I felt a great disturbance in the [build system], as if millions of [makefiles] suddenly cried out in terror and were suddenly silenced. I fear something [amazing] has happened."
- Obi Wan Kenobi
Reviewers: chandlerc, grosbach, bob.wilson, tstellarAMD, echristo, whitequark
Subscribers: chfast, simoncook, emaste, jholewinski, tberghammer, jfb, danalbert, srhines, arsenm, dschuff, jyknight, dsanders, joker.eph, llvm-commits
Differential Revision: http://reviews.llvm.org/D16471
llvm-svn: 258861