This API is not compatible with opaque pointers, the method
accepting an explicit pointer element type should be used instead.
Thankfully there were few in-tree users. The BPF case still ends
up using the pointer element type for now and needs something like
D105407 to avoid doing so.
Currently, BPF only contains three relocations:
R_BPF_NONE for no relocation
R_BPF_64_64 for LD_imm64 and normal 64-bit data relocation
R_BPF_64_32 for call insn and normal 32-bit data relocation
Also .BTF and .BTF.ext sections contain symbols in allocated
program and data sections. These two sections reserved 32bit
space to hold the offset relative to the symbol's section.
When LLVM JIT is used, the LLVM ExecutionEngine RuntimeDyld
may attempt to resolve relocations for .BTF and .BTF.ext,
which we want to prevent. So we used R_BPF_NONE for such relocations.
This all works fine until when we try to do linking of
multiple objects.
. R_BPF_64_64 handling of LD_imm64 vs. normal 64-bit data
is different, so lld target->relocate() needs more context
to do a correct job.
. The same for R_BPF_64_32. More context is needed for
lld target->relocate() to differentiate call insn vs.
normal 32-bit data relocation.
. Since relocations in .BTF and .BTF.ext are set to R_BPF_NONE,
they will not be relocated properly when multiple .BTF/.BTF.ext
sections are merged by lld.
This patch intends to address this issue by adding additional
relocation kinds:
R_BPF_64_ABS64 for normal 64-bit data relocation
R_BPF_64_ABS32 for normal 32-bit data relocation
R_BPF_64_NODYLD32 for .BTF and .BTF.ext style relocations.
The old R_BPF_64_{64,32} semantics:
R_BPF_64_64 for LD_imm64 relocation
R_BPF_64_32 for call insn relocation
The existing R_BPF_64_64/R_BPF_64_32 mapping to numeric values
is maintained. They are the most common use cases for
bpf programs and we want to maintain backward compatibility
as much as possible.
ExecutionEngine RuntimeDyld BPF relocations are adjusted as well.
R_BPF_64_{ABS64,ABS32} relocations will be resolved properly and
other relocations will be ignored.
Two tests are added for RuntimeDyld. Not handling R_BPF_64_NODYLD32 in
RuntimeDyldELF.cpp will result in "Relocation type not implemented yet!"
fatal error.
FK_SecRel_4 usages in BPFAsmBackend.cpp and BPFELFObjectWriter.cpp
are removed as they are not triggered in BPF backend.
BPF backend used FK_SecRel_8 for LD_imm64 instruction operands.
Differential Revision: https://reviews.llvm.org/D102712
Printing pass manager invocations is fairly verbose and not super
useful.
This allows us to remove DebugLogging from pass managers and PassBuilder
since all logging (aside from analysis managers) goes through
instrumentation now.
This has the downside of never being able to print the top level pass
manager via instrumentation, but that seems like a minor downside.
Reviewed By: ychen
Differential Revision: https://reviews.llvm.org/D101797
Lorenz Bauer reported an issue in bpf mailing list ([1]) where
for FIELD_EXISTS relocation, if the object is an array subscript,
the patched immediate is the object offset from the base address,
instead of 1.
Currently in BPF AbstractMemberAccess pass, the final offset
from the base address is the patched offset except FIELD_EXISTS
which is 1 unconditionally. In this particular case, the last
data structure access is not a field (struct/union offset)
so it didn't hit the place to set patched immediate to be 1.
This patch fixed the issue by checking the relocation type.
If the type is FIELD_EXISTS, just set to 1.
Tested by modifying some bpf selftests, libbpf is okay with
such types with FIELD_EXISTS relocation.
[1] https://lore.kernel.org/bpf/CACAyw99n-cMEtVst7aK-3BfHb99GMEChmRLCvhrjsRpHhPrtvA@mail.gmail.com/
Differential Revision: https://reviews.llvm.org/D102036
For an example like below,
extern int do_work(int);
long bpf_helper(void *callback_fn);
long prog() {
return bpf_helper(&do_work);
}
The final generated codes look like:
r1 = do_work ll
call bpf_helper
exit
where we have debuginfo for do_work() extern function:
!17 = !DISubprogram(name: "do_work", ...)
This patch implemented to add additional checking
in processing LD_imm64 operands for possible function pointers
so BTF for bpf function do_work() can be properly generated.
The original llvm function name processReloc() is renamed to
processGlobalValue() to better reflect what the function is doing.
Differential Revision: https://reviews.llvm.org/D100568
Currently, for any extern variable, if it doesn't have
section attribution, it will be put into a default ".extern"
btf DataSec. The initial design is to put every extern
variable in a DataSec so libbpf can use it.
But later on, libbpf actually requires extern variables
to put into special sections, e.g., ".kconfig", ".ksyms", etc.
so they can be used properly based on section name.
Andrii mentioned since ".extern" variables are
not actually used, it makes sense to remove it from
the compiler so libbpf does not need to deal with it,
esp. for static linking. The BTF for these extern variables
is still generated.
With this patch, I tested kernel selftests/bpf and all tests
passed. Indeed, removing ".extern" DataSec seems having no
impact.
Differential Revision: https://reviews.llvm.org/D100392
For a global weak symbol defined as below:
char g __attribute__((weak)) = 2;
LLVM generates an allocated global with WeakAnyLinkage,
for which BPF backend generates proper BTF info.
For the above example, if a modifier "const" is added like
const char g __attribute__((weak)) = 2;
LLVM generates an allocated global with WeakODRLinkage,
for which BPF backend didn't generate any BTF as it
didn't handle WeakODRLinkage.
This patch addes support for WeakODRLinkage and proper
BTF info can be generated for weak symbol defined with
"const" modifier.
Differential Revision: https://reviews.llvm.org/D100362
This permits extern function (BTF_KIND_FUNC) be added
to BTF_KIND_DATASEC if a section name is specified.
For example,
-bash-4.4$ cat t.c
void foo(int) __attribute__((section(".kernel.funcs")));
int test(void) {
foo(5);
return 0;
}
The extern function foo (BTF_KIND_FUNC) will be put into
BTF_KIND_DATASEC with name ".kernel.funcs".
This will help to differentiate two kinds of external functions,
functions in kernel and functions defined in other bpf programs.
Differential Revision: https://reviews.llvm.org/D93563
Currently, BPF backend does not support all variants of
atomic_load_{add,and,or,xor}, atomic_swap and atomic_cmp_swap
For example, it only supports 32bit (with alu32 mode) and 64bit
operations for atomic_load_{and,or,xor}, atomic_swap and
atomic_cmp_swap. Due to historical reason, atomic_load_add is
always supported with 32bit and 64bit.
If user used an unsupported atomic operation, currently,
codegen selectiondag cannot find bpf support and will issue
a fatal error. This is not user friendly as user may mistakenly
think this is a compiler bug.
This patch added Custom rule for unsupported atomic operations
and will emit better error message during ReplaceNodeResults()
callback. The following is an example output.
$ cat t.c
short sync(short *p) {
return __sync_val_compare_and_swap (p, 2, 3);
}
$ clang -target bpf -O2 -g -c t.c
t.c:2:11: error: Unsupported atomic operations, please use 64 bit version
return __sync_val_compare_and_swap (p, 2, 3);
^
fatal error: error in backend: Cannot select: t19: i64,ch =
AtomicCmpSwap<(load store seq_cst seq_cst 2 on %ir.p)> t0, t2,
Constant:i64<2>, Constant:i64<3>, t.c:2:11
t2: i64,ch = CopyFromReg t0, Register:i64 %0
t1: i64 = Register %0
t11: i64 = Constant<2>
t10: i64 = Constant<3>
In function: sync
PLEASE submit a bug report ...
Fatal error will still happen since we did not really do proper
lowering for these unsupported atomic operations. But we do get
a much better error message.
Differential Revision: https://reviews.llvm.org/D98471
Some BPF programs compiled on s390 fail to load, because s390
arch-specific linux headers contain float and double types. At the
moment there is no BTF_KIND for floats and doubles, so the release
version of LLVM ends up emitting type id 0 for them, which the
in-kernel verifier does not accept.
Introduce support for such types to libbpf by representing them using
the new BTF_KIND_FLOAT.
Reviewed By: yonghong-song
Differential Revision: https://reviews.llvm.org/D83289
Lorenz Bauer from Cloudflare tried to use "const struct <name>"
as the type for __builtin_btf_type_id(*(const struct <name>)0, 1)
relocation and hit a llvm BPF fatal error.
https://lore.kernel.org/bpf/a3782f71-3f6b-1e75-17a9-1827822c2030@fb.com/
...
fatal error: error in backend: Empty type name for BTF_TYPE_ID_REMOTE reloc
Currently, we require the debuginfo type itself must have a name.
In this case, the debuginfo type is "const" which points to "struct <name>".
The "const" type does not have a name, hence the above fatal error
will be triggered.
Let us permit "const" and "volatile" type modifiers. We skip modifiers
in some other cases as well like structure member type tracing.
This can aviod the above fatal error.
Differential Revision: https://reviews.llvm.org/D97986
Andrei Matei reported a llvm11 core dump for his bpf program
https://bugs.llvm.org/show_bug.cgi?id=48578
The core dump happens in LiveVariables analysis phase.
#4 0x00007fce54356bb0 __restore_rt
#5 0x00007fce4d51785e llvm::LiveVariables::HandleVirtRegUse(unsigned int,
llvm::MachineBasicBlock*, llvm::MachineInstr&)
#6 0x00007fce4d519abe llvm::LiveVariables::runOnInstr(llvm::MachineInstr&,
llvm::SmallVectorImpl<unsigned int>&)
#7 0x00007fce4d519ec6 llvm::LiveVariables::runOnBlock(llvm::MachineBasicBlock*, unsigned int)
#8 0x00007fce4d51a4bf llvm::LiveVariables::runOnMachineFunction(llvm::MachineFunction&)
The bug can be reproduced with llvm12 and latest trunk as well.
Futher analysis shows that there is a bug in BPF peephole
TRUNC elimination optimization, which tries to remove
unnecessary TRUNC operations (a <<= 32; a >>= 32).
Specifically, the compiler did wrong transformation for the
following patterns:
%1 = LDW ...
%2 = SLL_ri %1, 32
%3 = SRL_ri %2, 32
... %3 ...
%4 = SRA_ri %2, 32
... %4 ...
The current transformation did not check how many uses of %2
and did transformation like
%1 = LDW ...
... %1 ...
%4 = SRL_ri %2, 32
... %4 ...
and pseudo register %2 is used by not defined and
caused LiveVariables analysis core dump.
To fix the issue, when traversing back from SRL_ri to SLL_ri,
check to ensure SLL_ri has only one use. Otherwise, don't
do transformation.
Differential Revision: https://reviews.llvm.org/D97792
Commit 1959ead525 ("BPF: Implement TTI.getCmpSelInstrCost()
properly") introduced a dependency on LLVMTransformUtils
library. Let us encode this dependency explicitly in
CMakefile to avoid build error.
This is a minor pattern-match update to BPFAdjustOpt.cpp to accept
not only 'or i1 a, b' but also 'select i1 a, i1 true, i1 b'.
This resolves regression after SimplifyCFG's creating select form
of and/or instead (https://reviews.llvm.org/D95026).
This is a small change, and currently such select form isn't created
or doesn't reach to the late pipeline (because InstCombine eagerly
folds it into and/or i1), so I chose to commit without a review process.
buildbot reported a build error like below:
BPFTargetMachine.cpp:(.text._ZN4llvm19TargetTransformInfo5ModelINS_10BPFTTIImplEED2Ev
[_ZN4llvm19TargetTransformInfo5ModelINS_10BPFTTIImplEED2Ev]+0x14):
undefined reference to `llvm::TargetTransformInfo::Concept::~Concept()'
lib/Target/BPF/CMakeFiles/LLVMBPFCodeGen.dir/BPFTargetMachine.cpp.o:
In function `llvm::TargetTransformInfo::Model<llvm::BPFTTIImpl>::~Model()':
Commit a260ae7160 ("BPF: Implement TTI.IntImmCost() properly")
added TargetTransformInfo to BPF, which requires LLVMAnalysis
dependence. In certain cmake configurations, lacking explicit
LLVMAnalysis dependency may cause compilation error.
Similar to other targets, this patch added LLVMAnalysis
in CMakefile LINK_COMPONENTS explicitly.
If we wait until the type is legalized, we'll lose information
about the orginal type and need to use larger magic constants.
This gets especially bad on RISCV64 where i64 is the only legal
type.
I've limited this to simple scalar types so it only works for
i8/i16/i32 which are most likely to occur. For more odd types
we might want to do a small promotion to a type where MULH is legal
instead.
Unfortunately, this does prevent some urem/srem+seteq matching since
that still require legal types.
Reviewed By: RKSimon
Differential Revision: https://reviews.llvm.org/D96210
This patch implemented TTI.IntImmCost() properly.
Each BPF insn has 32bit immediate space, so for any immediate
which can be represented as 32bit signed int, the cost
is technically free. If an int cannot be presented as
a 32bit signed int, a ld_imm64 instruction is needed
and a TCC_Basic is returned.
This change is motivated when we observed that
several bpf selftests failed with latest llvm trunk, e.g.,
#10/16 strobemeta.o:FAIL
#10/17 strobemeta_nounroll1.o:FAIL
#10/18 strobemeta_nounroll2.o:FAIL
#10/19 strobemeta_subprogs.o:FAIL
#96 snprintf_btf:FAIL
The reason of the failure is due to that
SpeculateAroundPHIsPass did aggressive transformation
which alters control flow for which currently verifer
cannot handle well. In llvm12, SpeculateAroundPHIsPass
is not called.
SpeculateAroundPHIsPass relied on TTI.getIntImmCost()
and TTI.getIntImmCostInst() for profitability
analysis. This patch implemented TTI.getIntImmCost()
properly for BPF backend which also prevented
transformation which caused the above test failures.
Differential Revision: https://reviews.llvm.org/D96448
Implement fetch_<op>/fetch_and_<op>/exchange/compare-and-exchange
instructions for BPF. Specially, the following gcc intrinsics
are implemented.
__sync_fetch_and_add (32, 64)
__sync_fetch_and_sub (32, 64)
__sync_fetch_and_and (32, 64)
__sync_fetch_and_or (32, 64)
__sync_fetch_and_xor (32, 64)
__sync_lock_test_and_set (32, 64)
__sync_val_compare_and_swap (32, 64)
For __sync_fetch_and_sub, internally, it is implemented as
a negation followed by __sync_fetch_and_add.
For __sync_lock_test_and_set, despite its name, it actually
does an atomic exchange and return the old content.
https://gcc.gnu.org/onlinedocs/gcc-4.1.1/gcc/Atomic-Builtins.html
For intrinsics like __sync_{add,sub}_and_fetch and
__sync_bool_compare_and_swap, the compiler is able to generate
codes using __sync_fetch_and_{add,sub} and __sync_val_compare_and_swap.
Similar to xadd, atomic xadd, xor and xxor (atomic_<op>)
instructions are added for atomic operations which do not
have return values. LLVM will check the return value for
__sync_fetch_and_{add,and,or,xor}.
If the return value is used, instructions atomic_fetch_<op>
will be used. Otherwise, atomic_<op> instructions will be used.
All new instructions only support 64bit and 32bit with alu32 mode.
old xadd instruction still supports 32bit without alu32 mode.
For encoding, please take a look at test atomics_2.ll.
Differential Revision: https://reviews.llvm.org/D72184
This patch factors out the part of printInstruction that gets the
mnemonic string for a given MCInst. This is intended to be used
subsequently for the instruction-mix remarks to display the final
mnemonic (D90040).
Unfortunately making `getMnemonic` available to the AsmPrinter
seems to require making it virtual. Not sure if there's a way around
that with the current layering of the AsmPrinters.
Reviewed By: Paul-C-Anagnostopoulos
Differential Revision: https://reviews.llvm.org/D90039
No longer rely on an external tool to build the llvm component layout.
Instead, leverage the existing `add_llvm_componentlibrary` cmake function and
introduce `add_llvm_component_group` to accurately describe component behavior.
These function store extra properties in the created targets. These properties
are processed once all components are defined to resolve library dependencies
and produce the header expected by llvm-config.
Differential Revision: https://reviews.llvm.org/D90848
This lets external consumers customize the output, similar to how
AssemblyAnnotationWriter lets the caller define callbacks when printing
IR. The array of handlers already existed, this just cleans up the code
so that it can be exposed publically.
Replaces https://reviews.llvm.org/D74158
Differential Revision: https://reviews.llvm.org/D89613
This lets external consumers customize the output, similar to how
AssemblyAnnotationWriter lets the caller define callbacks when printing
IR. The array of handlers already existed, this just cleans up the code
so that it can be exposed publically.
Differential Revision: https://reviews.llvm.org/D74158
Or else on optnone functions we get the following during instruction selection:
fatal error: error in backend: Cannot select: intrinsic %llvm.preserve.struct.access.index
Currently the -O0 pipeline doesn't properly run passes registered via
TargetMachine::registerPassBuilderCallbacks(), so don't add that RUN
line yet. That will be fixed after this.
Reviewed By: yonghong-song
Differential Revision: https://reviews.llvm.org/D89083
Currently, bpf backend Instruction section DAG2DAG phase has
an optimization to replace loading constant struct memeber
or array element with direct values. The reason is that these
locally defined struct or array variables may have their
initial values stored in a readonly section and early bpf
ecosystem is not able to handle such cases.
Bpf ecosystem now can not only handle readonly sections,
but also global variables. global variable can also have
initialized data and global variable may or may not be constant,
i.e., global variable data can be put in .data section or .rodata
section. This exposed a bug in DAG2DAG Load optimization
as it did not check whether the global variable is constant
or not.
This patch fixed the bug by checking whether global variable,
representing the initial data, is constant or not and will not
do optimization if it is not a constant.
Another bug is also fixed in this patch to check whether
the load is simple (not volatile/atomic) or not. If it is
not simple, we will not do optimization. To summary for
globals:
- struct t var = { ... } ; // no load optimization
- const struct t var = { ... }; // load optimization is possible
- volatile const struct t var = { ... }; // no load optimization
Differential Revision: https://reviews.llvm.org/D89021
Add an IR phase right before main module optimization.
This is to modify IR to restrict certain downward optimizations
in order to generate verifier friendly code.
> prevent certain instcombine optimizations, handling both
in-block/cross-block instcombines.
> avoid speculative code motion if the variable used in
condition is also used in the later blocks.
Internally, a bpf IR builtin
result = __builtin_bpf_passthrough(seq_num, result)
is used to enforce ordering. This builtin is only used
during target independent IR optimizations and it will
be removed at the beginning of target dependent IR
optimizations.
For example, removing the following workaround,
--- a/tools/testing/selftests/bpf/progs/test_sysctl_loop1.c
+++ b/tools/testing/selftests/bpf/progs/test_sysctl_loop1.c
@@ -47,7 +47,7 @@ int sysctl_tcp_mem(struct bpf_sysctl *ctx)
/* a workaround to prevent compiler from generating
* codes verifier cannot handle yet.
*/
- volatile int ret;
+ int ret;
this patch is able to generate code which passed the verifier.
To disable optimization, users need to use "opt" command like below:
clang -target bpf -O2 -S -emit-llvm -Xclang -disable-llvm-passes test.c
// disable icmp serialization
opt -O2 -bpf-disable-serialize-icmp test.ll | llvm-dis > t.ll
// disable avoid-speculation
opt -O2 -bpf-disable-avoid-speculation test.ll | llvm-dis > t.ll
llc t.ll
Differential Revision: https://reviews.llvm.org/D85570
This patch fixed two issues related with relocation globals.
In LLVM, if a global, e.g. with name "g", is created and
conflict with another global with the same name, LLVM will
rename the global, e.g., with a new name "g.2". Since
relocation global name has special meaning, we do not want
llvm to change it, so internally we have logic to check
whether duplication happens or not. If happens, just reuse
the previous global.
The first bug is related to non-btf-id relocation
(BPFAbstractMemberAccess.cpp). Commit 54d9f743c8
("BPF: move AbstractMemberAccess and PreserveDIType passes
to EP_EarlyAsPossible") changed ModulePass to FunctionPass,
i.e., handling each function at a time. But still just
one BPFAbstractMemberAccess object is created so module
level de-duplication still possible. Commit 40251fee00
("[BPF][NewPM] Make BPFTargetMachine properly adjust NPM optimizer
pipeline") made a change to create a BPFAbstractMemberAccess
object per function so module level de-duplication is not
possible any more without going through all module globals.
This patch simply changed the map which holds reloc globals
as class static, so it will be available to all
BPFAbstractMemberAccess objects for different functions.
The second bug is related to btf-id relocation
(BPFPreserveDIType.cpp). Before Commit 54d9f743c8, the pass
is a ModulePass, so we have a local variable, incremented for
each instance, and works fine. But after Commit 54d9f743c8,
the pass becomes a FunctionPass. Local variable won't work
properly since different functions will start with the same
initial value. Fix the issue by change the local count variable
as static, so it will be truely unique across the whole module
compilation.
Differential Revision: https://reviews.llvm.org/D88942
This involves porting BPFAbstractMemberAccess and BPFPreserveDIType to
NPM, then adding them BPFTargetMachine::registerPassBuilderCallbacks
(the NPM equivalent of adjustPassManager()).
Reviewed By: yonghong-song, asbirlea
Differential Revision: https://reviews.llvm.org/D88855
Move abstractMemberAccess and PreserveDIType passes as early as
possible, right after clang code generation.
Currently, compiler may transform the above code
p1 = llvm.bpf.builtin.preserve.struct.access(base, 0, 0);
p2 = llvm.bpf.builtin.preserve.struct.access(p1, 1, 2);
a = llvm.bpf.builtin.preserve_field_info(p2, EXIST);
if (a) {
p1 = llvm.bpf.builtin.preserve.struct.access(base, 0, 0);
p2 = llvm.bpf.builtin.preserve.struct.access(p1, 1, 2);
bpf_probe_read(buf, buf_size, p2);
}
to
p1 = llvm.bpf.builtin.preserve.struct.access(base, 0, 0);
p2 = llvm.bpf.builtin.preserve.struct.access(p1, 1, 2);
a = llvm.bpf.builtin.preserve_field_info(p2, EXIST);
if (a) {
bpf_probe_read(buf, buf_size, p2);
}
and eventually assembly code looks like
reloc_exist = 1;
reloc_member_offset = 10; //calculate member offset from base
p2 = base + reloc_member_offset;
if (reloc_exist) {
bpf_probe_read(bpf, buf_size, p2);
}
if during libbpf relocation resolution, reloc_exist is actually
resolved to 0 (not exist), reloc_member_offset relocation cannot
be resolved and will be patched with illegal instruction.
This will cause verifier failure.
This patch attempts to address this issue by do chaining
analysis and replace chains with special globals right
after clang code gen. This will remove the cse possibility
described in the above. The IR typically looks like
%6 = load @llvm.sk_buff:0:50$0:0:0:2:0
%7 = bitcast %struct.sk_buff* %2 to i8*
%8 = getelementptr i8, i8* %7, %6
for a particular address computation relocation.
But this transformation has another consequence, code sinking
may happen like below:
PHI = <possibly different @preserve_*_access_globals>
%7 = bitcast %struct.sk_buff* %2 to i8*
%8 = getelementptr i8, i8* %7, %6
For such cases, we will not able to generate relocations since
multiple relocations are merged into one.
This patch introduced a passthrough builtin
to prevent such optimization. Looks like inline assembly has more
impact for optimizaiton, e.g., inlining. Using passthrough has
less impact on optimizations.
A new IR pass is introduced at the beginning of target-dependent
IR optimization, which does:
- report fatal error if any reloc global in PHI nodes
- remove all bpf passthrough builtin functions
Changes for existing CORE tests:
- for clang tests, add "-Xclang -disable-llvm-passes" flags to
avoid builtin->reloc_global transformation so the test is still
able to check correctness for clang generated IR.
- for llvm CodeGen/BPF tests, add "opt -O2 <ir_file> | llvm-dis" command
before "llc" command since "opt" is needed to call newly-placed
builtin->reloc_global transformation. Add target triple in the IR
file since "opt" requires it.
- Since target triple is added in IR file, if a test may produce
different results for different endianness, two tests will be
created, one for bpfeb and another for bpfel, e.g., some tests
for relocation of lshift/rshift of bitfields.
- field-reloc-bitfield-1.ll has different relocations compared to
old codes. This is because for the structure in the test,
new code returns struct layout alignment 4 while old code
is 8. Align 8 is more precise and permits double load. With align 4,
the new mechanism uses 4-byte load, so generating different
relocations.
- test intrinsic-transforms.ll is removed. This is used to test
cse on intrinsics so we do not lose metadata. Now metadata is attached
to global and not instruction, it won't get lost with cse.
Differential Revision: https://reviews.llvm.org/D87153
This patch implements initial backend support for a -mtune CPU controlled by a "tune-cpu" function attribute. If the attribute is not present X86 will use the resolved CPU from target-cpu attribute or command line.
This patch adds MC layer support a tune CPU. Each CPU now has two sets of features stored in their GenSubtargetInfo.inc tables . These features lists are passed separately to the Processor and ProcessorModel classes in tablegen. The tune list defaults to an empty list to avoid changes to non-X86. This annoyingly increases the size of static tables on all target as we now store 24 more bytes per CPU. I haven't quantified the overall impact, but I can if we're concerned.
One new test is added to X86 to show a few tuning features with mismatched tune-cpu and target-cpu/target-feature attributes to demonstrate independent control. Another new test is added to demonstrate that the scheduler model follows the tune CPU.
I have not added a -mtune to llc/opt or MC layer command line yet. With no attributes we'll just use the -mcpu for both. MC layer tools will always follow the normal CPU for tuning.
Differential Revision: https://reviews.llvm.org/D85165
Buildbot reported a build failure when building shared
library libLLVMBPFCodeGen.so with unknown reference to
"createCFGSimplificationPass".
Commit 87cba43402 ("BPF: add a SimplifyCFG IR pass during
generic Scalar/IPO optimization") added an IR pass SimplifyCFG
by BPF target. The commit called function
createCFGSimplificationPass() defined in "Scalar" library.
Add this library in Target/BPF/LLVMBuild.txt so
shared library build can succeed.
The following bpf linux kernel selftest failed with latest
llvm:
$ ./test_progs -n 7/10
...
The sequence of 8193 jumps is too complex.
verification time 126272 usec
stack depth 320
processed 114799 insns (limit 1000000)
...
libbpf: failed to load object 'pyperf600_nounroll.o'
test_bpf_verif_scale:FAIL:110
#7/10 pyperf600_nounroll.o:FAIL
#7 bpf_verif_scale:FAIL
After some investigation, I found the following llvm patch
https://reviews.llvm.org/D84108
is responsible. The patch disabled hoisting common instructions
in SimplifyCFG by default. Later on, the code changes and a
SimplifyCFG phase with hoisting on cannot do the work any more.
A test is provided to demonstrate the problem.
The IR before simplifyCFG looks like:
for.cond:
%i.0 = phi i32 [ 0, %entry ], [ %inc, %for.inc ]
%cmp = icmp ult i32 %i.0, 6
br i1 %cmp, label %for.body, label %for.cond.cleanup
for.cond.cleanup:
%2 = load i8*, i8** %frame_ptr, align 8, !tbaa !2
%cmp2 = icmp eq i8* %2, null
%conv = zext i1 %cmp2 to i32
call void @llvm.lifetime.end.p0i8(i64 8, i8* nonnull %1) #3
call void @llvm.lifetime.end.p0i8(i64 8, i8* nonnull %0) #3
ret i32 %conv
for.body:
%3 = load i8*, i8** %frame_ptr, align 8, !tbaa !2
%tobool.not = icmp eq i8* %3, null
br i1 %tobool.not, label %for.inc, label %land.lhs.true
The first two insns of `for.cond.cleanup` and `for.body`, load and
icmp, can be hoisted to `for.cond` block. With Patch D84108, the
optimization is delayed. But unfortunately, later on loop rotation
added addition phi nodes to `for.body` and hoisting cannot
be done any more.
Note such a hoisting is beneficial to bpf programs as
bpf verifier does path sensitive analysis and verification.
The hoisting preverts reloading from stack which will assume
conservative value and increase exploited insns. In this case,
it caused verifier failure.
To fix this problem, I added an IR pass from bpf target
to performance additional simplifycfg with hoisting common inst
enabled.
Differential Revision: https://reviews.llvm.org/D85434
This patch simplified IR generation for __builtin_btf_type_id().
For __builtin_btf_type_id(obj, flag), previously IR builtin
looks like
if (obj is a lvalue)
llvm.bpf.btf.type.id(obj.ptr, 1, flag) !type
else
llvm.bpf.btf.type.id(obj, 0, flag) !type
The purpose of the 2nd argument is to differentiate
__builtin_btf_type_id(obj, flag) where obj is a lvalue
vs.
__builtin_btf_type_id(obj.ptr, flag)
Note that obj or obj.ptr is never used by the backend
and the `obj` argument is only used to derive the type.
This code sequence is subject to potential llvm CSE when
- obj is the same .e.g., nullptr
- flag is the same
- metadata type is different, e.g., typedef of struct "s"
and strust "s".
In the above, we don't want CSE since their metadata is different.
This patch change IR builtin to
llvm.bpf.btf.type.id(seq_num, flag) !type
and seq_num is always increasing. This will prevent potential
llvm CSE.
Also report an error if the type name is empty for
remote relocation since remote relocation needs non-empty
type name to do relocation against vmlinux.
Differential Revision: https://reviews.llvm.org/D85174
Four new CO-RE relocations are introduced:
- TYPE_EXISTENCE: whether a typedef/record/enum type exists
- TYPE_SIZE: the size of a typedef/record/enum type
- ENUM_VALUE_EXISTENCE: whether an enum value of an enum type exists
- ENUM_VALUE: the enum value of an enum type
These additional relocations will make CO-RE bpf programs
more adaptive for potential kernel internal data structure
changes.
Differential Revision: https://reviews.llvm.org/D83878