Implemented the transformation of xor (llvm.amdgcn.class x, mask), -1 into
llvm.amdgcn.class(x, ~mask). Added LIT tests as well.
Differential Revision: https://reviews.llvm.org/D104049
Such attributes can either be unset, or set to "true" or "false" (as string).
throughout the codebase, this led to inelegant checks ranging from
if (Fn->getFnAttribute("no-jump-tables").getValueAsString() == "true")
to
if (Fn->hasAttribute("no-jump-tables") && Fn->getFnAttribute("no-jump-tables").getValueAsString() == "true")
Introduce a getValueAsBool that normalize the check, with the following
behavior:
no attributes or attribute set to "false" => return false
attribute set to "true" => return true
Differential Revision: https://reviews.llvm.org/D99299
Use forward declarations and move the include down to dependent files that actually use it.
This also exposes a number of implicit dependencies on KnownBits.h
This interferes with GlobalISel's much better handling of the
situation.
This should really be disable for GlobalISel. However, the fallback
only re-runs the selection passes, and doesn't go back and rerun any
codegen IR passes. I haven't come up with a good solution to this
problem.
Fix the division/remainder algorithm by adding a second quotient
refinement step, which is required in some cases like
0xFFFFFFFFu / 0x11111111u (https://bugs.llvm.org/show_bug.cgi?id=46212).
Also document, rewrite and simplify it by ensuring that we always have a
lower bound on inv(y), which simplifies the UNR step and the quotient
refinement steps.
Differential Revision: https://reviews.llvm.org/D83381
This is preparation for D79294, which removes an expensive
InstSimplify optimization, on the assumption that it will be
picked up by InstCombine instead. Of course, this does not hold
up if a backend performs non-trivial IR expansions without running
a canonicalization pipeline afterwards, which turned up as an
issue in the context of AMDGPU div/rem expansion.
This patch mitigates the issue by explicitly performing a known
bits calculation where it matters. No test changes, as those would
only be visible after the other patch lands.
Differential Revision: https://reviews.llvm.org/D79596
These will be widened in the DAG. In the meanwhile early
widening prevents otherwise possible vectorization of
such loads.
Differential Revision: https://reviews.llvm.org/D77835
The division expansions in AMDGPUCodeGenPrepare can't be relied on for
correctness, since they punt to later optimization and possibly
legalization in some cases. We still need a way to be able to write
tests for the legalizer versions of the expansion. This is mostly for
GlobalISel, since the expected optimzations is expecting aren't
implemented.
The interaction with the flag to expand 64-bit division in the IR is
pretty confusing, but these flags have different purposes.
I didn't realize we were already expanding 24/32-bit division here
already. Use the available IntegerDivision utilities. This uses loops,
so produces significantly smaller code than the inline DAG expansion.
This now requires width reductions of 64-bit divisions before
introducing the expanded loops.
This helps work around missing legalization in GlobalISel for
division, which are the only remaining core instructions that didn't
work at all.
I think this is plausibly a better implementation than exists in the
DAG, although turning it on by default misses out on the constant
value optimizations and also needs benchmarking.
This was creating a select on true/false values, and then comparing
that later. This produced more work for later combines, which can be
avoided by just using the boolean values. This was copied from the
original DAG expansion, which also has the same problem. This doesn't
have a observable change using SelectionDAG, but since GlobalISel is
missing these optimizations, the final code was noticeably longer.
These have nicer expansions implemented in the DAG. Ideally we would
either directly implement all of these special expansions, or stop
expanding division in the IR.
Since natural fdiv lowering is now more conservative even with
denormals disabled, we get a slower expansion from just a plain
1.0/fdiv. Directly emit the rcp intrinsic when using it to implement
integer division to avoid a pointlessly complex sequence.
Summary:
The accuracy limit to use rcp is adjusted to 1.0 ulp from 2.5 ulp.
Also, afn instead of arcp is used to allow inaccurate rcp to be used.
Reviewers:
arsenm
Differential Revision: https://reviews.llvm.org/D73588
Summary:
RCP has the accuracy limit. If FDIV fpmath require high accuracy rcp may not
meet the requirement. However, in DAG lowering, fpmath information gets lost,
and thus we may generate either inaccurate rcp related computation or slow code
for fdiv.
In patch implements fdiv optimizations in the AMDGPUCodeGenPrepare, which could
exactly know !fpmath.
FastUnsafeRcpLegal: We determine whether it is legal to use rcp based on
unsafe-fp-math, fast math flags, denormals and fpmath
accuracy request.
RCP Optimizations:
1/x -> rcp(x) when fast unsafe rcp is legal or fpmath >= 2.5ULP with
denormals flushed.
a/b -> a*rcp(b) when fast unsafe rcp is legal.
Use fdiv.fast:
a/b -> fdiv.fast(a, b) when RCP optimization is not performed and
fpmath >= 2.5ULP with denormals flushed.
1/x -> fdiv.fast(1,x) when RCP optimization is not performed and
fpmath >= 2.5ULP with denormals.
Reviewers:
arsenm
Differential Revision:
https://reviews.llvm.org/D71293
DAGCombiner does this, but divisions expanded here miss this
optimization. Since 67aa18f165,
divisions have been expanded here and missed out on this
optimization. Avoids test regressions in a future patch.
There's no reason to introduce a new, unnaturally sized value
here. This has a chance to produce worse code with
legalization. Avoids regression in a future patch.
Start moving towards treating this as a property of the calling
convention, and not the subtarget. The default denormal mode should
not be part of the subtarget, and be moved into a separate function
attribute.
This patch is still NFC. The denormal mode remains as a subtarget
feature for now, but make the necessary changes to switch to using an
attribute.
This file lists every pass in LLVM, and is included by Pass.h, which is
very popular. Every time we add, remove, or rename a pass in LLVM, it
caused lots of recompilation.
I found this fact by looking at this table, which is sorted by the
number of times a file was changed over the last 100,000 git commits
multiplied by the number of object files that depend on it in the
current checkout:
recompiles touches affected_files header
342380 95 3604 llvm/include/llvm/ADT/STLExtras.h
314730 234 1345 llvm/include/llvm/InitializePasses.h
307036 118 2602 llvm/include/llvm/ADT/APInt.h
213049 59 3611 llvm/include/llvm/Support/MathExtras.h
170422 47 3626 llvm/include/llvm/Support/Compiler.h
162225 45 3605 llvm/include/llvm/ADT/Optional.h
158319 63 2513 llvm/include/llvm/ADT/Triple.h
140322 39 3598 llvm/include/llvm/ADT/StringRef.h
137647 59 2333 llvm/include/llvm/Support/Error.h
131619 73 1803 llvm/include/llvm/Support/FileSystem.h
Before this change, touching InitializePasses.h would cause 1345 files
to recompile. After this change, touching it only causes 550 compiles in
an incremental rebuild.
Reviewers: bkramer, asbirlea, bollu, jdoerfert
Differential Revision: https://reviews.llvm.org/D70211
Insert these during codegenprepare.
This works around a DAG issue where generic combines eliminate the and
asserting the high bits are zero, which then exposes an unknown read
source to the mul combine. It doesn't worth the hassle of trying to
insert an AssertZext or something to try to deal with it.
llvm-svn: 366094
This cleans up all LoadInst creation in LLVM to explicitly pass the
value type rather than deriving it from the pointer's element-type.
Differential Revision: https://reviews.llvm.org/D57172
llvm-svn: 352911
to reflect the new license.
We understand that people may be surprised that we're moving the header
entirely to discuss the new license. We checked this carefully with the
Foundation's lawyer and we believe this is the correct approach.
Essentially, all code in the project is now made available by the LLVM
project under our new license, so you will see that the license headers
include that license only. Some of our contributors have contributed
code under our old license, and accordingly, we have retained a copy of
our old license notice in the top-level files in each project and
repository.
llvm-svn: 351636
The IRBuilder CreateIntrinsic method wouldn't allow you to specify the
types that you wanted the intrinsic to be mangled with. To fix this
I've:
- Added an ArrayRef<Type *> member to both CreateIntrinsic overloads.
- Used that array to pass into the Intrinsic::getDeclaration call.
- Added a CreateUnaryIntrinsic to replace the most common use of
CreateIntrinsic where the type was auto-deduced from operand 0.
- Added a bunch more unit tests to test Create*Intrinsic calls that
weren't being tested (including the FMF flag that wasn't checked).
This was suggested as part of the AMDGPU specific atomic optimizer
review (https://reviews.llvm.org/D51969).
Differential Revision: https://reviews.llvm.org/D52087
llvm-svn: 343962
Summary:
This is patch 1 of the new DivergenceAnalysis (https://reviews.llvm.org/D50433).
The purpose of this patch is to free up the name DivergenceAnalysis for the new generic
implementation. The generic implementation class will be shared by specialized
divergence analysis classes.
Patch by: Simon Moll
Reviewed By: nhaehnle
Subscribers: jvesely, jholewinski, arsenm, nhaehnle, mgorny, jfb, llvm-commits
Differential Revision: https://reviews.llvm.org/D50434
Change-Id: Ie8146b11be2c50d5312f30e11c7a3036a15b48cb
llvm-svn: 341071
Summary:
This is a follow-up to r335942.
- Merge SISubtarget into AMDGPUSubtarget and rename to GCNSubtarget
- Rename AMDGPUCommonSubtarget to AMDGPUSubtarget
- Merge R600Subtarget::Generation and GCNSubtarget::Generation into
AMDGPUSubtarget::Generation.
Reviewers: arsenm, jvesely
Subscribers: kzhuravl, wdng, nhaehnle, yaxunl, dstuttard, tpr, t-tye, javed.absar, llvm-commits
Differential Revision: https://reviews.llvm.org/D49037
llvm-svn: 336851
This allows hoisting of a common code, for instance if denominator
is loop invariant. Current change is expansion only, adding licm to
the target pass list going to be a separate patch. Given this patch
changes to codegen are minor as the expansion is similar to that on
DAG. DAG expansion still must remain for R600.
Differential Revision: https://reviews.llvm.org/D48586
llvm-svn: 335868
This has two main components. First, widen
widen short constant loads in DAG when they have
the correct alignment. This is already done a bit in
AMDGPUCodeGenPrepare, since that has access to
DivergenceAnalysis. This can't help kernarg loads
created in the DAG. Start to use DAG divergence analysis
to help this case.
The second part is to avoid kernel argument lowering
breaking the alignment of short vector elements because
calling convention lowering wants to split everything
into legal register types.
When loading a split type, load the nearest 4-byte aligned
segment and shift to get the desired bits. This extra
load of the earlier argument piece ends up merging,
and the bit extract hopefully folds out.
There are a number of improvements and regressions with
this, but I think as-is this is a better compromise between
several of the worst parts of SelectionDAG.
Particularly when i16 is legal, this produces worse code
for i8 and i16 element vector kernel arguments. This is
partially due to the very weak load merging the DAG does.
It only looks for fairly specific combines between pairs
of loads which no longer appear. In particular this
causes v4i16 loads to be split into 2 components when
previously the two halves were merged.
Worse, because of the newly introduced shifts, there
is a lot more unnecessary vector packing and unpacking code
emitted. At least some of this is due to reporting
false for isTypeDesirableForOp for i16 as a workaround for
the lack of divergence information in the DAG. The cases
where this happens it doesn't actually matter, but the
relevant code in SimplifyDemandedBits doens't have the context
to know to ignore this.
The use of the scalar cache is probably more important
than the mess of mostly scalar instructions doing this packing
and unpacking. Future work can fix this, possibly by making better
use of the new DAG divergence information for controlling promotion
decisions, or adding another version of shift + trunc + shift
combines that doesn't only know about the used types.
llvm-svn: 334180
When denormals are supported we are producing a full division for
1.0f / x. That still can be replaced by the faster version:
bool c = fabs(x) > 0x1.0p+96f;
float s = c ? 0x1.0p-32f : 1.0f;
x *= s;
return s * v_rcp_f32(x)
in case if requested accuracy is 2.5ulp or less. The same version
is used if denormals are not supported for non 1.0 numerators, where
just v_rcp_f32 is then used for 1.0 numerator.
The optimization of 1/x is extended to the case -1/x, which is the
same except for the resulting sign bit.
OpenCL conformance passed with both enabled and disabled denorms.
Differential Revision: https://reviews.llvm.org/D47805
llvm-svn: 334142
Preserves the low bound of the !range. I don't think
it's legal to do anything with the top half since it's
theoretically reading garbage.
llvm-svn: 334045
We've been running doxygen with the autobrief option for a couple of
years now. This makes the \brief markers into our comments
redundant. Since they are a visual distraction and we don't want to
encourage more \brief markers in new code either, this patch removes
them all.
Patch produced by
for i in $(git grep -l '\\brief'); do perl -pi -e 's/\\brief //g' $i & done
Differential Revision: https://reviews.llvm.org/D46290
llvm-svn: 331272