This patch adjust the r171506 to make all DWARF enconding pc-relative
for PPC64. It also adds the R_PPC64_REL32 relocation handling in MCJIT
(since the eh_frame will not generate PIC-relative relocation) and also
adds the emission of stubs created by the TTypeEncoding.
llvm-svn: 171979
method because getContents().size() already covers it. So computeFragmentSize
can use the generic MCEncodedFragment interface when querying both Data and
Relaxable fragments for contents sizes.
No change in functionality
llvm-svn: 171903
This is necessary not only for representing empty ranges, but for handling
multibyte characters in the input. (If the end pointer in a range refers to
a multibyte character, should it point to the beginning or the end of the
character in a char array?) Some of the code in the asm parsers was already
assuming this anyway.
llvm-svn: 171765
This patch fixes the PPC eh_frame definitions for the personality and
frame unwinding for PIC objects. It makes PIC build correctly creates
relative relocations in the '.rela.eh_frame' segments and thus avoiding
a text relocation that generates a DT_TEXTREL segments in link phase.
llvm-svn: 171506
instructions in the assembly code variant if one exists.
The intended use for this is so tools like lldb and darwin's otool(1)
can be switched to print Intel-flavored disassembly.
I discussed extensively this API with Jim Grosbach and we feel
while it may not be fully general, in reality there is only one syntax
for each assembly with the exception of X86 which has exactly
two for historical reasons.
rdar://10989182
llvm-svn: 170477
compilation directory.
This defaults to the current working directory, just as it always has,
but now an assembler can choose to override it with a custom directory.
I've taught llvm-mc about this option and added a test case.
llvm-svn: 170371
Mips16 is really a processor decoding mode (ala thumb 1) and in the same
program, mips16 and mips32 functions can exist and can call each other.
If a jal type instruction encounters an address with the lower bit set, then
the processor switches to mips16 mode (if it is not already in it). If the
lower bit is not set, then it switches to mips32 mode.
The linker knows which functions are mips16 and which are mips32.
When relocation is performed on code labels, this lower order bit is
set if the code label is a mips16 code label.
In general this works just fine, however when creating exception handling
tables and dwarf, there are cases where you don't want this lower order
bit added in.
This has been traditionally distinguished in gas assembly source by using a
different syntax for the label.
lab1: ; this will cause the lower order bit to be added
lab2=. ; this will not cause the lower order bit to be added
In some cases, it does not matter because in dwarf and debug tables
the difference of two labels is used and in that case the lower order
bits subtract each other out.
To fix this, I have added to mcstreamer the notion of a debuglabel.
The default is for label and debug label to be the same. So calling
EmitLabel and EmitDebugLabel produce the same result.
For various reasons, there is only one set of labels that needs to be
modified for the mips exceptions to work. These are the "$eh_func_beginXXX"
labels.
Mips overrides the debug label suffix from ":" to "=." .
This initial patch fixes exceptions. More changes most likely
will be needed to DwarfCFException to make all of this work
for actual debugging. These changes will be to emit debug labels in some
places where a simple label is emitted now.
Some historical discussion on this from gcc can be found at:
http://gcc.gnu.org/ml/gcc-patches/2008-08/msg00623.htmlhttp://gcc.gnu.org/ml/gcc-patches/2008-11/msg01273.html
llvm-svn: 170279
for a wider range of GOT entries that can hold thread-relative offsets.
This matches the behavior of GCC, which was not documented in the PPC64 TLS
ABI. The ABI will be updated with the new code sequence.
Former sequence:
ld 9,x@got@tprel(2)
add 9,9,x@tls
New sequence:
addis 9,2,x@got@tprel@ha
ld 9,x@got@tprel@l(9)
add 9,9,x@tls
Note that a linker optimization exists to transform the new sequence into
the shorter sequence when appropriate, by replacing the addis with a nop
and modifying the base register and relocation type of the ld.
llvm-svn: 170209
should only occur on invalid input. Instruction matching errors aren't
unexpected, so we can't rely on the AsmParsers HadError variable directly.
rdar://12840278
llvm-svn: 170037
PowerPC target. This is the last of the four models, so we now have
full TLS support.
This is mostly a straightforward extension of the general dynamic model.
I had to use an additional Chain operand to tie ADDIS_DTPREL_HA to the
register copy following ADDI_TLSLD_L; otherwise everything above the
ADDIS_DTPREL_HA appeared dead and was removed.
As before, there are new test cases to test the assembly generation, and
the relocations output during integrated assembly. The expected code
gen sequence can be read in test/CodeGen/PowerPC/tls-ld.ll.
There are a couple of things I think can be done more efficiently in the
overall TLS code, so there will likely be a clean-up patch forthcoming;
but for now I want to be sure the functionality is in place.
Bill
llvm-svn: 170003
Add R_ARM_NONE and R_ARM_PREL31 relocation types
to MCExpr. Both of them will be used while
generating .ARM.extab and .ARM.exidx sections.
llvm-svn: 169965
Given a thread-local symbol x with global-dynamic access, the generated
code to obtain x's address is:
Instruction Relocation Symbol
addis ra,r2,x@got@tlsgd@ha R_PPC64_GOT_TLSGD16_HA x
addi r3,ra,x@got@tlsgd@l R_PPC64_GOT_TLSGD16_L x
bl __tls_get_addr(x@tlsgd) R_PPC64_TLSGD x
R_PPC64_REL24 __tls_get_addr
nop
<use address in r3>
The implementation borrows from the medium code model work for introducing
special forms of ADDIS and ADDI into the DAG representation. This is made
slightly more complicated by having to introduce a call to the external
function __tls_get_addr. Using the full call machinery is overkill and,
more importantly, makes it difficult to add a special relocation. So I've
introduced another opcode GET_TLS_ADDR to represent the function call, and
surrounded it with register copies to set up the parameter and return value.
Most of the code is pretty straightforward. I ran into one peculiarity
when I introduced a new PPC opcode BL8_NOP_ELF_TLSGD, which is just like
BL8_NOP_ELF except that it takes another parameter to represent the symbol
("x" above) that requires a relocation on the call. Something in the
TblGen machinery causes BL8_NOP_ELF and BL8_NOP_ELF_TLSGD to be treated
identically during the emit phase, so this second operand was never
visited to generate relocations. This is the reason for the slightly
messy workaround in PPCMCCodeEmitter.cpp:getDirectBrEncoding().
Two new tests are included to demonstrate correct external assembly and
correct generation of relocations using the integrated assembler.
Comments welcome!
Thanks,
Bill
llvm-svn: 169910
because that method is only getting called for MCInstFragment. These
fragments aren't even generated when RelaxAll is set, which is why the
flag reference here is superfluous. Removing it simplifies the code
with no harmful effects.
An assertion is added higher up to make sure this path is never
reached.
llvm-svn: 169886
InitSections is called before the MCContext is initialized it could cause
duplicate temporary symbols to be emitted later (after context initialization
resets the temporary label counter).
llvm-svn: 169785
the assembler. This is useful in order to know how the numbers add up,
since in particular the Align fragments account for a non-trivial
portion of the emitted fragments (especially on -O0 which sets
relax-all).
llvm-svn: 169747
SmallString. This makes it possible to use the length-erased SmallVectorImpl
in the interface without imposing buffer size. Thus, the size of MCInstFragment
is back down since a preallocated 8-byte contents buffer is enough.
It would be generally a good idea to rid all the fragments of SmallString as
contents, because a vector just makes more sense.
llvm-svn: 169644
Before this patch, when you objdump an LLVM-compiled file, objdump tried to
decode data-in-code sections as if they were code. This patch adds the missing
Mapping Symbols, as defined by "ELF for the ARM Architecture" (ARM IHI 0044D).
Patch based on work by Greg Fitzgerald.
llvm-svn: 169609
original change description:
change MCContext to work on the doInitialization/doFinalization model
reviewed by Evan Cheng <evan.cheng@apple.com>
llvm-svn: 169553
This is more consistent with other vectors in this code. In addition, I ran some
tests compiling a large program and >96% of fragments have 4 or less fixups, so
SmallVector<4> is a good optimization.
llvm-svn: 169433
This is for the lldb team so most of but not all of the values are
to be printed as hex with this option. Some small values like the
scale in an X86 address were requested to printed in decimal
without the leading 0x.
There may be some tweaks need to places that may still be in
decimal that they want in hex. Specially for arm. I made my best
guess. Any tweaks from here should be simple.
I also did the best I know now with help from the C++ gurus
creating the cleanest formatImm() utility function and containing
the changes. But if someone has a better idea to make something
cleaner I'm all ears and game for changing the implementation.
rdar://8109283
llvm-svn: 169393
on 64-bit PowerPC ELF.
The patch includes code to handle external assembly and MC output with the
integrated assembler. It intentionally does not support the "old" JIT.
For the initial-exec TLS model, the ABI requires the following to calculate
the address of external thread-local variable x:
Code sequence Relocation Symbol
ld 9,x@got@tprel(2) R_PPC64_GOT_TPREL16_DS x
add 9,9,x@tls R_PPC64_TLS x
The register 9 is arbitrary here. The linker will replace x@got@tprel
with the offset relative to the thread pointer to the generated GOT
entry for symbol x. It will replace x@tls with the thread-pointer
register (13).
The two test cases verify correct assembly output and relocation output
as just described.
PowerPC-specific selection node variants are added for the two
instructions above: LD_GOT_TPREL and ADD_TLS. These are inserted
when an initial-exec global variable is encountered by
PPCTargetLowering::LowerGlobalTLSAddress(), and later lowered to
machine instructions LDgotTPREL and ADD8TLS. LDgotTPREL is a pseudo
that uses the same LDrs support added for medium code model's LDtocL,
with a different relocation type.
The rest of the processing is straightforward.
llvm-svn: 169281
missed in the first pass because the script didn't yet handle include
guards.
Note that the script is now able to handle all of these headers without
manual edits. =]
llvm-svn: 169224
Sooooo many of these had incorrect or strange main module includes.
I have manually inspected all of these, and fixed the main module
include to be the nearest plausible thing I could find. If you own or
care about any of these source files, I encourage you to take some time
and check that these edits were sensible. I can't have broken anything
(I strictly added headers, and reordered them, never removed), but they
may not be the headers you'd really like to identify as containing the
API being implemented.
Many forward declarations and missing includes were added to a header
files to allow them to parse cleanly when included first. The main
module rule does in fact have its merits. =]
llvm-svn: 169131
- Each macro instantiation introduces a new buffer, and FindBufferForLoc() is
linear, so previously macro instantiation could be N^2 for some pathological
inputs.
llvm-svn: 169073
The default for 64-bit PowerPC is small code model, in which TOC entries
must be addressable using a 16-bit offset from the TOC pointer. Additionally,
only TOC entries are addressed via the TOC pointer.
With medium code model, TOC entries and data sections can all be addressed
via the TOC pointer using a 32-bit offset. Cooperation with the linker
allows 16-bit offsets to be used when these are sufficient, reducing the
number of extra instructions that need to be executed. Medium code model
also does not generate explicit TOC entries in ".section toc" for variables
that are wholly internal to the compilation unit.
Consider a load of an external 4-byte integer. With small code model, the
compiler generates:
ld 3, .LC1@toc(2)
lwz 4, 0(3)
.section .toc,"aw",@progbits
.LC1:
.tc ei[TC],ei
With medium model, it instead generates:
addis 3, 2, .LC1@toc@ha
ld 3, .LC1@toc@l(3)
lwz 4, 0(3)
.section .toc,"aw",@progbits
.LC1:
.tc ei[TC],ei
Here .LC1@toc@ha is a relocation requesting the upper 16 bits of the
32-bit offset of ei's TOC entry from the TOC base pointer. Similarly,
.LC1@toc@l is a relocation requesting the lower 16 bits. Note that if
the linker determines that ei's TOC entry is within a 16-bit offset of
the TOC base pointer, it will replace the "addis" with a "nop", and
replace the "ld" with the identical "ld" instruction from the small
code model example.
Consider next a load of a function-scope static integer. For small code
model, the compiler generates:
ld 3, .LC1@toc(2)
lwz 4, 0(3)
.section .toc,"aw",@progbits
.LC1:
.tc test_fn_static.si[TC],test_fn_static.si
.type test_fn_static.si,@object
.local test_fn_static.si
.comm test_fn_static.si,4,4
For medium code model, the compiler generates:
addis 3, 2, test_fn_static.si@toc@ha
addi 3, 3, test_fn_static.si@toc@l
lwz 4, 0(3)
.type test_fn_static.si,@object
.local test_fn_static.si
.comm test_fn_static.si,4,4
Again, the linker may replace the "addis" with a "nop", calculating only
a 16-bit offset when this is sufficient.
Note that it would be more efficient for the compiler to generate:
addis 3, 2, test_fn_static.si@toc@ha
lwz 4, test_fn_static.si@toc@l(3)
The current patch does not perform this optimization yet. This will be
addressed as a peephole optimization in a later patch.
For the moment, the default code model for 64-bit PowerPC will remain the
small code model. We plan to eventually change the default to medium code
model, which matches current upstream GCC behavior. Note that the different
code models are ABI-compatible, so code compiled with different models will
be linked and execute correctly.
I've tested the regression suite and the application/benchmark test suite in
two ways: Once with the patch as submitted here, and once with additional
logic to force medium code model as the default. The tests all compile
cleanly, with one exception. The mandel-2 application test fails due to an
unrelated ABI compatibility with passing complex numbers. It just so happens
that small code model was incredibly lucky, in that temporary values in
floating-point registers held the expected values needed by the external
library routine that was called incorrectly. My current thought is to correct
the ABI problems with _Complex before making medium code model the default,
to avoid introducing this "regression."
Here are a few comments on how the patch works, since the selection code
can be difficult to follow:
The existing logic for small code model defines three pseudo-instructions:
LDtoc for most uses, LDtocJTI for jump table addresses, and LDtocCPT for
constant pool addresses. These are expanded by SelectCodeCommon(). The
pseudo-instruction approach doesn't work for medium code model, because
we need to generate two instructions when we match the same pattern.
Instead, new logic in PPCDAGToDAGISel::Select() intercepts the TOC_ENTRY
node for medium code model, and generates an ADDIStocHA followed by either
a LDtocL or an ADDItocL. These new node types correspond naturally to
the sequences described above.
The addis/ld sequence is generated for the following cases:
* Jump table addresses
* Function addresses
* External global variables
* Tentative definitions of global variables (common linkage)
The addis/addi sequence is generated for the following cases:
* Constant pool entries
* File-scope static global variables
* Function-scope static variables
Expanding to the two-instruction sequences at select time exposes the
instructions to subsequent optimization, particularly scheduling.
The rest of the processing occurs at assembly time, in
PPCAsmPrinter::EmitInstruction. Each of the instructions is converted to
a "real" PowerPC instruction. When a TOC entry needs to be created, this
is done here in the same manner as for the existing LDtoc, LDtocJTI, and
LDtocCPT pseudo-instructions (I factored out a new routine to handle this).
I had originally thought that if a TOC entry was needed for LDtocL or
ADDItocL, it would already have been generated for the previous ADDIStocHA.
However, at higher optimization levels, the ADDIStocHA may appear in a
different block, which may be assembled textually following the block
containing the LDtocL or ADDItocL. So it is necessary to include the
possibility of creating a new TOC entry for those two instructions.
Note that for LDtocL, we generate a new form of LD called LDrs. This
allows specifying the @toc@l relocation for the offset field of the LD
instruction (i.e., the offset is replaced by a SymbolLo relocation).
When the peephole optimization described above is added, we will need
to do similar things for all immediate-form load and store operations.
The seven "mcm-n.ll" test cases are kept separate because otherwise the
intermingling of various TOC entries and so forth makes the tests fragile
and hard to understand.
The above assumes use of an external assembler. For use of the
integrated assembler, new relocations are added and used by
PPCELFObjectWriter. Testing is done with "mcm-obj.ll", which tests for
proper generation of the various relocations for the same sequences
tested with the external assembler.
llvm-svn: 168708
to support it. Original patch with the parsing and plumbing by the PaX team and
Roman Divacky. I added the bits in MCDwarf.cpp and the test.
llvm-svn: 168565
Necessary to give disassembler users (like darwin's otool) a possibility to
dlopen libLTO and still initialize the required LLVM bits. This used to go
through libMCDisassembler but that's a gross layering violation, the MC layer
can't pull in functions from the targets. Adding a function to libLTO is a bit
of a hack but not worse than exposing other disassembler bits from libLTO.
Fixes PR14362.
llvm-svn: 168545
Give MCCFIInstruction a single, private constructor and add helper static
methods that create each type of cfi instruction. This is is preparation
for changing its representation. The representation with a pair
MachineLocations older than MC and has been abused quiet a bit to support
more cfi instructions.
llvm-svn: 168532
run through the 'C' preprocessor. That is pick up the file name
and line numbers from the cpp hash file line comments for the
dwarf file and line numbers tables.
rdar://9275556
llvm-svn: 167237
This patch adds initial PPC64 TOC MC object creation using the small mcmodel
(a single 64K TOC) adding the some TOC relocations (R_PPC64_TOC,
R_PPC64_TOC16, and R_PPC64_TOC16DS).
The addition of 'undefinedExplicitRelSym' hook on 'MCELFObjectTargetWriter'
is meant to avoid the creation of an unreferenced ".TOC." symbol (used in
the .odp creation) as well to set the R_PPC64_TOC relocation target as the
temporary ".TOC." symbol. On PPC64 ABI, the R_PPC64_TOC relocation should
not point to any symbol.
llvm-svn: 166677
see the offsetof operator. Previously, we were matching something like MOVrm
in the front-end and later matching MOVrr in the back-end. This change makes
things more consistent. It also fixes cases where we can't match against a
memory operand as the source (test cases coming).
Part of rdar://12470317
llvm-svn: 166592
Per the October 12, 2012 Proposal for annotated disassembly output sent out by
Jim Grosbach this set of changes implements this for X86 and arm. The llvm-mc
tool now has a -mdis option to produced the marked up disassembly and a couple
of small example test cases have been added.
rdar://11764962
llvm-svn: 166445
a memory operand. Retain this information and then add the sizing directives
to the IR. This allows the backend to do proper instruction selection.
llvm-svn: 166316
layer. Add the ParseMSInlineAsm() function, which is the new interface to
clang. Also expose the new MCAsmParserSemaCallback interface, which is used
by the back-end to do name lookup in Sema. Finally, remove the now defunct
APIs introduced in r165946.
llvm-svn: 166183
inline assembly. For the time being, these will be called directly by clang.
However, in the near future I expect these to be sunk back into the MC layer
and more basic APIs (e.g., getClobbers(), getConstraints(), etc.) will be called
by clang.
llvm-svn: 165946
the interface between the front-end and the MC layer when parsing inline
assembly. Unfortunately, this is too deep into the parsing stack. Specifically,
we're unable to handle target-independent assembly (i.e., assembly directives,
labels, etc.). Note the MatchAndEmitInstruction() isn't the correct
abstraction either. I'll be exposing target-independent hooks shortly, so this
is really just a cleanup.
llvm-svn: 165858
This adds 'elf' as a recognized target triple environment value and overrides the default generated object format on Windows platforms if that value is present. This patch also enables MCJIT tests on Windows using the new environment value.
llvm-svn: 165030
The target backend can support data-in-code load commands even when
the assembler doesn't, or vice-versa. Allow targets to opt-in for
direct-to-object.
PR13973.
llvm-svn: 164974
to improve compatibility with GNU as.
Based on a patch by PaX Team.
Fixed assertion failures on non-Darwin and added additional test cases.
llvm-svn: 164248
Now where we used to call ReInitMCSubtargetInfo, we actually recompute
the same information as InitMCSubtargetInfo instead of only setting
the feature bits.
llvm-svn: 164105
* wrap code blocks in \code ... \endcode;
* refer to parameter names in paragraphs correctly (\arg is not what most
people want -- it starts a new paragraph);
* use \param instead of \arg to document parameters in order to be consistent
with the rest of the codebase.
llvm-svn: 163902
Apparently, NumSubRegIndices was completely unused before. Adjust it by
one to include the null subreg index, just like getNumRegs() includes
the null register.
llvm-svn: 163628
For some reason .lcomm uses byte alignment and .comm log2 alignment so we can't
use the same setting for both. Fix this by reintroducing the LCOMM enum.
I verified this against mingw's gcc.
llvm-svn: 163420
- Darwin lied about not supporting .lcomm and turned it into zerofill in the
asm parser. Push the zerofill-conversion down into macho-specific code.
- This makes the tri-state LCOMMType enum superfluous, there are no targets
without .lcomm.
- Do proper error reporting when trying to use .lcomm with alignment on a target
that doesn't support it.
- .comm and .lcomm alignment was parsed in bytes on COFF, should be power of 2.
- Fixes PR13755 (.lcomm crashes on ELF).
llvm-svn: 163395
within the codegen EK_GPRel64BlockAddress. This was not
supported for direct object output and resulted in an assertion.
This change adds support for EK_GPRel64BlockAddress for
direct object.
One fallout from this is to turn on rela relocations
for mips64 to match gas.
llvm-svn: 162334