There are several Pseudo in PowerPC backend.
eg:
* ISel Pseudo-instructions , which has let usesCustomInserter=1 in td
ExpandISelPseudos -> EmitInstrWithCustomInserter will deal with them.
* Post-RA pseudo instruction, which has let isPseudo = 1 in td, or Standard pseudo (SUBREG_TO_REG,COPY etc.)
ExpandPostRAPseudos -> expandPostRAPseudo will expand them
* Multi-instruction pseudo operations will expand them PPCAsmPrinter::EmitInstruction
* Pseudo instruction in CodeEmitter, which has encoding of 0.
Currently, in td files, especially PPCInstrVSX.td,
we did not distinguish Post-RA pseudo instruction and Pseudo instruction in CodeEmitter very clearly.
This patch is to
* Rename Pseudo<> class to PPCEmitTimePseudo, which means encoding of 0 in CodeEmitter
* Introduce new class PPCPostRAExpPseudo <> for previous PostRA Pseudo
* Introduce new class PPCCustomInserterPseudo <> for previous Isel Pseudo
Differential Revision: https://reviews.llvm.org/D55143
llvm-svn: 349044
When doing some instruction scheduling work, we noticed some missing itineraries.
Before we switch to machine scheduler, those missing itineraries might not have impact to actually scheduling,
because we can still get same latency due to default values.
With machine scheduler, however, itineraries will have impact to scheduling.
eg: NumMicroOps will default to be 0 if there is NO itineraries for specific instruction class.
And most of the instruction class with itineraries will have NumMicroOps default to 1.
This will has impact on the count of RetiredMOps, affects the Pending/Available Queue,
then causing different scheduling or suboptimal scheduling further.
This patch is for STWU/STWUX (IIC_LdStStoreUpd ) for P8.
Since there are already multiple IIC for store update, this patch also merge
IIC_LdStSTDU/IIC_LdStStoreUpd to IIC_LdStSTU
IIC_LdStSTDUX to IIC_LdStSTUX
and we add a new testcase in https://reviews.llvm.org/D54699 to show the difference.
Differential Revision: https://reviews.llvm.org/D54700
llvm-svn: 347311
The internal benchmark failure reported by Google was due to a missing
check for the result type for the sign-extend and shift DAG. This commit
adds the check and re-commits the patch.
llvm-svn: 340734
Add a DAG combine for the PowerPC code generator to generate the Power9 extswsli
extend sign and shift immediate instruction.
Patch by RolandF.
Differential revision: https://reviews.llvm.org/D49879
llvm-svn: 340016
Summary:
The Signal Processing Engine (SPE) is found on NXP/Freescale e500v1,
e500v2, and several e200 cores. This adds support targeting the e500v2,
as this is more common than the e500v1, and is in SoCs still on the
market.
This patch is very intrusive because the SPE is binary incompatible with
the traditional FPU. After discussing with others, the cleanest
solution was to make both SPE and FPU features on top of a base PowerPC
subset, so all FPU instructions are now wrapped with HasFPU predicates.
Supported by this are:
* Code generation following the SPE ABI at the LLVM IR level (calling
conventions)
* Single- and Double-precision math at the level supported by the APU.
Still to do:
* Vector operations
* SPE intrinsics
As this changes the Callee-saved register list order, one test, which
tests the precise generated code, was updated to account for the new
register order.
Reviewed by: nemanjai
Differential Revision: https://reviews.llvm.org/D44830
llvm-svn: 337347
This is the lead-up to having SPE codegen. Add the rest of the
instructions, along with MC tests.
Differential Revision: https://reviews.llvm.org/D44829
llvm-svn: 337346
Non-homogenous aggregates are passed in consecutive GPRs, in GPRs and in memory,
or in memory. This patch ensures that float128 members of non-homogenous
aggregates are passed via VSX registers.
This is done via custom lowering a bitcast of a build_pari(i64,i64) to float128
to a new PPCISD node, BUILD_FP128.
Differential Revision: https://reviews.llvm.org/D48308
llvm-svn: 336310
Existing DAG combine only handles conversions for FP_TO_SINT:
"{f32, f64} x { i32, i16 }"
This patch simplifies the code to handle:
"{ FP_TO_SINT, FP_TO_UINT } x { f64, f32 } x { i64, i32, i16, i8 }"
Differential Revision: https://reviews.llvm.org/D46102
llvm-svn: 331778
A new function getOpcodeForSpill should now be the only place to get
the opcode for a given spilled register.
Differential Revision: https://reviews.llvm.org/D43086
llvm-svn: 328556
Summary:
These are cases of self-references that exist today in practice. Let's
add tests for them to avoid regressions.
The self-references in PPCInstrInfo.td can be expressed in a simpler
way. Allowing this type of self-reference while at the same time
consistently doing late-resolve even for self-references is problematic
because there are references to fields that aren't in any class. Since
there's no need for this type of self-reference anyway, let's just
remove it.
Change-Id: I914e0b3e1ae7adae33855fac409b536879bc3f62
Reviewers: arsenm, craig.topper, tra, MartinO
Subscribers: nemanjai, wdng, kbarton, llvm-commits
Differential Revision: https://reviews.llvm.org/D44474
llvm-svn: 327848
Running a bootstrap build with UBSan produces a number of instances where
we have signed integer overflow due to this transform. Change the type to
long to prevent this UB on 64-bit build machines.
llvm-svn: 325347
Part of the fix for https://bugs.llvm.org/show_bug.cgi?id=35812.
This patch ensures that the compare operand for the atomic compare and swap
is properly zero-extended to 32 bits if applicable.
A follow-up commit will fix the extension for the SETCC node generated when
expanding an ATOMIC_CMP_SWAP_WITH_SUCCESS. That will complete the bug fix.
Differential Revision: https://reviews.llvm.org/D41856
llvm-svn: 322372
This patch adds the necessary infrastructure to convert instructions that
take two register operands to those that take a register and immediate if
the necessary operand is produced by a load-immediate. Furthermore, it uses
this infrastructure to perform such conversions twice - first at MachineSSA
and then pre-emit.
There are a number of reasons we may end up with opportunities for this
transformation, including but not limited to:
- X-Form instructions chosen since the exact offset isn't available at ISEL time
- Atomic instructions with constant operands (we will add patterns for this
in the future)
- Tail duplication may duplicate code where one block contains this redundancy
- When emitting compare-free code in PPCDAGToDAGISel, we don't handle constant
comparands specially
Furthermore, this patch moves the initialization of PPCMIPeepholePass so that
it can be used for MIR tests.
llvm-svn: 320791
This flag was missing but it wasn't an issue as nothing depended on it
for these asm parser-only instructions. Now that LLDB support is slowly
landing, it is important to get this right.
Committing on behalf of Leonardo Bianconi.
Differential revision: https://reviews.llvm.org/D40846
llvm-svn: 320475
This adds assembly & disassembly support for the e500mc "external pid"
instructions.
See https://reviews.llvm.org/D39249.
Patch by vit9696 <vit9696@avp.su>
llvm-svn: 320287
Summary: The two 32-bit words were swapped. Update a test omitted in reverted r316270.
Reviewers: jtony, aaron.ballman
Subscribers: nemanjai, kbarton
Differential Revision: https://reviews.llvm.org/D39163
llvm-svn: 316916
As mentioned in https://reviews.llvm.org/D33718, this simply adds another
pattern to the compare elimination sequence and is committed without a
differential revision.
llvm-svn: 314060
This patch just adds the missing information to the P9 scheduling model to allow
the model to be marked as complete.
The model has been verified against P9 documentation. The model was verified
with utils/schedcover.py.
Differential Revision: https://reviews.llvm.org/D35695
llvm-svn: 314026
As outlined in the PR, we didn't ensure that displacements for DQ-Form
instructions are multiples of 16. Since the instruction encoding encodes
a quad-word displacement, a sub-16 byte displacement is meaningless and
ends up being encoded incorrectly.
Fixes https://bugs.llvm.org/show_bug.cgi?id=33671.
Differential Revision: https://reviews.llvm.org/D35007
llvm-svn: 307934
This patch adds on to the exploitation added by https://reviews.llvm.org/D33510.
This now catches build vector nodes where the inputs are coming from sign
extended vector extract elements where the indices used by the vector extract
are not correct. We can still use the new hardware instructions by adding a
shuffle to move the elements to the correct indices. I introduced a new PPCISD
node here because adding a vector_shuffle and changing the elements of the
vector_extracts was getting undone by another DAG combine.
Commit on behalf of Zaara Syeda (syzaara@ca.ibm.com)
Differential Revision: https://reviews.llvm.org/D34009
llvm-svn: 307169
Power9 has instructions that will reverse the bytes within an element for all
sizes (half-word, word, double-word and quad-word). These can be used for the
vec_revb builtins in altivec.h. However, we implement these to match vector
shuffle nodes as that will cover both the builtins and vector shuffles that
occur in the SDAG through other means.
Differential Revision: https://reviews.llvm.org/D33690
llvm-svn: 305214
Note that if we need the result of both the divide and the modulo then we
compute the modulo based on the result of the divide and not using the new
hardware instruction.
Commit on behalf of STEFAN PINTILIE.
Differential Revision: https://reviews.llvm.org/D33940
llvm-svn: 305210
There are some VectorShuffle Nodes in SDAG which can be selected to XXPERMDI
Instruction, this patch recognizes them and does the selection to improve
the PPC performance.
Differential Revision: https://reviews.llvm.org/D33404
llvm-svn: 304298
There are some VectorShuffle Nodes in SDAG which can be selected to XXSLDWI
instruction, this patch recognizes them and does the selection to improve the
PPC performance.
llvm-svn: 303822
Summary:
This fixes pr32392.
The lowering pipeline is:
llvm.ppc.cfence in IR -> PPC::CFENCE8 in isel -> Actual instructions in
expandPostRAPseudo.
The reason why expandPostRAPseudo is chosen is because previous passes
are likely eliminating instructions like cmpw 3, 3 (early CSE) and bne-
7, .+4 (some branch pass(s)).
Differential Revision: https://reviews.llvm.org/D32763
llvm-svn: 303205
This patch is the first in a series of patches to provide code gen for
doing compares in GPRs when the compare result is required in a GPR.
It adds the infrastructure to select GPR sequences for i1->i32 and i1->i64
extensions. This first patch handles equality comparison on i32 operands with
the result sign or zero extended.
Differential Revision: https://reviews.llvm.org/D31847
llvm-svn: 302810
Using arguments with attribute inalloca creates problems for verification
of machine representation. This attribute instructs the backend that the
argument is prepared in stack prior to CALLSEQ_START..CALLSEQ_END
sequence (see http://llvm.org/docs/InAlloca.htm for details). Frame size
stored in CALLSEQ_START in this case does not count the size of this
argument. However CALLSEQ_END still keeps total frame size, as caller can
be responsible for cleanup of entire frame. So CALLSEQ_START and
CALLSEQ_END keep different frame size and the difference is treated by
MachineVerifier as stack error. Currently there is no way to distinguish
this case from actual errors.
This patch adds additional argument to CALLSEQ_START and its
target-specific counterparts to keep size of stack that is set up prior to
the call frame sequence. This argument allows MachineVerifier to calculate
actual frame size associated with frame setup instruction and correctly
process the case of inalloca arguments.
The changes made by the patch are:
- Frame setup instructions get the second mandatory argument. It
affects all targets that use frame pseudo instructions and touched many
files although the changes are uniform.
- Access to frame properties are implemented using special instructions
rather than calls getOperand(N).getImm(). For X86 and ARM such
replacement was made previously.
- Changes that reflect appearance of additional argument of frame setup
instruction. These involve proper instruction initialization and
methods that access instruction arguments.
- MachineVerifier retrieves frame size using method, which reports sum of
frame parts initialized inside frame instruction pair and outside it.
The patch implements approach proposed by Quentin Colombet in
https://bugs.llvm.org/show_bug.cgi?id=27481#c1.
It fixes 9 tests failed with machine verifier enabled and listed
in PR27481.
Differential Revision: https://reviews.llvm.org/D32394
llvm-svn: 302527
The the following instructions:
- LD/LWZ (expanded from sjLj pseudo-instructions)
- LXVL/LXVLL vector loads
- STXVL/STXVLL vector stores
all require G8RC_NO0X class registers for RA.
Differential Revision: https://reviews.llvm.org/D29289
Committed for Lei Huang
llvm-svn: 293769
Summary:
Adds the following instructions:
* mfpmr
* mtpmr
* icblc
* icblq
* icbtls
Fix the scheduling for mtspr on e5500, which uses CFX0, instead of
SFX0/SFX1 as on e500mc.
Addresses PR 31538.
Differential Revision: https://reviews.llvm.org/D29002
llvm-svn: 293417
1) Explicitly sets mayLoad/mayStore property in the tablegen files on load/store
instructions.
2) Updated the flags on a number of intrinsics indicating that they write
memory.
3) Added SDNPMemOperand flags for some target dependent SDNodes so that they
propagate their memory operand
Review: https://reviews.llvm.org/D28818
llvm-svn: 293200
In some situations, the BUILD_VECTOR node that builds a v18i8 vector by
a splat of an i8 constant will end up with signed 8-bit values and other
situations, it'll end up with unsigned ones. Handle both situations.
Fixes PR31340.
llvm-svn: 289804
This patch corresponds to review:
https://reviews.llvm.org/D25912
This is the first patch in a series of 4 that improve the lowering and combining
for BUILD_VECTOR nodes on PowerPC.
llvm-svn: 288152
This patch corresponds to review:
https://reviews.llvm.org/D23155
This patch removes the VSHRC register class (based on D20310) and adds
exploitation of the Power9 sub-word integer loads into VSX registers as well
as vector sign extensions.
The new instructions are useful for a few purposes:
Int to Fp conversions of 1 or 2-byte values loaded from memory
Building vectors of 1 or 2-byte integers with values loaded from memory
Storing individual 1 or 2-byte elements from integer vectors
This patch implements all of those uses.
llvm-svn: 283190
This patch corresponds to review:
https://reviews.llvm.org/D21135
This patch exploits the following instructions:
mtvsrws
lxvwsx
mtvsrdd
mfvsrld
In order to improve some build_vector and extractelement patterns.
llvm-svn: 282246
PowerPC assembly code in the wild, so it seems, has things like this:
bc+ 12, 28, .L9
This is a bit odd because the '+' here becomes part of the BO field, and the BO
field is otherwise the first operand. Nevertheless, the ISA specification does
clearly say that the +- hint syntax applies to all conditional-branch mnemonics
(that test either CTR or a condition register, although not the forms which
check both), both basic and extended, so this is supposed to be valid.
This introduces some asm-parser-only definitions which take only the upper
three bits from the specified BO value, and the lower two bits are implied by
the +- suffix (via some associated aliases).
Fixes PR23646.
llvm-svn: 280571